QCD Phase Transitions and Quark Quasi-particle Picture

Teiji Kunihiro (YITP, Kyoto)

YITP workshop New Developments on Nuclear Self-consistent Mean-field Theories

> May 30 – June 1, 2005 YITP, Kyoto

1.Introduction

QCD phase diagram and quasi-particles

Abuki, Kitazawa and T.K. (hep-ph/04123829; P.L.B615, 102 (2005))

 μ [MeV]

Color Superconductivity

 \Rightarrow There exist large fluctuations of pair field.

• Large pair fluctuations can \langle invalidate MFA.

cause precursory phenomena of CSC.

cf.) Bosonization of Cooper pairs

Matsuzaki, PRD62,017501 (2000) Abuki, Hatsuda, Itakura, PRD 65, 074014 (2002)

Y.Nishida and H. Abuki (hep-ph/0504083)

4-body contact interaction with massive fermion

$$\mathcal{L}[\psi,\bar{\psi}] = \bar{\psi} \left(i\partial \!\!\!/ - m + \gamma_0 \mu\right)\psi + G\left(i\psi^{\mathrm{T}}\gamma_5 C\epsilon^c \varepsilon\psi\right) \cdot \left(i\psi^{\dagger}\gamma_5 C\epsilon^c \varepsilon\psi^*\right)$$

fermion mass / Attractive interaction in color 3, flavor 1 fermion chemical potential and J^P=0⁺ diquark channel

Fermion pair correlation in normal phase <pr

S'a de Melo et al., PRL 71 (1993) 3202 Kitazawa et al., PRD 70 (2004) 056003

Mu-rho eq. with a fixed charge density Ntotal
Ntotal = Nfermion + Nboson
= Nbound + Nunstable

✓ gap eq. at critical temperature Tc
 ✓ (Thouless criterion)

 $m/\Lambda = 0.2$, $k_{\rm F}/m = 0.5$ $(N_{\rm total} = 2N_{\rm c}N_{\rm f} \cdot k_{\rm F}^3/6\pi^2)$, $G_0 \cdot \Lambda^2 \simeq 2.47$

BCS-BEC transition in QM

Y.Nishida and H. Abuki, hep-ph/0504083

Fermions in a Plasma

• 1-loop (g<<1) + HTL approx. $(p, \omega, m_q \ll T)$

Plasmino excitation

How about when the temperature Is lowered close to T_c ?

The wisdom of many-body theory tells us: If a phase transition is of 2nd order or weak 1st order, ∃soft modes ; the fluctuations of the order parameter

> eg. softening of 2+ phonon -→ quadrupole deformation Gamow-Teller GR ; a soft mode of pion condensation (T.K., 1981)

Chiral Transition = a phase transition of QCD vacuum,

 $\langle \bar{q}q \rangle$ being the order parameter. Lattice QCD; There can be hadronic excitations (para pion and sigma) as the soft mode of the chiral transition in the ``QGP" phase.

> T. Hatsuda and T. K., Phys. Rev. Lett.55('85)158; PLB71('84),1332 Prog. Theor. Phys 74 (1985), 765:

Cf. T<T_c; the σ meson becomes the soft mode of chiral restoration at $T \neq 0$ and/or $\rho_B \neq 0$: $m_\sigma \rightarrow 0$, $\Gamma_\sigma \rightarrow 0$

QCD phase diagram and quasi-particles

2. Precursory Phenomena of Color Superconductivity in Heated Quark Matter

Ref. M. Kitazawa, T. Koide, T. K. and Y. Nemoto, Phys. Rev. D65,091504 (2002); D70, 0965003 (2004)

QCD phase diagram

Color Superconductivity; diquark condensation

- •Dense Quark Matter:
 - quark (fermion) system
 - with attractive channel in
 - one-gluon exchange interaction.

 \square Cooper instability at sufficiently low *T*

 \implies SU(3)_c gauge symmetry is broken!

• $\Delta \sim 100 \text{MeV}$ at moderate density $\mu_q \sim 400 \text{MeV}$

of Cooper pairs

may be relevant to newly born neutron stars or intermediate states in heavy-ion collisions (GSI, J-PARC)

Collective Mode in CSC

• **Response Function of Pair Field**

Linear Response • external field: $H_{ex} = \int d\mathbf{x} \left(\Delta_{ex}^{\dagger} \overline{\psi}^{C} i \gamma_{5} \tau_{2} \lambda_{2} \psi + \text{h.c.} \right)$ • expectation value of induced pair field: $\langle \overline{\psi}(x) i \gamma_{5} \tau_{2} \lambda_{2} \psi^{C}(x) \rangle_{ex} = i \int_{t_{0}}^{t} ds \langle [H_{ex}(s), O(\mathbf{x}, t)] \rangle$ $\int \Delta_{ind}(x) = -2G_{C} \langle \overline{\psi}(x) i \gamma_{5} \tau_{2} \lambda_{2} \psi^{C}(x) \rangle_{ex} = \int dt' \int d\mathbf{x} D^{R}(x, x') \Delta_{ex}(x')$ $D^{R}(\mathbf{x}, t) = -2G_{C} \langle [\overline{\psi}(x) i \gamma_{5} \tau_{2} \lambda_{2} \psi^{C}(x), \overline{\psi}(0) i \gamma_{5} \tau_{2} \lambda_{2} \psi^{C}(0)] \rangle \theta(t)$ • Retarded Green function

• Fourier transformation $\Rightarrow \Delta^{\dagger}(\mathbf{k}, \omega_n)_{\text{ind}} = \mathcal{D}(\mathbf{k}, \omega_n) \Delta^{\dagger}(\mathbf{k}, \omega_n)_{\text{ext}}$ with Matsubara formalism

• RPA approx.:
$$\mathcal{D}(\mathbf{k}, \omega_n) = + + + \cdots$$

= $-\frac{G_C Q(\mathbf{k}, \omega_n)}{1 + G_C Q(\mathbf{k}, \omega_n)}$ with $Q(\mathbf{k}, \omega_n) = + + \cdots$

After analytic continuation to real time,

$$D^{R}(\mathbf{k},\omega) = -G_{c}Q(\mathbf{k},\omega)/(1+G_{c}Q(\mathbf{k},\omega)),$$

$$\equiv -G_{c}Q(\mathbf{k},\omega) \cdot \Xi(\mathbf{k},\omega)$$

$$\Xi^{-1}(\mathbf{k},\omega) \equiv 1+G_{c}Q(\mathbf{k},\omega).$$

The spectral function;

$$\rho(\mathbf{k},\omega) = -\frac{1}{\pi} \mathrm{Im} D^{R}(\mathbf{k},\omega)$$

An important observation: at $T = T_c$;

$$\Xi^{-1}(\mathbf{k}=\mathbf{0},\omega=\mathbf{0})=\mathbf{0}$$

Equivalent with the gap equation (Thouless criterion)

• As T is lowered toward T_C ,

The peak of ρ becomes sharp. (Soft mode) \implies Pole behavior • The peak survives up to $\mathcal{E} \sim 0.2$ \iff electric SC: $\mathcal{E} \sim 0.005$

The pair fluctuation as the soft mode; --- movement of the pole of the precursory mode---

How does the soft mode affect the quark spectra?

---- formation of pseudogap ----

Ref. M. Kitazawa, T. Koide, T. K. and Y. Nemoto Phys. Rev. D70, 956003(2004); hep-ph/-5-2035; Prog. Theor. Phys. in press, M.Kitazawa, T.K. and Y. Nemoto, hep-ph/0505070

:Anomalous depression of the density of state near the Fermi surface in the normal phase.

Density of State in BCS theory

The gap on the Fermi surface becomes smaller as T is increased, and it closes at T_c .

• **Density of State**
$$N(\omega)$$

 $N = \int d^3 x \langle \overline{\psi} \gamma^0 \psi \rangle$
 $N(\omega) = \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \rho^0(\mathbf{k}, \omega) \iff \rho^0(\mathbf{k}, \omega) = \frac{1}{4} \operatorname{Tr} \left[\gamma^0 \operatorname{Im} G^R(\mathbf{k}, \omega) \right]$

Density of state of quarks in heated quark matter

Diquark Coupling Dependence

stronger diquark coupling G_C

 μ = 400 MeV

ε=0.01

Resonance Scattering of Quarks

Summary of this section

• There may exist a wide T region where the precursory soft mode of CSC has a large strength.

The soft mode induces the pseudogap, Typical Non-Fermi liquid behavior

resonant scattering

Future problems:

3. Precursory Hadronic Mode and Single Quark Spectrum above Chiral Phase Transition

QCD phase diagram and quasi-particles

Chiral Transformation

For $N_f = 3$, the chiral transformation forms

:直積群 $U_L(3) \otimes U_R(3) \simeq (U_L(1) \otimes U_R(1)) \otimes SU_L(3) \otimes SU_R(3)$

Chiral Invariance of Classical QCD Lagrangian in the chiral limit (m=0)

$$\bar{q}\gamma^{\mu}q = \bar{q}_{L}\gamma^{\mu}q_{L} + \bar{q}_{R}\gamma^{\mu}q_{R}$$

$$\rightarrow \qquad \bar{q}_{L}L^{\dagger}\gamma^{\mu}Lq_{L} + \bar{q}_{R}R^{\dagger}\gamma^{\mu}Rq_{R}$$

$$= \bar{q}_{L}\gamma^{\mu}q_{L} + \bar{q}_{R}\gamma^{\mu}q_{R}$$

$$= \bar{q}\gamma^{\mu}q \qquad \text{invariant!}$$

In the chiral limit (m=0),

 $\bar{q} \ \gamma^{\mu} D_{\mu} q \quad ; \text{Chiral invariant}$ $D_{\mu} = \partial_{\mu} - igt^{a} A^{a}_{\mu}$ \int $\mathcal{L}_{0}^{cl} = \bar{q}(i\gamma^{\mu} D_{\mu} - \eta^{\mu})q - \frac{1}{4}F^{a}_{\mu\nu}F^{\mu\nu}_{a} \quad ;\text{Chiral invariant!}$

The notion of Spontaneous Symmetry Breaking

 Q^{a} the generators of a continuous transformation $\partial^{\mu} j^{a}_{\mu} = 0$; $j^{a}_{\mu}(x)$ Noether current $Q^{a} = \int d\mathbf{x} j^{a}_{0}(x)$

eg. Chiral transformation for $SU_L(2) \otimes SU_R(2)$ $Q_5^a = \int d\mathbf{x} \bar{q} \gamma^0 \gamma_5 \tau^a / 2q$ Notice; $[iQ_5^a, \bar{q}(x)i\gamma_5 \tau^b q(x)] = -\delta^{ab} \bar{q}(x)q(x)$

The two modes of symmetry realization in the vacuum $|0\rangle$:a. Wigner mode $Q^a |0\rangle = 0 \quad \forall a$ b. Nambu-Goldstone mode $Q^a |0\rangle \neq 0 \quad \exists a$ The symmetry is spontaneously broken.

Now,
$$\langle 0|\overline{q}q|0\rangle = \langle 0|[Q_5^a, \overline{q}\gamma_5\tau^a q]]0\rangle$$

 $\langle 0|\overline{q}q|0\rangle \neq 0 \longrightarrow Q_5^a|0\rangle \neq 0$

Chiral symmetry is spontaneously broken!

Chiral invariant forms $: N_f = 2$

transformation:

Chiral Transition and the collective modes

Higgs particle

Hadronic Modes in the QGP Phase

The `para-sigma' and `para-pion'

Large

T. Hatsuda and T. K.,(1985)

The driving force leading to the phase transition should be strong enough to form the collective modes even at $T > T_c$

T. Hatsuda and T. K., Phys. Rev. Lett.55('85)158; PLB71('84),1332 ; Prog. Theor. Phys 74 (1985), 765.

FIG. 3. Dynamical quark mass $M = M_D(T, \mu) + \hat{m}$, and the masses of σ mode (m_{σ}) and π mode (m_{π}) . The dashed line denotes the 2*M* threshold from which the $q\bar{q}$ continuum starts.

The spectral function of the degenerate ``para-pion" and the ``para-sigma" at T>Tc for the chiral transition: Tc=164 MeV

T. Hatsuda and T.K. (1985)

How does the soft mode affect a single quark spectrum near Tc?

Y. Nemoto, M. Kitazawa , T. K. (in preapration)

• low-energy effective theory of QCD 4-Fermi type interaction (Nambu-Jona-Lasinio with 2-flavor) $L = \overline{q}i\gamma \cdot q + G_{S}[(\overline{q}q)^{2} + (\overline{q}i\gamma_{5}\overline{\tau}q)^{2}] \qquad \tau:SU(2) \text{ Pauli matrices}$ $G_{S} = 5.5 \cdot 10^{-6} \text{GeV}^{-2}, \Lambda = 631 \text{MeV} \quad m_{u} = m_{d} = 0 \text{ chiral limit}$

The parameters are determined so as to reproduce m_{π} and f_{π} in the chiral lim.

- Chiral phase transition takes place at Tc=193.5 MeV(2nd order).
- Self-energy of a quark (above Tc)

scalar and pseudoscalar parts

 $\Sigma^{R}(\omega, p) = \Sigma(\omega_{n}, p)|_{i\omega_{n}=\omega+i\varepsilon}$: imaginary time \rightarrow real time

Self-Energy and Spectral Func.

Dispersion Relations of Quarks

Dispersion Relations

Dispersion Relations

Spectral function of the quarks

Spectral Function of Quarks

6

Summary of this section

• Near (above) Tc, the quark spectrum at long-frequency and long wave-length is modified drastically by the soft mode for the chiral condensate, $\langle \overline{q}q \rangle$.

• The many-peak structure of the spectral function can be understood in terms of two resonant scatterings at small ω and p of a quark and an antiquark.

CSC : The Fermi surface is significant.
 Chiral: Antiquarks are significant. (antiquark holes)

Future

- finite quark mass effects. $(2^{nd} \text{ order} \rightarrow \text{crossover})$
- finite density (tricritical point, critical end-point)

•phenomenological applications

zero-binding lines

Summary of the Talk

2.precursory hadronic QCD phase diagram modes? strongly modified quark spectra 1. preformed pair fields? QCD CEP quark spectra modified? **`QGP' itself seems surprisingly** rich in physics! Condensed matter physics of strongly coupled Quark-Gluon systems will constitute a new field of fundamental physics.