The Physical Society of Japan 77th Annual Meeting @Mar. 18, 2022

Emergence of Gravitational Spacetime from Quantum Information

Tadashi Takayanagi

Yukawa Institute for Theoretical Physics Kyoto University

It from Qubit
Simons Collaboration

(1) Introduction

In science, "microscopes" are basic important devices.
Biology, Chemistry
Materials Physics

High Energy Physics

Accelerators

Quantum Gravity (String Theory)
(Optical, electronic, ..) Microscopes
 Cells, DNAs, Atoms, \cdots

Elementary particles

Qubits!

Quantum Entanglement ~how spacetime connected

Holography magnifies gravitational spacetimes.
The first target is black holes.

BH Entropy

After stars collapsed into a BH , outside observers cannot access the information inside the BH.

Stars

A lot of Information can be obtained!

BH

Hidden Information!

BH entropy !

Bekentein-Hawking Formula of BH Entropy [1972-1976]

Calculations in general relativity show that a BH has the following entropy:
\Rightarrow Still mysterious !

$$
S_{B H}=\frac{k_{B} c^{3}}{\hbar} \times \frac{A_{B H}}{4 G_{N}}
$$

BH thermodynamics !

Авн= Surface Area of Black hole \Rightarrow Geometry
Gn=Newton constant \Rightarrow Gravity
Quantum
$\hbar=$ Planck constant \Rightarrow Quantum Mechanics
Gravity!
kB=Boltzmann const. \Rightarrow Stat. Mech. , Quantum Info.
[1] BH Entropy is proportional to the area, not to the volume !
[2] BH has the entropy even in the classical theory of Gravity !

What is Quantum Entanglement?

Quantum Entanglement (QE) = Quantum correlation between two subsystems A and B

For pure states: Non-zero QE $\Leftrightarrow|\Psi\rangle_{A B} \neq\left|\Psi_{1}\right\rangle_{A} \otimes\left|\Psi_{2}\right\rangle_{B}$. Not a Direct Product
e.g. Bell pair: $\left|\Psi_{\text {Bell }}\right\rangle=\frac{1}{\sqrt{2}}\left[|\uparrow\rangle_{A} \otimes|\downarrow\rangle_{B}+|\downarrow\rangle_{A} \otimes|\uparrow\rangle_{B}\right] \Rightarrow$

Minimal Unit of
Entanglement
\leftrightarrow Planck length

Entanglement Entropy (EE)

An amount of QE is measured by Entanglement Entropy (EE).

First we decompose the Hilbert space: $\quad H_{\text {tot }}=H_{A} \otimes H_{B}$.
Example:Spin-chain

We introduce the reduced density matrix ρ_{A} by tracing out B $\rho_{A}=\operatorname{Tr}_{B}\left[\left|\Psi_{t o t}\right\rangle\left\langle\Psi_{t o t}\right|\right]$.

The entanglement entropy (EE) S_{A} is defined by

$$
S_{A}=-\operatorname{Tr}\left[\rho_{A} \log \rho_{A}\right] \propto \subset \begin{gathered}
\# \text { of Bell Pairs } \\
\text { between } \mathrm{A} \text { and } \mathrm{B}
\end{gathered}
$$

Measurement of EE in Cond-mat Experiments

Example1: Ultracold bosonic atoms in optical lattices

Published: 02 December 2015
 Measuring entanglement entropy in a quantum manybody system

Rajibul Islam, Ruichao Ma, Philipp M. Preiss, M. Eric Tai, Alexander Lukin, Matthew Rispoli \& Markus $\underline{\text { Greiner }} \boxtimes$

Nature 528, 77-83 (2015) | Cite this article

$$
\begin{equation*}
H=-J \sum_{\langle i, j\rangle} a_{i}^{\dagger} a_{j}+\frac{U}{2} \sum_{i} n_{i}\left(n_{i}-1\right) \tag{4}
\end{equation*}
$$

Example2: Trapped-ion quantum simulator

Science
Current Issue First release papers
Archive About \vee Subl

Probing Rényi entanglement entropy via randomized measurements

[Original motivation of studying

Analogy between BH and Qubits

Blackhole Spacetime
 EE in QFTs, Bombelli et.al. 1986, Srednicki 1993]

Quantum Spin System

Entanglement entropy SA

Matter

Contents

(1) Introduction
(2) Gravitational Holography
(3) Holographic Entanglement Entropy
(4) Application to Black hole Information Problem
(5) Emergent Universe from Quantum Entanglement
(6) Conclusions

(2) Gravitational Holography

BH Entropy
Formula

$$
S_{B H}=\frac{A_{B H}}{4 G_{N}}
$$

Degrees of freedom in Gravity \propto Area
['t Hooft 1993, Susskind 1994]

Gravity on M $=$ Quantum Matter on $\partial \mathbf{M}$

BH entropy $(\propto$ Area $)=$ Thermal Entropy of Matter (\propto Volume)

AdS/CFT Correspondence

AdS/CFT

Gravity (String theory) on $\mathrm{D}+1$ dim. AdS
(anti de-Sitter space)
Classical limit
General relativity with $\Lambda<0$

Massless (gapless) theory
Conformal Field Theory (CFT) on D dim. Minkowski spacetime

Large N + Strong coupling

Strongly interacting
Quantum Field Theories

Basic Principle
(Bulk-Boundary relation) :

$$
{\underset{\uparrow}{G r a v i t y}}=Z_{C F T}
$$

Partition Function

Gravity in

Anti de-Sitter space

=Gravitons

$$
\sqrt{d s^{2}=R^{2} \cdot \frac{d z^{2}-d t^{2}+\sum_{i=1}^{d} d x_{i}^{2}}{z^{2}}}
$$

Thermodynamics of

 Black holes (branes)
Equivalent

Conformal Field Theories

Open Strings
=Gluons in U(N) gauge theories

N D-branes

Thermodynamics of various materials

dS/CFT: Holography for de Sitter Space $\Lambda>0$

亿 More realistic than AdS in Cosmology !
AdS/CFT: Gravity in 3D AdS = 2D (unitary) CFT ??
dS/CFT: Gravity in 3D dS = 2D (non-unitary) CFT [Strominger 2001]

First Explicit Example [Hikida-Nishioka-Taki-TT, 2021]
Large c limit of SU(2) WZW model (a 2dim. CFT)
$=$ Einstein Gravity on 3D de Sitter (radius $\boldsymbol{L}_{\boldsymbol{d s}}$)
Level
$\boldsymbol{k} \approx-\mathbf{2}+\frac{4 i G_{N}}{L_{\boldsymbol{d} S}} \xrightarrow[\text { Conformal dim. }]{\boldsymbol{\Delta}} \approx \boldsymbol{i} \boldsymbol{L}_{\boldsymbol{d} \boldsymbol{S}} \cdot \boldsymbol{E}_{\boldsymbol{E} \text { ergy in dS }}$

Central charge $3 k$

$$
Z\left[S^{3}, R_{j}\right]=\left|S_{j}^{0}\right|^{2} \approx e^{\frac{\pi L_{d s}}{2 G_{N}} \sqrt{1-8 G_{N} E}}
$$

CFT partition function De Sitter Entropy

(3) Holographic Entanglement Entropy (HEE)

HEE Formula (RT/HRT Formula)

[Ryu-TT 06, Hubeny-Rangamani-TT 07]
SA can be computed from the minimal area surface Г A :

$$
S_{A}=\min _{\Gamma_{A}}\left[\frac{\operatorname{Area}\left(\Gamma_{A}\right)}{4 G_{N}}\right]
$$

Quantum Correction to HEE
[Faulkner-Lewkowycz-Maldacena 13]

$$
S_{A}=\min _{\Gamma_{A}}\left[\frac{\operatorname{Area}\left(\Gamma_{A}\right)}{4 G_{N}}+\boldsymbol{S}_{\text {bulk }}\left(\boldsymbol{M}_{\boldsymbol{A}}\right)\right]
$$

Bulk Reconstruction The information ρ_{A} in region A is encoded in the entanglement wedge MA.

CFT on - Gravity boundary $=$ (AdS)

General Behavior of HEE(=d+1 dim. CFT EE) [Ryu-TT 06,‥]

$$
\begin{array}{rlr}
S_{A} & =\frac{\pi^{d / 2} R^{d}}{2 G_{N}^{(d+2)} \Gamma(d / 2)}\left[p_{1}\left(\underline{\frac{l}{\varepsilon}}\right)^{d-1}+p_{3}\left(\frac{l}{\varepsilon}\right)^{d-3}+\cdots\right. & \text { A } \downarrow l \\
& \cdots+\left\{\begin{array}{cc}
p_{d-1}\left(\frac{l}{\varepsilon}\right)+\underline{p_{d}} & \text { (if } d+1=\text { odd }) \\
p_{d},(\underline{l})^{2}+n \log (\underline{l}) & \text { (if } d+1=\text { even) }
\end{array}\right. & , \begin{array}{l}
\text { Area law } \\
\text { divergence }
\end{array}
\end{array}
$$

where $p_{1}=(d-1)^{-1}, p_{3}=(d-2) /[2(d-3)], \ldots$.

$$
\left.\ldots . . \quad q=(-1)^{(d-1) / 2}(d-2)!!-1\right)!!
$$

A universal quantity (F) which Agrees with conformal anomaly characterizes odd dim. CFT. (central charge) in even dim. CFT

Algebraic properties in Quantum Information \Leftrightarrow Geometric properties in Gravity

Holographic Proof of Strong Subadditivity [Headrick-TT 07]

$$
\Rightarrow S_{A B}+S_{B C} \geq S_{A B C}+S_{B}
$$

$$
\Rightarrow S_{A B}+S_{B C} \geq S_{A}+S_{C}
$$

$($ Note : $A B \equiv A \cup B)$

Einstein Equation from Quantum Entanglement

1st Law of EE \quad| [Casini-Huerta-Myers 13, |
| :--- |
| Bhattachrrya-Nozaki-Ugajin-TT 13] |

$\Delta S_{A} \cong \Delta H_{A}$
 [HA=-log ρ_{A} : Modular Hamiltonian]

[Nozaki-Numasawa-Prudenziati-TT 13]
[de Sitter space: de Boer-Haehl -Heller-Myers 16]

- The 1st law of EE explains the perturbative Einstein eq.
[Linear order: Raamsdonk et.al. 13, Non-linear order: Faulkner et.al 17, Sarosi-Ugajin 17]

(4) Application to Black hole Information Problem

The black hole information problem is a touchstone in quantum gravity.

Gravitational
Collapse

Star

 1Pure State

Hawking
RadiatTon
BH

Looks thermal.
Do we get mixed states?

Is the information inside the BH lost?

The information should not be lost if the evolution is unitary and the final state remains pure.

But how?

Black hole information problem and Island Formula

Recently, HEE was extended to CFTs which is coupled to gravity !

Accesible to BH interior Generalization

Entangled!

[Balasubramanian
-Kar-Ugajin 2020-2021]

This Island formula explains the Page curve !

\rightarrow Unitarity of BH evaporation !

Maximally Entangled

[See Kanato Goto's article this month in JPS Journal "Butsuri"]
$A=$ Radiation
[Almheiri et.al., 20]

Page curve
from Moving Mirror
[Akal-Kusuki-Shiba
-Wei-TT, 20-21]
SÅ

(5) Emergent Universe from Quantum Entanglement

The HEE suggests that there is one qubit of entanglement for each Planck length area!

Spacetime may emerge from quantum entanglement! \rightarrow Tensor Network (TN) realizes this idea!

Tensor Network (TN) [DMRG: White 92,.. CTM: Nishino-Okunishi 96, PEPS: Verstraete-Cirac 04, …]

Efficient variational ansatz for wave functions in quantum many-body systems, which respects quantum entanglement.
Wave function = Geometry of Network of Entanglement
(1) The simplest example: EPR pair $\longrightarrow|E P R\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
(2) Matrix product states

$$
\begin{gathered}
|\Psi\rangle=\sum_{\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}} \operatorname{Tr}\left[M\left(\sigma_{1}\right) M\left(\sigma_{2}\right) \cdots M\left(\sigma_{n}\right)\right]\left|\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}\right\rangle \\
\alpha_{i}=1,2, \ldots, \chi, \quad \sigma_{i}=0 \text { or } 1 .
\end{gathered}
$$

MERA TN

HaPPY TN

Conjecture: "AdS geometry" = TN

Time-like, Light-like or Space-like Slice ?? [\exists Lattice artifacts] -
Let us take the continuum limit to treat genuine CFTs !

Path-integral Optimization [Caputa-Kundu-Miyaji-Watanabe-TT 2017,…]

Principle: We minimize the computational cost of (discretized) path-integral to obtain a target state.

Initially, short wave length cut off scale locally.

Optimize

We can change

||
 modes can be neglected.

How to optimize path-integral (in 2 dim. CFT)

Idea: Local change of UV cut off scale $=$ Metric change

$$
d s^{2}=e^{2 \omega(x, z)}\left(d x^{2}+d z^{2}\right)
$$

Owing to conformal symmetry, the wave function behaves as

$$
\Psi[\phi, \omega]=e^{C[\omega]} \cdot \Psi[\phi, \omega=0]
$$

Optimization \Rightarrow Minimize the cost $C[\omega]$! [C[$\omega]$ चComputational Complexity]
In two dim. CFT, $\mathrm{C}[\omega]$ is given by Liouville action:

$$
C_{2 D}[\omega]=\frac{c}{24 \pi} \int d x d z\left[\left(\partial_{x} \omega\right)^{2}+\left(\partial_{z} \omega\right)^{2}+e^{2 \omega}\right]
$$

Minimization leads to AdS metric !

$$
e^{2 \omega}=z^{-2}
$$

Path-integral Optimization for excited states

Time

Local excitation
(Energy source)

Optimization

Need to make the cut off to be fine-grained
\Rightarrow Metric is deformed !

Energetic source (= information source) back-reacts the geometry !
\Rightarrow Essence of GR !

Holographic Interpretation [Boruch-Caputa-Ge-TT 2021]

Hartle-Hawking wave function on a time/slice Q in AdS3 gravity Liouville action C2D[$\phi]$!

Wave Function of Universe

Path-int. optimization $=$ Minimization $\mathrm{C}_{2 \mathrm{D}}[\phi]$ i.e. Complexity = Maximization of HH wave function

(6) Conclusions

Starting from black holes entropy, we reviewed recent progresses on holography from the viewpoint of quantum information.

Is Gravity the "fastest quantum computer"? Path-integral optimization $=$ Max[Hartle-Hawking WF]

Gravity (Universe)

Holography

Field Theory
(Quantum Matter)

Does the Universe emerge from Quantum Entanglement?

Future problems

- Proof of AdS/CFT via quantum information
- Quantum gravity origin of black hole entropy (though we know it from CFT)
- Complete solution of black hole information problem
- Understanding of holography in dS and more generally in cosmology

Thank you very much !

