Density dependence of Λ potential in nuclear matter from heavy-ion collisions and hypernuclear spectroscopy

A. Jinno¹, K. Murase², Y. Nara³, Akira Ohnishi², 1. Dept. Phys., Kyoto U., 2. YITP, Kyoto U., 3. Akita International U.

YITP Workshop on "Fundamentals in density functional theory" (DFT2022), Dec. 7-20, 2022, YITP, Kyoto / Online (Hybrid).

- **Introduction Hyperon puzzle**
- Directed flow of Λ
- **A Hypernuclei**
- **Summary**

Y.Nara, A. Jinno, K. Murase, AO, PRC106 ('22), 044902 [2208.01297]; A. Jinno, K. Murase, Y. Nara, AO, work in prog..

Hyperon Puzzle of Neutron Stars

- Hyperonic matter EOS cannot sustain 2M neutron stars.
- **Proposed solutions**
 - More repulsive hyperon potential $(U_{\lambda}(\rho))$ at high density
 - Transition to quark matter before Λ appears
 - General relativity → Modified gravity
- A potential from chiral EFT
 - Three-body force may cause repulsive potential of Λ .

Can we examine repulsive U_{Λ} at high densities?

- Candidate 1: Directed flow from heavy-ion collisions
 - Directed flow has been utilized to study EOS

$$v_1 = \langle \cos \phi \rangle$$
 (directed flow), $\langle p_x \rangle$ (side flow)

E.g. Sahu, Cassing, Mosel, AO (nucl-th/9907002); Snellings+(nucl-ex/9908001); Danielewicz, Lacey, Lynch (nucl-th/0208016);

- How about v_1 of Λ ?
- Candidate 2: Hypernuclear Spectroscopy
 - Density dependence of U_{Λ} from chiral EFT is different

from "Standard" potentials.

E.g. Lanskoy, Yamamoto ('97)

• Does U_{Λ} from chiral EFT explain the separation energy of Λ ?

Jinno+ (work in prog.)

Directed flow of A

U₁ from Chiral EFT

Chiral EFT with 3BF and hyperons

Gerstung+(2001.10563)(GKW, decuplet saturation model), Kohno (1802.05388)

• ρ-dep. potential using Fermi mom. expansion *Tews*+(1611.07133) + momentum dep. fitted to Kohno ('18).

$$U_{\Lambda}(\rho, k) = a \frac{\rho}{\rho_0} + b \left(\frac{\rho}{\rho_0}\right)^{4/3} + c \left(\frac{\rho}{\rho_0}\right)^{5/3} + \sum_{n} \frac{C_n}{\rho_0} \int \frac{d\mathbf{k}'}{(2\pi)^3} \frac{f(\mathbf{r}, \mathbf{k}')}{1 + (\mathbf{k} - \mathbf{k}')^2/\mu_n^2}$$

Range of fit

 $\rho \leq 3.5\rho_0$ (unstable above $3.5\rho_0$)

$$k \le \Lambda \text{ (MD1) or } k \le 1 \text{ fm}^{-1} \text{ (MD2)}$$

Nara, Jinno, Murase, AO ('22)

Directed flow of A

Calculation using JAM2 event generator

https://gitlab.com/transportmodel/jam2

Potential effects are included in RQMDv, which solves the proton v1 puzzle. (Change of the v1 slope around 10 GeV) Nara, AO, PRC105('22),014911[2109.07594]

Directed flows of p and Λ are reasonably explained by using MS2 (momentum dep. soft potential) for non-strange baryons and MS2 x 2/3 for hyperons.

Directed flow of Λ with chiral EFT U_{Λ}

- A potential from chiral EFT is adopted.
 - GKW2/3: Fit to GKW $U_{\Lambda}(\rho)$ without/with 3-body force.
 - MD2/3: Fit to Kohno('18) in the range k<500 and 200 MeV/c.
- GKW3 explains the data well.
 - Momentum dep. reduces v1 values.
 - GKW2 also explains the data.

Repulsive Λ potential (GKW3) enhances dv1/dy and gives results closest to data, when momentum dependence is ignored.

Momentum dep. of U_{Λ} reduces v1 (and dv1/dy), while the density dep. affects less. (Why? We haven't understood the reason yet.)

Any other way to constrain the density and momentum dependence of U_{\wedge} ?

→ Hypernuclear spectroscopy

1 A Hypernuclei

Λ hypernuclei and Λ potential in nuclear matter

- A potential from chiral EFT w/ 3BF has not been examined in hypernuclear spectroscopy
 - It needs to be verified (and tuned) including the density and momentum dependence!
 (before applying it to heavy-ion collisions (?))
 - NLO result has been tested but does not explain the data well. Haidenbauer, Vidaña ('21)
 - How about NNLO with decouplet model?

Haidenbauer, Vidaña ('21)

Skyrme Hartree-Fock for Λ hypernuclei

- Previous breakthrough works (spherical SHF)
 - Rayet('76,'81): Two-body SHF (w/o ρ dep.)
 - Lanskoy, Yamamoto (LY, '97): SHF w/ one ρ dep. term (as in standard HF for nucleons)
 - Choi, Hiyama et al. ('22): SHF w/ two or more ρ dep. terms (significant improvement w/ two ρ dep. terms.)
- SHF for Λ hypernuclei
 - HF equation

$$\left[-\nabla \cdot \left(\frac{\hbar^2}{2m_B^*(\mathbf{r})} \right) \nabla + U_B(\mathbf{r}) - i\mathbf{W}_B(\mathbf{r}) \cdot (\nabla \times \boldsymbol{\sigma}) \right] \psi_{iB}(\mathbf{r}) = \varepsilon_i \psi_{iB}(\mathbf{r})$$

HF potential

$$U_{\Lambda}(\mathbf{r}) = a_1^{\Lambda} \rho_N + a_2^{\Lambda} \tau_N + a_3^{\Lambda} \triangle \rho_N + a_4^{\Lambda} \rho_N^{4/3} + a_5^{\Lambda} \rho_N^{5/3}$$
$$\frac{\hbar^2}{2m_{\Lambda}^*} = \frac{\hbar^2}{2m_{\Lambda}} + a_2^{\Lambda} \rho_N , \ \tau_B = \sum_i \nabla \psi_{iB}^* \cdot \nabla \psi_{iB}$$

Parameters from GKW

Density dependence at zero momentum

$$U_{\Lambda}(\mathbf{r}) = a_1^{\Lambda} \rho + a_2^{\Lambda} \tau_N + a_3^{\Lambda} \triangle \rho + a_4^{\Lambda} \rho^{4/3} + a_5^{\Lambda} \rho^{5/3} \quad (\rho = \rho_N)$$

$$\rightarrow U_{\Lambda}(\rho, \mathbf{k} = 0) = a_1^{\Lambda} \rho + a_4^{\Lambda} \rho^{4/3} + \tilde{a}_5^{\Lambda} \rho^{5/3} \quad \text{(uniform matter)}$$

$$\tilde{a}_5^{\Lambda} = a_5^{\Lambda} + \alpha a_2^{\Lambda}, \quad \alpha = \text{const.}$$

- Three parameters are tuned to reproduce GKW results.
- Momentum dependence

$$U_{\Lambda}(\rho, \mathbf{k}) = U_{\Lambda}(\rho) + a_2^{\Lambda} \mathbf{k}^2 \rho$$

- a_2^{Λ} is tuned to reproduce Kohno's results at low momentum.
- Finite range effects
 - $a_3^{\ \Lambda}$ is tuned to reproduce the separation energy of Λ in ${}^{13}_{\ \Lambda}C$ (even-even core nucleus)

Parameters from GKW

3 density-dep. terms + k^2 momentum dep. term are enough at ρ/ρ_0 < 2 and k < 1.3 fm⁻¹

Jinno+ (in prog.)

GKW2 and GKW3

- NNLO chiral EFT with the decouplet saturation model without/with 3-body terms (GKW3 and GKW2)
- W/o mom. dep. $(a_2^{\Lambda}=0)$, GKW2 overestimates B_{Λ} at large A.
 - Deeper potential at ρ_0 . (~ -35 MeV)
 - Steeper A dep. is consistent with Haidenbauer, Vidaña ('21)
 - Mom. dep. and finite range terms does not help.
- With mom. dep. term, GKW3+Kohno3 explains the data well.

Question!

- Chiral EFT and meson-exchange-based potentials have different density dependence. Why can both of them explain B₁?
 - \rightarrow Global analysis using Taylor coeff. around ρ_0 !

$$U_{\Lambda}(\rho,k) = J_{\Lambda} + \frac{L_{\Lambda}}{3} \left(\frac{\rho - \rho_0}{\rho_0} \right) + \frac{K_{\Lambda}}{9} \left(\frac{\rho - \rho_0}{\rho_0} \right)^2 + a_2^{\Lambda} k^2 \rho + \mathcal{O} \left[\left(\frac{\rho - \rho_0}{\rho_0} \right)^3, k^4 \right]$$

Summary

- A potential in nuclear matter from the chiral effective field theory with the 3-body force effect is examined via the directed flow of Λ from heavy-ion collisions and the binding energies of Λ in hypernuclei.
 - GKW2/3: $U_{\Lambda}(\rho,k=0)$ without/with 3-body force

Gerstung, Kaiser, Weise ('20)

- Kohno2/3: $U_{\Lambda}(\rho_0,k)$ without/with 3-body force Kohno ('18)
- With GKW3, repulsive U_{Λ} forbids Λ to appear in neutron stars and the hyperon puzzle is solved.
- \blacksquare Directed flow of Λ is well explained by GKW3 without mom. dep.
 - With strong mom. dep., $v1(\Lambda)$ is underestimted.
 - GKW2 w/o mom. dep. also explains $v1(\Lambda)$.
- GKW3+Kohno3 can explain the Λ binding energies (by tuning the finite range term).
 - GKW2 is too attractive and cannot explain B_{Λ} .

Conclusion, Conjecture, and To do

- Conclusion: Stiff U_{Λ} ($K_{\Lambda} \sim (500\text{-}600)$ MeV) having weak momentum dependence ($M_{\Lambda}^* \sim (0.8\text{-}0.9) M_{\Lambda}$) explains both v1(Λ) in HIC and B_{Λ} in hypernuclei.
- **Conjecture: There may be two types of U** $_{\Lambda}$ which explains \mathbf{B}_{Λ} .
 - Lanskoy-Yamamoto type: K_Λ~ 300 MeV
 - Chiral EFT type: $K_{\Lambda} \sim 600 \text{ MeV}$
 - Λ appears in neutron stars in the former, but Λ does not appear in neutron stars in the latter.
- To do
 - Comparison of the directed flows using U_{λ} at two local minima.
 - Understand the reason for the insensitivity of $v1(\Lambda)$ to the density dependence of U_{Λ} via time-dependent analysis.
 - More serious estimate of B_{Λ} using chiral EFT. (E.g. HypAMD)
 - Other SHF parameters are close to local minima? N.Guleria, S.K.Dhiman, R.Shyam(1108.0787)
 - Why does chiral EFT show strong k-dep. in N(N)LO?

Thank you for your attention!

Fermi momentum expansion

Energy per nucleon would be expressed as the power series of k_F

$$E = Tu^{2/3} + au + bu^{4/3} + cu^{5/3} + du^{2}$$

$$= J + \frac{L}{3}(u-1) + \frac{K}{18}(u-1)^{2} + \frac{Q}{162}(u-1)^{3} + \mathcal{O}((u-1)^{4})$$

$$(u = \rho/\rho_{0})$$

$$a = -4T + 20J - \frac{19}{3}L + K - \frac{1}{6}Q$$

$$b = 6T - 45J + 15L - \frac{5}{2}K + \frac{1}{2}Q$$

$$c = -4T + 36J - 12L + 2K - \frac{1}{2}Q$$

$$d = T - 10J + \frac{10}{3}L - \frac{1}{2}K + \frac{1}{6}Q$$

Tews, Lattimer, AO, Kolomeitsev (17)

M*-J and J-L correlations

One local minimum

Parameter range

- $J_{\Lambda} = -33, -32, -31, ..., -27 \text{ MeV}$
- $L_{\Lambda} = -50, -40, -30, ..., 20 \text{ MeV}$
- $K_{\Lambda} = 0, 100, 200, ..., 600 \text{ MeV}$
- $m^*/m = 0.6, 0.65, 0.70, ..., 1.0$
- ・計3,528個のパラメータに対して、

実験データとの平均誤差

$$\left\langle \left(B_{\Lambda, \exp} - B_{\Lambda, \mathrm{HF}}\right)^2 \right\rangle^{1/2}$$
を計算

