Femtoscopic study of hadron interactions including charm

Akira Ohnishi¹, Y. Kamiya^{2,3}, T. Hyodo^{3,4}

1. YITP, Kyoto U., 2. Bonn Univ., 3. iTHEMS, RIKEN, 4. Tokyo Metropolitan U.

J-PARC Hadron WS, Online / KEK J-PARC branch

J-PARCハドロン研究会 2022

22-24 March 2022 ハイブリッド(オンライン + KEK J-PARC 東海分室) Asia/Tokyo timezone

- Introduction
- Charmed hadron interaction (1) D⁻ p
- Charmed hadron interaction (2) DD^* and $\{D\overline{D}^*\}$
- **Summary**

Y. Kamiya, T. Hyodo, A. Ohnishi, in prep; S. Acharya et al. [ALICE], 2201.05352.

Exotic Hadrons including $c\bar{c}/cc/\bar{c}\bar{c}$

Main play ground of exotic hadron physics

- X(3872) Belle ('03)
- Many X,Y,Z states Belle, CDF, BaBar, LHCb, CMS, BESIII, ...
- Charmed pentaquark Pc LHCb ('15, '19)
- **Doubly charmed tetraquark state Tcc** LHCb ('21)
- Structure of exotic hadrons
 - Compact multiquark states
 - \rightarrow "good" diquark gains energy
 - Hadronic molecules
 - \rightarrow Many exotic states around thresholds
 - Their mixture...

Tetraquarks

Hadronic Molecules

S.K.Choi+[Belle], PRL91, 262001 ('03)

R. Aaji+ [LHCb], 2109.01038, 2109.01056

Hadronic Molecules

- **Deuteron (np),** $\Lambda(1405)(\bar{K}N)$,....
- Hadronic Molecule Conditions
 - Appears around the threshold (Threshold (Ikeda) rule)
 → Tcc & X(3872)
 - Have large size $R \simeq 1/\sqrt{2\mu B}$
 - Described by the *hh* interaction
- Tcc
 - Compact Tetraquark ? S. Zouzou+('86), ZPC30,457.
- **X(3872)**
 - Molecule ? Radiative decay *Dong+ (0802.3610)*
 - $c\overline{c}$ component? production cross section *Bignamini+ (0906.0882)*
 - Mixture from lattice QCD. Padmanath+ (1503.03257)
 - Molecule ! Large yield in Pb+Pb Sirunyan+ [CMS] (2102.13048)
 c.f. Δr/Δp is similar in HIC and molecule. ExHIC ('11,'11,'17)

Femtoscopic study of hadron-hadron interaction

- How can we study interactions between short-lived particles ? → Femtoscopy !
- Correlation function (CF)
 - Koonin-Pratt formula

Koonin('77), Pratt+('86), Lednicky+('82)

source fn. relative w.f.

 $C(\mathbf{p}_{1}, \mathbf{p}_{2}) = \frac{N_{12}(\mathbf{p}_{1}, \mathbf{p}_{2})}{N_{1}(\mathbf{p}_{1})N_{2}(\mathbf{p}_{2})} \simeq \int d\mathbf{r} S_{12}(\mathbf{r}) |\varphi_{\mathbf{q}}(\mathbf{r})|^{2}$

- Source size from quantum stat. + CF (Femtoscopy) Hanbury Brown & Twiss ('56); Goldhaber, Goldhaber, Lee, Pais ('60)
- Hadron-hadron interaction from source size + CF
 - CF of non-identical pair from Gaussian source
 R. Lednicky, V. L. Lyuboshits ('82); K. Morita, T. Furumoto, AO ('15)

$$C(\boldsymbol{q}) = 1 + \int d\boldsymbol{r} S(r) \left\{ |\varphi_0(r)|^2 - |j_0(qr)|^2 \right\} \quad (\varphi_0 = \text{s-wave w.f.})$$

CF shows how much $|\varphi|^2$ is enhanced $\rightarrow V_{hh}$ effects !

Measured Correlation Functions (examples)

So far, so good.

Strange hadron (s-wave) interactions seem to be constrained from femtoscopy.

Next, we should proceed to charm hadron interactions !

Femtoscopic study of charm hadron interactions (1) - D⁻ p correlation function -

Femtoscopic study of charmed hadron int. (1)

"First study of the two-body scattering involving charm hadrons" measurement, Acharya+[ALICE] (2201.05352)

 $f_0 (I = 1)$

-0.28

0.04

-0.26

-0.07

-0.25

- D⁻ p corr. func. is measured.
- Enhanced CF from Coulomb.

Model

Coulomb

 $-g_{\sigma}^{2}/4\pi = 1$

 $-g_{\sigma}^2/4\pi = 2.25$

Haidenbauer et al. [21]

Hofmann and Lutz [22]

Yamaguchi et al. [24]

Fontoura et al. [23]

 One range gaussian potential with strength fitted to the I=0 scattering length of the model → attractive potentials are favored

 $f_0 (I = 0)$

0.14

0.67

-0.16

-4.38

0.16

[21] Haidenbauer+(0704.3668) (weakly / mildly attractive (I=0))
 [22] Hofmann, Lutz (hep-ph/0507071) (repulsive (I=0))
 [23] Fontoura+(1208.4058) (weakly attractive (I=0))
 [24] Yamaguchi, Ohkoda, Yasui, Hosaka (1105.0734) (att., w/ bound state (I=0))
 A. Ohnishi @ J-PARC Hadron WS, Mar.23, 2022, Online/ KEK J-PARC 8

To be bound or not to be bound

- When there is a bound state, CF shows interesting dependence on the source size and relative momentum.
- D⁻p corr. func. shows the behavior with a bound state, and the best fit parameter set (R, a₀) is in the bound region. (If bound, it is the first weakly decaying pentaquark state.)

Femtoscopic study of charm hadron interactions (2) - DD^* and $D\overline{D}^*$ correlation func. -

Femtoscopic study of charmed hadron int. (2)

D D^* and $D\overline{D}^*$ correlation functions. *Kamiya, Hyodo, AO, in prep.*

- Related with Tcc and X(3872)
- DD^* and $D\overline{D}^*$ interactions

$$V = \frac{1}{2} \begin{pmatrix} V_{I=0} + V_{I=1} & V_{I=0} - V_{I=1} \\ V_{I=0} - V_{I=1} & V_{I=0} + V_{I=1} \end{pmatrix}$$

- I=0: One range gaussian, strength fitted to the mass
- I=1: ignored

 \mathbf{D}^*

- Range = one pion exchange Yasui, Sudoh (0906.1452)
- Strength is fitted to the pole mass.

$$\{D^0 \bar{D}^{*0}\} = (D^0 \bar{D}^{*0} + \bar{D}^0 D^{*0}) / \sqrt{2} \ (C = +1)$$

$$\{D^+ D^{*-}\} = (D^+ D^{*-} + D^- D^{*+}) / \sqrt{2} \ (C = +1)$$

DD*	V_0 [MeV]	$a_0^{D^0D^{*+}}$ [fm]	$a_0^{D^+D^{*0}}$ [fm]
	-36.569 - i1.243	-7.16 + i1.85	-1.75 + i1.82
$\{D\bar{D}^*\}$	<i>V</i> ₀ [MeV]	$a_0^{\{D^0 \bar{D}^{*0}\}}$ [fm]	$a_0^{\{D^+D^{*-}\}}$ [fm]
	-43.265 - i6.091	-4.23 + i3.95	-0.41 + i1.47

 \mathbf{D}^*

D^0D^{*+} and D^+D^{*0} Correlation Functions

- For small source (R= 1 fm)
 C(q) > 8 for the lower channel (D⁰D^{*+}) (Very strong)
 C(q) ~ 2.5 for upper channel (D⁺D^{*0}) (strong)
- For large source (R=5 fm), CF show a dip
- Strong enhancement for small source, dip for large source → Characteristic dependence with a bound state (Tcc)
- Cusp is not significant

$D^0 \overline{D}^{*0}$ and $D^+ \overline{D}^{*-}$ Correlation Functions

- $C(D^0 \overline{D}^{*0})$: Strong enh. for small source, dip for large source → Characteristic dependence with a bound state (X(3872))
- $C(D^+\bar{D}^{*-})$: Coulomb dominant
- Cusp may be observed for small size

A. Ohnishi @ J-PARC Hadron WS, Mar.23, 2022, Online/ KEK J-PARC 13

Tcc and X(3872) structure

Hadronic molecule structure is assumed

 \rightarrow Eigenmomentum $k \simeq -i/a_0$, $a_0 \simeq 1/\sqrt{2\mu B}$

■ What happens when multiquark state mixes ? → Deviation from weak binding relation

Weinberg, Phys. Rev. 137, B672 (1965), Hyodo, Jido, Hosaka (1108.5524)

$$a_0 = R\left[\frac{2X}{1+X}\right] + \mathcal{O}(m_\pi^{-1})$$

Smaller scattering length in DD* may signal the tetraquark nature of Tcc.

Summary

- **Two-particle correlation functions are useful to deduce**
 - Scattering length
 - Existence of a bound state
 - and hopefully the compositeness
- Charm hadron interactions are within the reach.
 - D⁻ p correlation function data favor attractive interaction. (c.f. Yasui's talk)
 - DD* and DD̄* correlation functions are predicted to reflect the existence of bound states (Tcc and X(3872)) by using simple potentials fitting to the mass and width.
- Strange hadron corr. funcs. from pA and K⁻A reactions can be measured (KP formula or Migdal-Watson approach).

Thank you for attention !

Y. Kamiya

T. Hyodo

R Dependence of Correlation Function

Source size (R) dependence of C(q) is helpful to deduce the existence of a bound state.

Morita+('16, '20), Kamiya+('20), Kamiya+(2108.09644)

- With a bound state, C(q) is suppressed at small q when R ~ |a₀|.
 (w.f. has a node at r ~ |a₀| with a bound state.)
- Qualitative understanding by the analytic model (LL formula) [Lednickey, Lyuboshits ('82)] with the zero range approx. (r_{eff}=0)

A. Ohnishi @ JPS2021.09, Sep.15, 2021, Online/Kobe 17

Coupled-Channel Correlation Function

Correlation function with CC effects (KPLLL formula) \rightarrow sum of j-th channel contributions leading to j=1

with outgoing momentum q
Lednicky, Lyuboshits, Lyuboshits ('98);
Haudenbauer ('19)

$$C(\boldsymbol{q}) = \sum_{j} \omega_{j} \int d\boldsymbol{r} S_{j}(\boldsymbol{r}) |\Psi_{j}^{(-)}(\boldsymbol{r})|^{2}$$

$$\Psi_{j}^{(-)}(\boldsymbol{r}) = [e^{i\boldsymbol{q}\cdot\boldsymbol{r}} - j_{0}(qr)]\delta_{1j} + \psi_{j}^{(-)}(r)$$

$$\psi_{j}^{(-)}(q) \propto e^{-iqr}/r \text{ or } e^{-\kappa r}/r \ (r \to \infty)$$

E- Outgoing Mom. qin channel j=1 $\omega_j S_j(r) |\Psi_j^{(-)}(r)|^2$ Source Normalized weight Source fn.

(No Coulomb case)

- Effects of coupled-channel, strong & Coulomb pot., and threshold difference are taken into account in the charge base, pΞ⁻, nΞ⁰, ΛΛ. *Y. Kamiya+, PRL('20, K⁻ p)*
- Source size (R) and source weight (ω_i) need to be determined.

A New Insight from CMS: Exotic/Normal Ratio

ExHIC index = Coalescence / Statistical Ratio

 $R_h^{\rm CS} = \frac{\rm Yields \ in \ Coalescence}{\rm Yields \ in \ Statistical \ model}$

CMS index = Exotic / Normal Ratio

Sirunyan+ [CMS], arXiv:2102.13048

 $\rho_{\rm exo/nor} = \frac{N(\text{Exotic hadron candidate})}{N(\text{Normal hadron})}$

X(3872) / ψ(2S) ratio
 in pp and PbPb collisions.

$$\begin{split} \rho_{X/\psi}(\text{PbPb}) &= 1.08 \pm 0.49 (\text{stat.}) \pm 0.52 (\text{syst.}) \\ \rho_{X/\psi}(pp) &\simeq 0.1 \end{split}$$

ExHIC prediction is found to be (qualitatively) true !

