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Self Introduction

I have mainly studied the following two topics:

• Two-dimensional SUSY (gauge) theories Today’s Talk

• Higher-dimensional supergravity My Ph.D Thesis (hep-th/0402054)

My purpose: to understand physics on curved spacetime

from the worldsheet and spacetime points of view

Useful models and tools:

(Non)linear sigma model: Maurer-Cartan one-form, differential geometry

toric geometry, chiral rings, etc.

(gauged) gravity with matter: Maurer-Cartan, Einstein-Hilbert, etc.



Two-dimensional field theory is a powerful framework

We have studied 2-dim. SUSY nonlinear sigma models...

– 1999: Supersymmetric nonlinear sigma models on hermitian symmetric spaces

introducing an auxiliary gauge field

by Higashijima and Nitta

2000: 1/N expansion of SUSY NLSM on QN−2 =
SO(N)

SO(N − 2) × U(1)

two non-trivial vacua, asymptotically free

by Higashijima, Nitta, Tsuzuki and TK: hep-th/0010272

2001 – 2002: Ricci-flat metrics on noncompact Kähler manifolds ( ≡ noncompact Calabi-Yau’s)

by Higashijima, Nitta and TK:

hep-th/0104184, 0107100, 0108084, 0110216, 0202064
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Metrics on Noncompact Calabi-Yau (K.Higashijima, M.Nitta and TK, 2001, 2002)

d

dX
Knoncompact(ρ, ϕ) =

(
eCX + b

)1/D

X = log |ρ1/`|2 +Kcompact(ϕ) , K
CPN−1(ϕ) = r log

(
1 +

N−1∑

i=1

|ϕi|2
)

line bundles total dim. D dual Coxeter C “orbifolding” `

C n

(

CPN−1 = SU(N)
SU(N−1)×U(1)

)

1 + (N − 1) N N

C n

(

QN−2 = SO(N)
SO(N−2)×U(1)

)

1 + (N − 2) N − 2 N − 2

C n E6/[SO(10) × U(1)] 1 + 16 12 12

C n E7/[E6 × U(1)] 1 + 27 18 18

C n

(

GN,M = U(N)
U(N−M)×U(M)

)

1 + M(N − M) N MN

C n SO(2N)/U(N) 1 + 1
2
N(N − 1) N − 1 N(N − 1)

C n Sp(N)/U(N) 1 + 1
2
N(N + 1) N + 1 N(N + 1)
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CFT descriptions (Virasoro- and current-algebras)?

global aspects of noncompact geometries?

and

mirror geometries?
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CFT descriptions (Virasoro- and current-algebras)?

global aspects of noncompact geometries?

and

mirror geometries?

Gauged Linear Sigma Model and its T-duality

including

NLSM (differential geometry)

Landau-Ginzburg theory (algebraic geometry)
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GLSM, NLSM, LG CFT



Gauged linear sigma model E. Witten (1993), K. Hori and C. Vafa (2000)

N = (2, 2) SUSY gauge theory with matters (FI : t ≡ r − iθ)

L =

∫
d4θ

{
− 1

e2
ΣΣ +

∑

a

Φa e2QaVΦa

}

+
( 1√

2

∫
d2θ̃ (−Σ t) + c.c.

)
+
( ∫

d2θWGLSM(Φa) + c.c.
)


 Φa : charged chiral superfield, D±Φa = 0

Σ : twisted chiral superfield, D+Σ = D−Σ = 0 , Σ = 1√
2
D+D−V

There exist at least two phases:

FI À 0 : differential-geometric phase → SUSY NLSM

FI ¿ 0 : algebro-gemetric phase → LG, orbifold, SCFT

Calabi-Yau/Landau-Ginzburg correspondence

harmonic forms ↔ NS-NS chiral primary states

“Mirror geometry” appears in the T-dual theory in terms of twisted chiral superfields Ya

Ya + Ya ≡ 2 Φa e2QaVΦa
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Effective theories

The potential energy density is given by

U(φ, σ) =
e2

2
D2 +

∑

a

|Fa|2 + Uσ(φ, σ)

D =
1

e2
D = r −

∑

a

Qa|φa|2 , F a = − ∂

∂φa
WGLSM(φ) , Uσ(φ, σ) = 2|σ|2

∑

a

Q2
a|φa|2

The supersymmetric vacuum manifold M is defined by

M =
{
(φa, σ) ∈ C

n
∣∣∣D = Fa = Uσ = 0

}/
U(1)

Renormalization of the FI parameter is r0 = rR + s · log
(ΛUV

µ

)
, s =

∑

a

Qa

Thus we find that

s > 0 → the theory is asymptotic free

s = 0 → the theory is conformal

s < 0 → the theory is infrared free

In the IR limit e → ∞, there appears the supersymmetric NLSM on M whose coupling is

r =
1

g2
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Example: quintic hypersurface

GLSM

— configuration —

chiral superfield Φa S1 S2 · · · S5 P

U(1) charge Qa 1 1 · · · 1 −5
WGLSM = P ·G5(S) → P (S5

1 + S5
2 + · · · + S5

5)
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Example: quintic hypersurface

CY sigma model

on CP4[5]

LG orbifold theory

with WLG/Z5

GLSM

CY/LG

FI À 0 FI ¿ 0

— configuration —

CP4[5] =
{
r =

5∑

i=1

|si|2 > 0,
∑

i

s5
i = 0

}/
U(1) WLG =

√
|r|/5〈p〉(S5

1 + S5
2 + · · · + S5

5)
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Example: quintic hypersurface

CY sigma model

on CP4[5]

LG orbifold theory

with WLG/Z5

GLSM

Hori-Vafa

CY/LG

FI À 0 FI ¿ 0

T-dual

— configuration —

Ya + Y a = 2Φa e2QaVΦa
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Example: quintic hypersurface

CY sigma model

on CP4[5]

LG orbifold theory

with WLG/Z5

GLSM

Hori-Vafa

C̃Y sigma model

on CP4[5]/(Z5)
3

L̃G orbifold theory

with W̃LG/(Z5)
4

CY/LG

CY/LG

FI À 0 FI ¿ 0

T-dual

Σ → ∂

∂t
Σ → ∂

∂YP

— configuration —

W̃LG = X5
1 +X5

2 +X5
3 +X5

4 +X5
5 + et/5X1X2X3X4X5 Xi := exp(−Yi/5)
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Example: quintic hypersurface

CY sigma model

on CP4[5]

LG orbifold theory

with WLG/Z5

GLSM

Hori-Vafa

C̃Y sigma model

on CP4[5]/(Z5)
3

L̃G orbifold theory

with W̃LG/(Z5)
4

CY/LG

CY/LG

FI À 0 FI ¿ 0

T-dualMirror equivalent

Σ → ∂

∂t
Σ → ∂

∂YP

— configuration —

h21(CP4[5]) = h11(CP4[5]/(Z5)
3) = 101 h11(CP4[5]) = h21(CP4[5]/(Z5)

3) = 1
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Gauged Linear Sigma Model for O(−N + `) bundle on CPN−1[`]

chiral superfield S1 · · · SN P1 P2

U(1) charge 1 · · · 1 −` −N + `

WGLSM = P1 ·G`(Si)

G`(Si) : homogeneous polynomial of degree `

“Homogeneous” means

if G`(s) = ∂1G`(s) = · · · = ∂NG`(s) = 0, then ∀si = 0

Potential energy density:

U =
e2

2
D2 +

∣∣G`(s)
∣∣2 +

N∑

i=1

∣∣p1∂iG`(s)
∣∣2 + Uσ

D = r −
N∑

i=1

|si|2 + `|p1|2 + (N − `)|p2|2 , Uσ = 2|σ|2
{ N∑

i=1

|si|2 + `2|p1|2 + (N − `)2|p2|2
}

Let us analyze SUSY vacuum manifold U = 0 and massless effective theories
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` = 1 case: already well-known model

GLSM reduces to




r À 0 : O(−N + 1) bundle on CPN−2

r ¿ 0 : C
N−1/ZN−1 orbifold theory

` = N case: already well-known model

GLSM reduces to




r À 0 : C

1 free theory ⊗ CY sigma model on CPN−1[N ]

r ¿ 0 : C
1 free theory ⊗ LG theory with {WLG = GN(S)}/ZN

2 ≤ ` ≤ N − 1 cases are nontrivial
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r À 0 region: CY phase appears

MCY =
{
(si; p2) ∈ C

N+1
∣∣∣ r =

N∑

i=1

|si|2 − (N − `)|p2|2, G`(si) = 0
}/
U(1)

O(−N + `) bundle on CPN−1[`]

• Fluctuation modes tangent to MCY remain massless

• Modes non-tangent to MCY and gauge fields

obtain masses of order O(e2r) via Higgs mechanism

taking the IR limit (e → ∞)

→ all the massive modes are decoupled from the theory

N = (2, 2) SUSY nonlinear sigma model on MCY
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r ¿ 0 region: orbifold phase and “new” phase appear

Morbifold =
{
(p1, p2; si) ∈ C

N+2
∣∣∣D = G`(Si) = p1∂iG` = 0, r < 0

}/
U(1)

= M1
r<0 ∪ M2

r<0

M1
r<0 :=

{
(p1, p2) ∈ C

2
∣∣∣D = 0 , r < 0

}/
U(1) = WCP1

`,N−`

M2
r<0 :=

{
(p2; si) ∈ C

N+1
∣∣∣D = G` = 0 , r < 0

}/
U(1)

Homogeneity of G`(s) and p1∂iG`(s) = 0 decompose Morbifold into two parts!!

For simplicity, we only consider the case of 3 ≤ ` ≤ N − 1.
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Massless effective theory on M1
r<0:

N = (2, 2) supersymmetric NLSM on WCP1
`,N−`

coupled to “LG” theory with
{
WLG = (〈p1〉 + P1)G`(S)

}/
Zα

(α = GCM{`,N − `})

Especially on the point (p1, p2) = (∗, 0) ∈ M1
r<0, the theory looks like

{
CFT on C

1 ⊗ LG theory with WLG = 〈p1〉G`(S)
}/

Z` (?)

and on the point (p1, p2) = (0, ∗) ∈ M1
r<0, the theory looks like

{
LG theory with WLG = P1 ·G`(S) on C

N+1
}/

ZN−` (?)

Massless effective theory on M2
r<0:

Conformal NLSM on M2
r<0 NEW phase!
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Supersymmetric vacua

PSfrag replacements

CY phase

orbifold phase

3rd phase

|si|
2

|p1|2

|p2|2

|si|
2

|p1|2

|p2|2

CY phase on MCY

conformal sigma model on MCY

orbifold phase on M1
r<0 (two “LG”s appear)

{
CFT on C

1 ⊗ LG with WLG = 〈p1〉G`(S)
}/

Z`
{
“LG” with WLG = P1 ·G`(S)

}/
ZN−`

3rd phase on M2
r<0 NEW!

conformal sigma model on M2
r<0

MCY =
{
(si; p2) ∈ C

N+2
∣∣∣D = G` = 0, r > 0

}/
U(1) ≡ O(−N + `) bundle on CPN−1[`]

M1
r<0 =

{
(p1, p2) ∈ C

2
∣∣∣D = 0, r < 0

}/
U(1) ≡ WCP1

`,N−`

M2
r<0 =

{
(si; p2) ∈ C

N+2
∣∣∣D = G` = 0, r < 0

}/
U(1)

Caution!: These effective theories are just approximately described

because we do not integrate out but ignore all massive mode.
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CY/LG correspondence and topology change

The four theories are related to each other via CY/LG correspondence and topology change:
PSfrag replacements

CY phase

at r À 0

Orbifold phase

at r ¿ 0

3rd phase

at r ¿ 0

singularity

Z`-orb.

LG

ZN−`-orb.

“LG”

topology change

CY/LG corresp.CY/LG corresp.

as a Conjecture

We also notice that we have obtained various massless effective theories by decomposing (not by

integrating out) all massive modes. Thus they are just approximate descriptions.
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T-dual description of the GLSM is also powerful

to investigate low energy theories.

Analyzing them

we will re-investigate the massless effective theories in the original GLSM.

p. 16



T-dual of GLSM

twisted LG, mirror geometry



T-dual Theory

L =

∫
d4θ

{
− 1

e2
ΣΣ −

∑

a

(1

2
(Ya + Ya) log(Ya + Ya)

)}
+
( 1√

2

∫
d2θ̃ W̃ + c.c.

)

W̃ = Σ
( N∑

i=1

Yi − `YP1
− (N − `)YP2

− t
)

+
N∑

i=1

e−Yi + e−YP1 + e−YP2

We often use the following functional integral:

Period integral : Π̂ ≡
∫

dΣ
N∏

i=1

dYi dYP1
dYP2

(`Σ) exp
( − W̃

)

roughly, this functional is a “partition function of topological theory”

chiral superfield S1 S2 · · · SN P1 P2

U(1) charge 1 1 · · · 1 −` −N + `

twisted chiral Y1 Y2 · · · YN YP1
YP2

where, 2 Φa e2QaVΦa = Ya + Ya

U(1) phase rotation symmetry on Φa shift symmetry on Ya: Ya ≡ Ya + 2πi
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In the IR limit e → ∞, the gauge field Σ is no longer dynamical and integrated out!

In order to perform this, we replace Σ to Σ → ∂

∂t
or Σ → ∂

∂YP
(via partial integration)

There are two ways to solve: YP ≡ YP1 or YP ≡ YP2.

We will obtain (Z`)
∗- or (ZN−`)∗-orbifolded theories, respectively.





(Z`)
∗-orbifolded theory : related to WLG/Z`

(ZN−`)∗-orbifolded theory : related to WLG/ZN−`
in the original GLSM side

In order to avoid some confusions, we consider only (Z`)
∗-orbifolded cases.
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Twisted Landau-Ginzburg theory:

Π̂ = `
∂

∂t

∫ N∏

i=1

dYidYP1
dYP2

δ
(∑

i

Yi − `YP1
− (N − `)YP2

− t
)

exp
(

−
∑

i

e−Yi − e−YP1 − e−YP2

)

Solve the δ-functional in terms of YP1
:

YP1
=

1

`

{
t−

N∑

i=1

Yi + (N − `)YP2

}

Field re-definition preserving canonical measure in Π̂ (to avoid anomaly):

Xi ≡ e−1
`Yi , XP2

≡ e
N−`
` YP2 , Xi → ωiXi , XP2

→ ωP2
XP2

, (Z`)
N symmetry

Thus we obtain the twisted LG superpotential:

{
W̃` = X`

1 + · · · +X`
N +X

− `
N−`

P2
+ et/`X1 · · ·XNXP2

}/
(Z`)

N

The negative power term describes N = 2 Kazama-Suzuki model on SL(2,R)k/U(1):

`

N − `
= k =

2

Q2

Thus we argue that

this effective theory is the LG minimal model coupled to the KS model with (Z`)
N orbifold symmetry
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Twisted mirror geometry:

We replace `Σ to
∂

∂YP1

and obtain

Π̂ =

∫ N∏

i=1

dYi (e
−YP1dYP1

) dYP2
δ
(∑

i

Yi − `YP1
− (N − `)YP2

− t
)

exp
(

−
∑

i

e−Yi − e−YP1 − e−YP2

)

Re-defining the variables in order to obtain the canonical measure (to avoid anomaly):

e−YP1 = P̃1 , e−Ya = e−t/` P̃1Z
`
a

Z1 · · ·ZN
, e−YP2 = − P̃2 , e−Yb = P̃2Z

`
b

We obtain

M̃` =
{{F(Zi) = 0

}/
C

∗ , G(Zb;u, v) = 0
}/

(Z`)
N−2

F(Zi) = Z`1 + · · · + Z`` + ψZ1 · · ·Z` , ψ = et/`Z`+1 · · ·ZN

G(Zb;u, v) = Z``+1 + · · · + Z`N + 1 − uv

Za 7→ λωaZa for a = 1, · · · , ` (homogeneous coordinates of CP`−1[`])

Zb 7→ ωbZb for b = `+ 1, · · · , N (homogeneous coordinates of C
N−`)

ω`a = ω`b = ω1 · · ·ωN = 1 , λ : C
∗-value
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Return to the original GLSM

Recall the following two arguments:

• N = 2 SCFT on SL(2,R)k/U(1) is equivalent to N = 2 Liouville theory via T-duality

• If a CFT C has an abelian discrete symmetry group Γ, the orbifold CFT C ′ = C/Γ has a symmetry

group Γ′ which is isomorphic to Γ. Furthermore a new orbifold CFT C ′/Γ′ is identical to the

original CFT C.

Thus we insist that

“{CFT on C
1 ⊗ LG with WLG = 〈p1〉G`(S)}/Z`” in the original GLSM

is described by

{N = 2 Liouville theory coupled to the LG minimal model with WLG}/Z`

as an exact effective theory
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Summary and Discussions



Summary

• We found three non-trivial phases and four effective theories in the GLSM

two CY sigma models

two orbifolded LG theories coulped to 1-dim. SCFT

• We constructed four exact effective theories in the T-dual theory

two NLSMs on mirror CY geometries

two orbifolded LG theories including a term with negative power −k
This term represents a gauged WZW model

on SL(2,R)k/U(1) at level k

• We argue that the LG theories in the orignal GLSM can be interpreted as N = 2

Liouville theories coupled to LG minimal models
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CY sigma model

on noncompact MCY

N = 2 Liouville × LG

Z` orbifold theory

GLSM

Hori-Vafa

CY sigma model

on noncompact M̃`

SL(2, R)k/U(1) × L̃G

(Z`)
N orbifold theory

CY/LG

CY/LG

T-dualMirror
T-dual

equivalent

FI À 0

`Σ → `
∂

∂t

FI ¿ 0

`Σ →
∂

∂YP1
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Discussions

CY M

A-sector

(Kähler)

CY M̃

Ã-sector

(Kähler)

CY M

B-sector

(complex)

CY M̃

B̃-sector

(complex)

explained by Hori-Vafa

not explained

• Hori-Vafa’s T-dual theory is only valid when we consider the GLSM without a superpotential or with a superpotential

given simply by a homogeneous polynomial such as WGLSM = P · G`(S). Even though the polynomial G`(S) has

an additional symmetry, the period integral Π̂ cannot recognize the existence of this additional symmetry. Thus the

T-dual theory does not map all structures of the CY M to the mirror geometry completely.
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Example: resolved/deformed conifold

PSfrag replacements

S3
CP1





deformed conifold: deformation of complex moduli

resolved conifold: deformation of Kähler moduli

GLSM for

resolved conifold
possible Hori-Vafa’s theory

for resolved conifold

GLSM for

deformed conifold
now impossible! Hori-Vafa’s theory

for deformed conifold
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— APPENDIX

N = (2, 2) “LG” SCFT and (compact) Calabi-Yau geometry

(c, c) ring element:

(p, q) charged

NS-NS chiral primary

p, q ≥ 0

Spectral flow

θL = 1, θR = 0

(a, c) ring element:

(p− d, q) charged

NS-NS chiral primary

p− d ≤ 0

One-to-one

correspondence

Spectral flow

−θL = θR = 1

2

harmonic (d− p, q)-form

on Calabi-Yau d-fold

d− p, q ≥ 0

d = c/3

One-to-one

correspondence

R-R gound state

(SUSY ground state)

(qL, qR) = (p− d
2
, q − d

2
)

hL = hR = c/24

I would like to apply the above strategy to “noncompact” CY varieties

Now we ignore precise definitions of “topological charges” (normalizability etc.)
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— APPENDIX

Derivation of the T-dual Lagrangian

Here we briefly review the T-duality of a generic GLSM without any superpotentials. We start from

L
′ =

∫
d4θ

{
− 1

e2
ΣΣ +

∑

a

(
e2QaV+Ba − 1

2
(Ya + Ya)Ba

)}
+
( 1√

2

∫
d2θ̃ (−Σ t) + (c.c.)

)
, (1)

where Ya and Ba are twisted chiral superfields and a real superfields Ba.

Integrating out twisted chiral superfields Ya, we obtain D+D−Ba = D+D−Ba = 0, whose solutions are written in

terms of chiral superfields Ψa and Ψa such as Ba = Ψa + Ψa. When we substitute them into (1), LGLSM appears:

L
′
∣∣∣
Ba=Ψa+Ψa

=

∫
d4θ

{
− 1

e2
ΣΣ +

∑

a

Φa e2QaVΦa

}
+
( 1√

2

∫
d2θ̃ (−Σ t) + (c.c.)

)
≡ LGLSM , (2)

where we re-wrote Φa = eΨa.

On the other hand, when we first integrate out Ba in L ′, we obtain Ba = −2QaV + log
(Ya + Ya

2

)
.

Let us insert these solutions into (1). By using a deformation

∫
d4θ QaV Ya = −Qa

2

∫
d2θ̃ D+D−V Ya = −Qa√

2

∫
d2θ̃ΣYa,

we find that a Lagrangian of twisted chiral superfields appears:

LT =

∫
d4θ

{
− 1

e2
ΣΣ −

∑

a

(1

2
(Ya + Ya) log(Ya + Ya)

)}
+
( 1√

2

∫
d2θ̃ W̃ + (c.c.)

)
,

W̃ = Σ
(∑

a

QaYa − t
)

+ µ
∑

a

e−Ya .

Notice that the twisted superpotential W̃ is corrected by instanton effects where the instantons are the vortices of the

gauge theory. In attempt to analyze a model satisfying
∑

aQa = 0, the scale parameter µ is omitted by field re-definitions.
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— APPENDIX

Derivation of the twisted geometry

Let us study how to obtain the geometry with Z`-type orbifold symmetry. Replacing `Σ in Π̂ to

`Σ → ∂

∂YP1

,

we can perform the integration of Σ and obtain

Π̂ =

∫ N∏

i=1

dYi
(
e−YP1dYP1

)
dYP2

δ
(∑

i

Yi − `YP1
− (N − `)YP2

− t
)

exp
(

−
∑

i

e−Yi − e−YP1 − e−YP2

)
. (3)

We perform the re-definitions of the variables Yi, YP1
and YP2

:

e−YP1 = P̃1 , e−Ya = P̃1Ua for a = 1, . . . , ` , e−YP2 = P̃2 , e−Yb = P̃2Ub for b = `+ 1, . . . , N .

Substituting these re-defined variables into (3), we continue the calculation:

Π̂ =

∫ N∏

i=1

(dUi

Ui

)
dP̃1

(dP̃2

P̃2

)
δ
(

log
(∏

i

Ui

)
+ t

)
exp

{
− P̃1

( ∑̀

a=1

Ua + 1
)

− P̃2

( N∑

b=`+1

Ub + 1
)}

=

∫ ∏

i

(dUi

Ui

)
dP̃2 du dv δ

(
log

(∏

i

Ui

)
+ t

)
δ
(∑

a

Ua + 1
)

exp
{

− P̃2

(∑

b

Ub + 1 − uv
)}

=

∫ ∏

i

(dUi

Ui

)
du dv δ

(
log

(∏

i

Ui

)
+ t

)
δ
(∑

a

Ua + 1
)
δ
(∑

b

Ub + 1 − uv
)
, (4)

where we introduced new variables u and v taking values in C and used a following equation

1

P̃2

=

∫
du dv exp

(
P̃2 uv

)
.
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— APPENDIX

It is obvious that (4) still includes a non-canonical integral measure. Thus we perform further re-definitions such as

Ua = e−t/` Z`a
Z1 · · ·ZN

, Ub = Z`b .

Note that the period integral (4) is invariant under the following transformations acting on the new variables Zi:

Za 7→ λωaZa , Zb 7→ ωbZb , ω`a = ω`b = ω1 · · ·ωN = 1 ,

where λ is an arbitrary number taking in C
∗. The ωi come from the shift symmetry of the original variables Yi ≡ Yi+2πi.

Combining these transformations we find that Π̂ has C
∗ × (Z`)

N−2 symmetries. Substituting Zi into (4), we obtain

Π̂ =

∫
1

vol.(C∗)

N∏

i=1

dZi du dv δ
( ∑̀

a=1

Z`a + et/`Z1 · · ·ZN
)
δ
( N∑

b=`+1

Z`b + 1 − uv
)
,

which indicates that the resulting mirror geometry is described by

M̃` =
{
(Zi;u, v) ∈ C

N+2

∣∣∣
{F(Zi) = 0

}/
C

∗ , G(Zb;u, v) = 0
}/

(Z`)
N−2 ,

F(Zi) =
∑̀

a=1

Z`a + ψZ1 · · ·Z` , G(Zb;u, v) =
N∑

b=`+1

Z`b + 1 − uv , ψ = et/`Z`+1 · · ·ZN .

This is an (N − 1)-dimensional complex manifold.

The equation F(Zi) = 0 denotes that the complex variables Za consist of the degree ` hypersurface in the projective

space: CP`−1[`]. This subspace itself is a compact CY manifold, which is parametrized by a parameter ψ which is subject

to the equation G(Zb;u, v) = 0. Moreover we can also interpret that the total space is a noncompact CY manifold

whose compact directions are described by Zi, while the variables u and v run in the noncompact directions under the

equations.
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(ZN−`)∗-orbifolded LG theory

Solve YP2
by using the constraint derived from integrating out Σ:

YP2
=

1

N − `

{
t−

N∑

i=1

Yi + `YP1

}

Field re-definition preserving canonical measure in Π̂:

Xi ≡ e− 1
N−`Yi , XP1

≡ e
`

N−`YP1 , Xi → ωiXi , XP1
→ ωP1

XP1
, (ZN−`)N symmetry

Thus we obtain the twisted LG superpotential:

{
W̃N−` = XN−`

1 + · · · +XN−`
N +X

−N−`
`

P1
+ et/`X1 · · ·XNXP1

}/
(ZN−`)N

negative power term = interpreted as N = 2 Kazama-Suzuki model on SL(2,R)k/U(1):

N − `

`
= k =

2

Q2

Thus we argue that

this effective theory is the LG minimal model coupled to the KS model with (ZN−`)N orbifold symmetry
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(ZN−`)∗-orbifolded algebraic geometry

We replace `Σ to
∂

∂YP2

and obtain

Π̂ =

∫ N∏

i=1

dYi dYP1
(e−YP2dYP2

) δ
(∑

i

Yi − `YP1
− (N − `)YP2

− t
)

exp
(

−
∑

i

e−Yi − e−YP1 − e−YP2

)

Re-defining the variables in order to obtain the canonical measure, we obtain

M̃N−` =
{
F (Za;u, v) = 0 ,

{
G(Zi) = 0

}/
C

∗
}/

(ZN−`)N−2

F (Za;u, v) = ZN−`
1 + · · · + ZN−`

` + 1 − uv

G(Zi) = ZN−`
`+1 + · · · + ZN−`

N + ψZ`+1 · · ·ZN , ψ = et/(N−`)Z1 · · ·Z`

Za 7→ ωaZa for a = 1, · · · , ` (homogeneous coordinates of C
`)

Zb 7→ λωbZb for b = `+ 1, · · · , N (homogeneous coordinates of CPN−`−1[N − `])

ωN−`
a = ωN−`

b = ω1 · · ·ωN = 1 , λ : C
∗-value
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linear dilaton CFT and Liouville theory

R
9,1 = R

d−1,1

︸ ︷︷ ︸
free SCFT

× X2n

︸︷︷︸
singular CY

∼ R
d−1,1 × Rφ × S1

︸ ︷︷ ︸
linear dilaton SCFT

× M/U(1)︸ ︷︷ ︸
N = 2 Landau-Ginzburg

linear dilaton: Φ = −Q
2
φ

Landau-Ginzburg: WLG = F (Za), F (λraZa) = λF (Za)

ctotal = cd + cdilaton + cLG → 15 =
3

2
d+

(3

2
+ 3Q2

)
+ 3

n+1∑

a=1

(
1 − 2ra

)

N = 2 “LG” on Rφ × S1 × M/U(1): W = −µZ−k
0 + F (Za)

k =
1

rΩ

=
2

Q2
, rΩ ≡ ∑

a ra − 1

linear dilaton SCFT on Rφ × S1 ≡ “LG” with

�

W = −µZ−k
0

�

≡ Kazama-Suzuki model on SL(2,R)k/U(1)

T-dual≡ Liouville theory of charge Q

Strictly, we consider the Euclidean black hole: SL(2,R)k/U(1) → [SL(2,C)k/SU(2)]/U(1)
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