Femtoscopic study of hadron interactions including charm

Akira Ohnishi 1, Y. Kamiya 2,3, T. Hyodo 3,4

1. YITP, Kyoto U., 2. Bonn Univ., 3. iTHEMS, RIKEN, 4. Tokyo Metropolitan U.

J-PARC Hadron WS, Online / KEK J-PARC branch

J-PARCハドロン研究会 2022

22-24 March 2022 ハイブリッド(オンライン + KEK J-PARC 東海分室) Asia/Tokyo timezone

- **Introduction**
- **Charmed hadron interaction** $(1) D^{-}p$
- **Charmed hadron interaction (2)** DD^* and $\{DD^*\}$
- **Summary**

Y. Kamiya, T. Hyodo, A. Ohnishi, in prep; S. Acharya et al. [ALICE], 2201.05352.

Exotic Hadrons including $c\bar{c}/cc/\bar{c}\bar{c}$

Main play ground of exotic hadron physics

- **X(3872)** *Belle ('03)*
- **Many X, Y, Z states** *Belle, CDF, BaBar, LHCb, CMS, BESIII, ...*
- **Charmed pentaquark Pc** *LHCb ('15, '19)*
- **Doubly charmed tetraquark state Tcc** *LHCb ('21)*
- **Structure of exotic hadrons**
	- **Compact multiquark states**
		- **→ "good" diquark gains energy**
	- **Hadronic molecules**
		- **→ Many exotic states around thresholds**
	- **Their mixture...**

Tetraquarks

Hadronic Molecules

S.K.Choi+[Belle], PRL91, 262001 ('03)

R. Aaji+ [LHCb], 2109.01038, 2109.01056

Hadronic Molecules

- **Deuteron (np),** $\Lambda(1405)(\bar{K}N)$,
- **Hadronic Molecule Conditions**
	- **Appears around the threshold (Threshold (Ikeda) rule) → Tcc & X(3872)**
	- **Have large size** $R \simeq 1/\sqrt{2\mu B}$
	- **Described by the** *hh* **interaction**
- **T**cc
	- **Compact Tetraquark ?** *S. Zouzou+('86), ZPC30,457.*
- **X(3872)**
	- **Molecule ? Radiative decay** *Dong+ (0802.3610)*
	- **component ? production cross section** *Bignamini+ (0906.0882)*
	- **Mixture from lattice QCD.** *Padmanath+ (1503.03257)*
	- **Molecule ! Large yield in Pb+Pb** *Sirunyan+ [CMS] (2102.13048)* **c.f. Δr/Δp is similar in HIC and molecule.** *ExHIC ('11,'11,'17)*

Femtoscopic study of hadron-hadron interaction

- **How can we study interactions between** short-lived particles $? \rightarrow$ Femtoscopy !
- **E** Correlation function (CF)
	- **Koonin-Pratt formula** *Koonin('77), Pratt+('86), Lednicky+('82)* **source fn. relative w.f.**
 $C(\mathbf{p}_1, \mathbf{p}_2) = \frac{N_{12}(\mathbf{p}_1, \mathbf{p}_2)}{N_1(\mathbf{p}_1)N_2(\mathbf{p}_2)} \simeq \int dr S_{12}(\mathbf{r}) |\varphi_q(\mathbf{r})|^2$
- **Source size from quantum stat. + CF (Femtoscopy)** *Hanbury Brown & Twiss ('56); Goldhaber, Goldhaber, Lee, Pais ('60)*
- **Hadron-hadron interaction from source size + CF**
	- **CF of non-identical pair from Gaussian source** *R. Lednicky, V. L. Lyuboshits ('82); K. Morita, T. Furumoto, AO ('15)*

$$
C(\mathbf{q}) = 1 + \int d\mathbf{r} S(r) \{ |\varphi_0(r)|^2 - |j_0(qr)|^2 \} \quad (\varphi_0 = \text{s-wave w.f.})
$$

CF shows how much $|\varphi|^2$ *is enhanced* \rightarrow *V*_{*hh*} *effects !*

Measured Correlation Functions (examples)

So far, so good.

Strange hadron (s-wave) interactions seem to be constrained from femtoscopy.

> **Next, we should proceed to charm hadron interactions !**

Femtoscopic study of Femtoscopic study of charm hadron interactions (1) charm hadron interactions (1) – D– p correlation function – – D– p correlation function –

Femtoscopic study of charmed hadron int. (1)

"First study of the two-body scattering involving charm hadrons" measurement, *Acharya+[ALICE] (2201.05352)*

 f_0 (I = 1)

 -0.28

 0.04

 -0.26

 -0.07

 -0.25

- **D – p corr. func. is measured.**
- **Enhanced CF from Coulomb.**

Model

Coulomb

 $-g_{\sigma}^{2}/4\pi=1$

 $-g_{\sigma}^2/4\pi = 2.25$

Haidenbauer et al. [21]

Hofmann and Lutz [22]

Yamaguchi et al. [24]

Fontoura et al. [23]

One range gaussian potential with strength fitted to the I=0 scattering length of the model → attractive potentials are favored

 $f_0 (I = 0)$

 0.14

 0.67

 -0.16

 -4.38

 0.16

A. Ohnishi @ J-PARC Hadron WS, Mar.23, 2022, Online/ KEK J-PARC **8** *[21] Haidenbauer+(0704.3668) (weakly / mildly attractive (I=0)) [22] Hofmann, Lutz (hep-ph/0507071) (repulsive (I=0)) [23] Fontoura+(1208.4058) (weakly attractive (I=0)) [24] Yamaguchi, Ohkoda, Yasui, Hosaka (1105.0734) (att., w/ bound state (I=0))*

To be bound or not to be bound

- **When there is a bound state, CF shows interesting dependence on the source size and relative momentum.**
- **D – p corr. func. shows the behavior with a bound state,** and the best fit parameter set (R, a_{0}) is in the bound region. **(If bound, it is the first weakly decaying pentaquark state.)**

Femtoscopic study of Femtoscopic study of charm hadron interactions (2) charm hadron interactions (2) - DD^* and $D\bar{D}^*$ correlation func. -

Femtoscopic study of charmed hadron int. (2)

\bullet DD^* and $D\overline{D}^*$ correlation functions. *Kamiya, Hyodo, AO, in prep.*

- **Related with Tcc and X(3872)**
- \bullet *DD*^{*} and *DD*^{*} interactions

$$
V = \frac{1}{2} \begin{pmatrix} V_{I=0} + V_{I=1} & V_{I=0} - V_{I=1} \\ V_{I=0} - V_{I=1} & V_{I=0} + V_{I=1} \end{pmatrix}
$$

- **I=0: One range gaussian, strength fitted to the mass**
- **I=1: ignored**

D* D

D D*

- **Range = one pion exchange** *Yasui, Sudoh (0906.1452)*
- **Strength is fitted to the pole mass.**

$$
{D^0 \bar{D}^{*0}} = (D^0 \bar{D}^{*0} + \bar{D}^0 D^{*0}) / \sqrt{2} (C = +1)
$$

$$
{D^+ D^{*-}} = (D^+ D^{*-} + D^- D^{*+}) / \sqrt{2} (C = +1)
$$

$D^0 D^{*+}$ and $D^+ D^{*0}$ Correlation Functions

- **For small source (R= 1 fm)** $C(q) > 8$ for the lower channel (D^0D^*) (Very strong) $C(q) \sim 2.5$ for upper channel (D^+D^{*0}) (strong)
- **For large source (R=5 fm), CF show a dip**
- **Strong enhancement for small source, dip for large source → Characteristic dependence with a bound state (Tcc)**
- **Cusp is not significant**

$D^0\bar{D}^{*0}$ and $D^+\bar{D}^{*-}$ Correlation Functions

- \bullet $C(D^0\bar{D}^{*0})$: Strong enh. for small source, dip for large source \rightarrow Characteristic dependence with a bound state (X(3872))
- $C(D^+\bar{D}^{*-})$: Coulomb dominant
- **Cusp may be observed for small size**

A. Ohnishi @ J-PARC Hadron WS, Mar.23, 2022, Online/ KEK J-PARC **13**

Tcc and X(3872) structure

Hadronic molecule structure is assumed

 \rightarrow **Eigenmomentum** $k \simeq -i/a_0$, $a_0 \simeq 1/\sqrt{2\mu B}$

What happens when multiquark state mixes ? → Deviation from weak binding relation

Weinberg, Phys. Rev. 137, B672 (1965), Hyodo, Jido, Hosaka (1108.5524)

$$
a_0 = R \left[\frac{2X}{1+X} \right] + \mathcal{O}(m_{\pi}^{-1})
$$

Smaller scattering length in DD* may signal the tetraquark nature of Tcc.

- **Two-particle correlation functions are useful to deduce**
	- **Scattering length**
	- **Existence of a bound state**
	- **and hopefully the compositeness**
- **Charm hadron interactions are within the reach.**
	- **D – p correlation function data favor attractive interaction. (c.f. Yasui's talk)**
	- *DD*^{*} and $D\overline{D}$ ^{*} correlation functions are predicted to reflect **the existence of bound states (Tcc and X(3872)) by using simple potentials fitting to the mass and width.**
- **Strange hadron corr. funcs. from pA and K–A reactions can be measured (KP formula or Migdal-Watson approach).**

Thank you for attention !

Y. Kamiya T. Hyodo AO

R Dependence of Correlation Function

Source size (R) dependence of C(q) is helpful to deduce the existence of a bound state.

Morita+('16, '20), Kamiya+('20), Kamiya+(2108.09644)

- With a bound state, $C(q)$ is suppressed at small q when $R \sim |a_{0}|$. (w.f. has a node at $r \sim |a_{0}|$ with a bound state.)
- **Qualitative understanding by the analytic model (LL formula)** *[Lednickey, Lyuboshits ('82)]* with the zero range approx. $(r_{eff}=0)$

A. Ohnishi @ JPS2021.09, Sep.15, 2021, Online/Kobe **17**

Coupled-Channel Correlation Function

Correlation function with CC effects (KPLLL formula) \rightarrow sum of j-th channel contributions leading to $j=1$

with outgoing momentum *q Lednicky, Lyuboshits, Lyuboshits ('98); Haudenbauer ('19)*

$$
C(\boldsymbol{q})=\sum_j \omega_j \int d\boldsymbol{r} S_j(\boldsymbol{r}) |\Psi_j^{(-)}(\boldsymbol{r})|^2
$$

$$
\Psi_j^{(-)}(\mathbf{r}) = [e^{i\mathbf{q}\cdot\mathbf{r}} - j_0(qr)]\delta_{1j} + \psi_j^{(-)}(r)
$$

$$
\psi_j^{(-)}(q) \propto e^{-iqr}/r \text{ or } e^{-\kappa r}/r \ (r \to \infty)
$$

Source weight Normalized Source fn. Outgoing Ξ– Mom. in channel pj=1 Λ Λ

(No Coulomb case)

- **Effects of coupled-channel, strong & Coulomb pot., and threshold difference are taken into account in the charge base, pΞ– , nΞ⁰ , ΛΛ.** *Y. Kamiya+, PRL('20, K– p)*
- **Source size (R) and source weight (ω^j) need to be determined.**

A New Insight from CMS: Exotic/Normal Ratio

ExHIC index = Coalescence / Statistical Ratio

 $R_h^{\text{CS}} = \frac{\text{Yields in Coalescence}}{\text{Yields in Statistical model}}$

CMS index = Exotic / Normal Ratio

Sirunyan+ [CMS], arXiv:2102.13048

 $N(\text{Exotic hadron candidate})$ $\rho_{\rm exo/nor} = \frac{N(Normal hadron)}{N(Normal hadron)}$

X(3872) / ψ(2S) ratio in pp and PbPb collisions.

 $\rho_{X/\psi}(\text{PbPb}) = 1.08 \pm 0.49(\text{stat.}) \pm 0.52(\text{syst.})$ $\rho_{X/\psi}(pp) \simeq 0.1$

ExHIC prediction is found to be (qualitatively) true ! to be (qualitatively) true !

