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1. Introduction [1/3]

Backgrounds
» Black hole thermodynamics { Ist law : gf=dApy = dM , k= 155

4GM
2nd law : AABH 2 0

» Hawking radiation — classical gravity + quantum field

— Planck distribution with temperature Ty = % = SWéM

» 1st law : THdSBHZdM y SBHZA:;GH
generalized 2nd law : ASpg + ASnatter > 0

Motivations

» We want to investigate non-equilibrium nature of black holes
— cf. Einstein’s theory of Brownian motion, fluctuations are important
— Analyzing an asymptotically flat BH as a thermodynamically unstable system
— Information loss problem
— Refining “The Einstein Equation of State”
— Applications for gauge/gravity duality
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1. Introduction [2/3]

Method

» The fluctuation theorem

— Roughly speaking, non-equilibrium fluctuations satisfy
Prob(entropy difference = AS) LAS
Prob(entropy difference = —AS)

— violation of the second law of thermodynamics

— A bridge between microscopic theory with time reversal symmetry
and the second law of thermodynamics

Advantages
» The theorem includes fluctuation around equilibrium (linear response theory)
» The theorem is applicable to (almost) arbitrary non-equilibrium process

— In particular unstable systems and steady states
— Evaporating BHs can be treated
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1. Introduction [3/3]

Plan
2. The Langevin eq. and the Fokker-Planck eq. [2]

- fundamental tools to study non-equilibrium physics

3. The Fluctuation Theorem [3]

- give a proof and review a first experimental evidence

4. Black Hole with Matter [3]

- show an effective EOM for scalar

5. The Fluctuation Theorem for BH [5] < Main Topic

- show our results, the fluctuation thm for BH w/ matter, Green-Kubo relation for thermal current

6. Summary and Discussions [3]
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2. The Langevin eq. and The Fokker-Planck eq. [1/2]

The Langevin eq. : EOM of particle with friction and noise.
\The Fokker-Planck eq. : EOM of particle’s probability distribution.

The Langevin equation is a phenomenological (or effective) equation of motion
with friction and thermal noise.

, (€()) =0, (€()E)) =20T5(¢t — 1)
The Fokker-Planck equation can be obtained from the Langevin equation.

1 T
'=———|—£ » 8t ZE t|$0,0) = 8;,3 ;Z—ZP(Z' t|$0, ) + ;aip(xatlxmo)

P(z,t|xo,0) : conditional probability to see a event z(t) =z
which starts from the value z(0) = o, P(z,t = 0lzo,0) = 6(z — ) .
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2. The Langevin eq. and The Fokker-Planck eq. [2/2]

.oV 10V T
vim-Grve B P an,0) = 0 [ 15 Pia e, 0) + Lo, Pe, e 0)

This eq. has the stationary distribution : §,P* = 0 = P*(z) = e 7V® /Z.
“the Boltzmann distribution”

The solution of the Fokker-Planck equation can be represented by a path integral.

8, P(z, t|zo,0) = LppP(z, t|20,0)
z(t)=x
X Dy e~ o1 Jo W hEE)+V' (@)

= P(z,t|x,0) = etf‘FP(S(x — xg) = /

z(0)=zo

The “Lagrangian” L = MLT [vi + V'1* is called “the Onsager-Machlup function”.
L= [%:ﬁ] + L%TV’?] = [—%W’] = &(z) + ¥(z) — S(z, )
“dissipation function” , “entropy production” time re\%ed sym.
Most probable path: y&.« = —=V'(z.) € ®(is) + U(z4) = S(@, 34
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3. The Fluctuation Theorem [1/3]

We consider a externally controlled potential V(zx; \;). ,
Simple example: V(z; ;) = %k(a: - 2)?, A =t \Q/
The probability to see a trajectory I'; = {(0) = z; = z(7) = z},

PFIT, &) o o™ & pat)+h)=xp]"

Reversed trajectory I'l = {z'(0) = z; — z'(r) = z;} with the reversely controlled potential.

PRIt |] o e~mr I d¢ [ i) 3"

We will call A" “forward protocol” and A = Af_, “reversed protocol” .

PP[Cr)z] _

o [T d () k(@) —ot P+ g 1 dt [—ya () +h(a(t)—vt))?
PRI |z;]

e 4

— o % E T ae o (i) (o(t)— vt').

Cancellation occur except for time reversed sym. violated term.
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3. The Fluctuation Theorem [2/3]

We assume the initial distribution is in a equilibrium (i.e. Boltzmann distribution) .

» P;'[FTT|xi]Peq(xi) _ 6_%fl‘r dt/j;(t')(x(t’)_vt’)—%(V(wi,Ag)—V(:):f,)\f))-l—%(F(A{)—F(Af)) _ 6Wd[F].
PR[L7 |z¢]Ped(xy)

r

, r,
We defined wr,| =3 / dt’ [—ik’(w —vt') + &5L + A;’TV;] —BAF =8 / dt'vk(z — vf') — BAF = B(W[T,] — AF)

which is called “dissipative work” or “entropy production”.

We establish the fluctuation theorem.
PPV = [ DEPFI o Pa(a)S(We — WAL = [ DT, P{El g Pr(ag)e 572 — W)

— " [ DYLPREY g P(a) 6OV + WAITE) = (W)
Negative entropy production always exists.

The Jarzynski equality ; <e_ﬂ(WT_AF)> =1

By Using (e%) > ¢, we obtaine “the second law of thermodynamics” as a corollary.
= (W) — AF >0
There exists a trajectory that violates the second law.

p 7/20 Susumu Okazawa (KEK) 2010/12/18 @*Etf



3. The Fluctuation Theorem [3/3]

The first experimental evidence.

F Wd 0o . 0o
4 A o (We) _ ot =) / dW7e™"7 pf (WF) = / dW7 p(-W7)
0

0

R(_1wd)
Potential by an optical tweezer pR(=WF)

\ ./ Brownian mofion

particle
\ =
/"s\u

Force

F(ty= —k(z(t) - X)/

Vv

/ z(t) p
\_ Viscous fluid , temp. T J
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2. The Langevin eq. and the Fokker-Planck eq. [2]

- prepare fundamental tools to study non-equilibrium physics

3. The Fluctuation Theorem [3]

- give a proof and review a first experimental evidence

4. Black Hole with Matter [3]

- show an effective EOM for scalar

5. The Fluctuation Theorem for BH [5] < Main Topic

- show our results, the fluctuation thm for BH w/ matter, Green-Kubo relation for thermal current

6. Summary and Discussions [3]
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4. Black Hole with Matter [1/3]

We will consider a spherically symmetric system. Back-reactions are neglected.
Scalar field in maximally extended Schwarzschild BH:

TH+e€ 1 TH+E 1
S = —/ drd?’:v\/—gg (9" 0uprO. PR + M%) + / drd3z/ —93 (9" 0,916, 01 + m*¢7) .

We expand a solution in region R of r =rg ~ rg + € as,
dr(w,r) = a(w)Fy,(r) + b(w)F5(r) R

which satisfy e *F,(r) ~ e”*¢") ingoing boundary condition.

We connect the solution to region L to satisfy

F,(r) is equivalent to Kruskal positive frequency modes,
F;(r) is equivalent to Kruskal negative frequency modes.

Set the values : ¢rr(w,r =7 +€) = ¢% (W) , G*(W) = 150, In(F,(rx)) .

= S =+ = [ dalghéi) ( Cu Gz ) ( ¥k )

Ga1 Goo ¢2
Schwinger-Keldysh propagators.
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4. Black Hole with Matter [2/3]

It is possible to cast the propagators into the form

Gll Glz N 0 GR
Ga1 Gao GH Gsym
when we use the bases
O\ [ 4| _ [ 2(0rteL) |
o)) Pa PR — ¥%
The method is called “retarded-advanced formalism”.

We introduce an auxiliary field & ,

o3 [ 2265(—w)Gaym (W) (w) _ / Deet ) 29w @) =5 [ 57 E(-w)Gaym(w) 71 ()

We obtain the effective equation of motion for ¢;. |

D (05 — 0r )b (8,7 lrmrgre = E(E) . (€0) =0, €DEW) =226~ 1),

H

Langevin equation. Friction and noise €@ absorption and Hawking radiation
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4. Black Hole with Matter [3/3]

Black holes in an asymptotically flat spacetime are thermodynamically unstable.
Rough estimates about stability of radiation in a box:

E=M+TVT*

21/ \ 1
00 = Change of variables: z = % Y= 31G (;);/5)
— 2 i3 3 T
S = 47TGM + §%VT

S 3

For given E, V (given y), maximize the entropy. el (z,9) =2+ y(1 — x)2
f(x, y)
_‘\\

If v > y. ~ 1.0, £ = 0 which corresponds to the radiation.

If ¥ <Y,z > x. >~ 0.98 which corresponds to the black hole in thermal equilibrium.
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5. The Fluctuation Theorem for BH [1/5]

(at - 8r*)¢l m|r =rg+e — 5 (8,*,2 - 83* + VZ(T)) ¢l,m

\u\l\/\ “AAD
\VAVAY; VYV

r=rg (r« & —00)

The Fokker-Planck equation for the scalar field

in black hole background is as follows: 8:P(¢:|¢o) = ——— (=¢(t,r)P) +--- .

5
0p(t, )

Instead, we consider a discrete model for simplicity.

Yozo = —k(zo — x1) + &, (§o(t)éo(t')) = 270Tod(t — 1)

méfl = —k‘(iL‘l — 2’32) + k(wo — 371)
miy = —k(a:N — .’EN+1) + k‘(.’l)N_l — $N) , TN+1 =0
Tny1 =0
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5. The Fluctuation Theorem for BH [2/5]

We can construct a path integral representation for the discrete model.

sory 177 000 10:00)” T 6 (s + 04, 1)

it

Ty
P(zst=r7|z;,t=0) = / DI e |24 1=0
z; 1 &
U(JI,') = Ekz ((.’I;i - .’1,‘,-_1)2 + V(’I‘,)il,‘f)

We choose the initial distribution as a stationary distributi}s)n.
. ag = oy . . . . . 1 1 1 . . 1 .
In this case, it is a equilibrium distribution i.e. P = ¢~ % =it (smei+3k@i—ai-0* 3V (a7) /7

= PFC. |2, Pe(2;) _ e_Tio [T dt:i:oaon+TiO(AHM—AFM).
PR[TL |z Ped(xy)

Here, we introduce a externally controlled potential U(zs; A ).

T,

Iy rr |
Slnce dti'oazOU — —Z/ dthf,m(‘)r*(bim = — thBHTtT(’I“E) , %/ thBHTtT('I”e) = ASBH ,
Im
we can reinterpret the entropy production as
1 [t 1
ST, = —7 / dtig0, U + T(AHM — AFy) = ASpg + ASy
0 0

This quantity fluctuates due to Hawking radiation and externally controlled potential.

b 14/20 Susumu Okazawa (KEK) 2010/12/18 @ERHF



5. The Fluctuation Theorem for BH [3/5]

We establish the fluctuation theorem for black holes with matters.

= pF(ASp+ASy)

— 6ASBH+A5M
pR(—(ASBa+ASNM))

We also establish the Jarzynski type equality.
» <6_(ASBH+ASM)> — 1
From the above, an inequality (¢*) > ¢® gives the generalized second law.

= ((ASpr + ASwy)) >0

To satisfy the Jarzynski equality, entropy decreasing trajectory must exist.
A violation of the generalized second law.

Next: we examine steady state case.
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5. The Fluctuation Theorem for BH [4/5]

For the purpose to make steady states, we introduce artificial thermal bath at the wall.
’Yo.’l','o = —k(.’L’O —_ .’131) + fo 5 (fo(t)fo(t/» = 2’)’0T0(5(t —_ t/)

m:il = —k(.’L’l - xg) + k(.’l?o - .’L‘l)

miny = —vyin — k(zny — ZNt+1) + k(Zn_1 —zN) + &

| 2oy =0 L (EDE()) = 2Tt — 1)

The path integral representation becomes

N-1
zf s . 2 r'r . . 2
P(xf, T|xi7 0) — / DFTe_—‘“;To 1) dt(’)’omo—l-amoU) 6—4,+T f dt(mwN+"7’wN+3acNU) H 0 (mxi + &vz U) |:,,N+1=0.
Ti t =1

P |z;] A (17 dtioBooU—2 [17 ditdn (mEN-+0z,U)

The key property: Plas] — e To

The system reaches a steady state in late time. Entropy production becomes the form

S[T] = (Bo — B) / " dtApnTr(r.).
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5. The Fluctuation Theorem for BH [5/5]

When we denote A=5 -8, k= /thBHﬂ"(re), one can prove the fluctuation theorem
p(kaA) _ 6k'A.

p(_kvA)

The theorem can be recast in the relation of the generating function.
Z(a,A)=1n (/ dke™**p(k, A)) =In </ dke* @) p(—k, .A)) =Z(iA — o, A)

n-th cumulant : Z(e, 4) =) | (’:,)n

n=1

K.(A) . Expansion: K;(A) = LYA+ LPA% ...

We get the relations from the GF. ® L) = %KQ(O) . L? = %8,41(2(0) , e

the Green-Kubo relation and non-linear response coefficients.

_ 1 (7
In our case, for J = lim = [ dtAgpT7(r) = LY By — B) + L@ By — B> + - --

T—00 T 0

we obtain

B LY =
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8. Summary and Discussion [1/3]

» The fluctuation theorem for black holes with matters

PP (ASpa+ASM) — ASBHTASM
pR(—(ASBr+ASN))

- Violation of the second law

» The Jarzynski type equality (e~ (ASBr+ASM)) — |

- The generalized second law ((ASpg + ASy)) >0
. k, A
» The steady state fluctuation theorem p'?(_k /)l) = A=py-8B, k= /thBHTZ’(re)
- Green-Kubo relation, non-linear coefficients
1 [ 1 [
L(l) = 5/0 th2BH<TtT(07 Te)Ttr(ta T€)>|T=TH ) L(2) = 5/0 thzBHaA<Ttr(07TE)nr(tare)>|T=TH y T
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8. Summary and Discussion [2/3]

Future directions

» We want to import more from non-equilibrium physics
— Are there any study about the system which has negative specific heat?
— e.g. evaporating liquid droplet

» We expect the Onsager reciprocal relation

— for example “thermoelectric effect”. the Seebeck effect <= the Peltier effect

thermocouple solid state refrigerator

T T
1 . =S 1 —
@ I @ VAT VTI/’Tz AT xV
+ «—
Ty .%B T metal B

— Reissner-Nordstrom BH with charged matter may provide a reciprocal relation
(But, reciprocal relation will be violated by non-equilibrium fluctuations)
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8. Summary and Discussion [3/3]

» Including the back reaction
— Energy conservation: AA = 87G [ dad)\ AT, kMK k= % : null geodesic generator
— Modification of the Fokker-Planck equation

— Analyzing asymptotically flat black holes (without box i.e. as an unstable system)

» Application of the method to gauge/gravity duality
— Stochastic string model

— Fluctuation theorem for a heavy quark in QGP e . ™

L) L52

=
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Definitions.
2 _ 2 d_7'2 2 1002 1 2GM
S = —/d4x\/—_g% (9" 0,60, ¢ +m?¢?) ds® = —f(r)dt T T a*, f(r)=1-=
- Z/dtdr*¢l’m [8152 - 87?* + VE("’)] ¢l,m Te = %
l,m ]
Vi) = 1) (N + L0 )

$(t,m, ) = Mn,mm)
Im
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