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Self Introduction
| have mainly Stua':' B

e Two-dimensional SUSY (gauge) theories == oday’s Talk

¢ Higher-dimensional supergravity My Ph.&Thesis (hep-th/0402054)

L

e My purpose:

1 the worldsheet and spacetime points of view
i S st RS
Useful models-.i;%ﬁqi%g}ols: | T
(Non)linear sigma model: Maurer-Cartan one-form, differential geometry

toric geometry, chiral rings, etc.

(gauged) gravity with matter: Maurer-Cartan, Einstein-Hilbert, etc.



Two-dimensional field theory is a powerful framework |

- 1999:

2000:

2001 - 2002:

We have studied 2-dim. SUSY nonlinear sigma models...

Supersymmetric nonlinear sigma models on hermitian symmetric spaces
introducing an auxiliary gauge field

by Higashijima and Nitta

SO(N
1/N expansion of SUSY NLSM on Q"2 = (V)
SO(N —2) x U(1)

two non-trivial vacua, asymptotically free

by Higashijima, Nitta, Tsuzuki and TK: hep-th/0010272

Ricci-flat metrics on noncompact Kahler manifolds ( = noncompact Calabi-Yau’s)
by Higashijima, Nitta and TK:

hep-th/0104184, 0107100, 0108084, 0110216, 0202064



Metrics on Noncompact Calabi-Yau | (K.Higashijima, M.Nitta and TK, 2001, 2002)

d

d X

Knoncompact(pa 90) — (eCX + b) Y

N-1
X = log|p"? + Keompact(®) 5 Kpn-1(p) = rlog (1 T Z |%|2)
i=1

line bundles total dim. D dual Coxeter C “orbifolding” £
N—-1 __ SU(N)
Cx (CPN = et ) 1+ (N —1) N N
_o SO(N)
C[X( N2_50(N—2)XU(1)) 1—|—(N—2) N — 2 N — 2
C x E¢/[SO(10) x U(1)] 1+ 16 12 12
C x E7/[E¢ x U(1)] 1+ 27 18 18
_ U(N)
Cx (G = gaandoan) | 1+ MOV — M) N MN
C x SO(2N)/U(N) 14+ iN(N —1) N -1 N(N —1)
C x Sp(N)/U(N) 14+ ;N(N +1) N +1 N(N +1)
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Gauged linear sigma model E. Witten (1993), K. Hori and C. Vafa (2000)

N = (2,2) SUSY gauge theory with matters (FI: t = r — i0)
L = /d49{ - iziz + > BV, |
< a
+<i/d2§(—2 £) + c.c.) n (/d29 Wersm(®a) + c.c.)
V2

®, : charged chiral superfield, D, .®, = 0

v — _
3 : twisted chiral superfield, D ,>» =D _ =0, ¥ = %D+D_V

W There exist at least two phases:

FI > 0 : differential-geometric phase — SUSY NLSM
FI < 0 : algebro-gemetric phase — LG, orbifold, SCFT

¥ Calabi-Yau/Landau-Ginzburg correspondence

harmonic forms <«+» NS-NS chiral primary states

W “Mirror geometry” appears in the T-dual theory in terms of twisted chiral superfields Y,

Y,+Y, = 2®,e2%VPp,



V Effective theories

The potential energy density is given by

2
Up, ) = ZD*+ 3 |Fal* +Us($,0)

1 — o
D: —D: — a a2, Fa: -
r= 3 Qs 5.

o2
The supersymmetric vacuum manifold M is defined by

WGLSM(¢)? ua(¢90') - 2|0'|2ZQ2|¢&|2

M = {(qba,a)e@" D:FG:UU:O}/U(l)

. : Auv
Renormalization of the Fl parameteris ro = rr + s-log (—) s = Z Q.
H a

s>0 — the theory is asymptotic free

Thus we find that s=0 — the theory is conformal

s<O0 — the theory is infrared free

In the IR limit e — oo, there appears the supersymmetric NLSM on M whose coupling is



Vv Example: quintic hypersurface

GLSM I

— configuration —

chiral superfield ®,|S; Sy --- S5 P
------ e e 2 1 s Waewsm = P-G5(S) — P(Sf + SS + ..o+ Sg)
U (1) charge Q, 1 1 .- 1 =5




Vv Example: quintic hypersurface

CY sigma model CY/ LG LG orbifold theory
on CP4[5] with Wyq/Zs

— configuration —

CPfs) = {r =) |sil’ > 0,3 sl =0} /UQ)  Wic = VIrl/5(p)(S}+ S5+ -+ + 57)



Vv Example: quintic hypersurface

CY sigma model CY/ LG LG orbifold theory
on CP4[5] with WL(;/Z5

Hori-Vafa I

— configuration —

Y,+Y, = 2®,e*%V®,



Vv Example: quintic hypersurface

CY sigma model CY/ LG LG orbifold theory
on CP4[5] with WL(;/Z5

LG orbifold theory
with Wia/(Zs)*

CY sigma model
on CP*[5]/(Zs)?

— configuration —

Wic = X2+ X34+ X5+ X2+ X2 4+ e/5X, X, X3X4 X5  X; := exp(—Y;/5)



Vv Example: quintic hypersurface

CY sigma model CY/ LG LG orbifold theory
on CP4[5] with WL(;/Z5

Mirror equivalent

LG orbifold theory
with Wia/(Zs)*

CY sigma model
on CP*[5]/(Zs)?

— configuration —

hy1 (CP4[5]) = h11(CP*[5]/(Z5)°) = 101 h11(CP*[5]) = h1 (CP[5]/(Z5)°) = 1



Gauged Linear Sigma Model I for O(—N + £) bundle on CPN~1[¢]

A N

chiral superfield S S Sn P Py

U (1) charge 1 ‘o 1 — —N+¢

Wearsm = Pi - Go(S;)

G¢(S;) : homogeneous polynomial of degree ¢

“Homogeneous” means

if Gy(s) = 01Gy(s) = --- = ONGy(s) = 0, then Vs; =0

Potential energy density:

2 N
U = D+ [Guls)|" + Y [P10iGels) " + U

1=1
N N
D = r=Y [siPP +LpP+ (N = Olpa*, Uy = 2l0{ Y [sil* + L|paf* + (N — £)?|psf*}
=1 1=1

Let us analyze SUSY vacuum manifold &/ = 0 and massless effective theories



W ¢ = 1 case: already well-known model

r>0: O(—N + 1) bundle on CPN~2

GLSM reduces to
r K 0: CN~1/Zn_; orbifold theory

W ¢ = N case: already well-known model

r > 0: C! free theory ® CY sigma model on CPYN~![N]

GLSM reduces to
r K< 0: C! free theory ® LG theory with {Wi o = GN(S)}/ZnN

2 < ¢ < N — 1 cases are nontrivial




vV 7 > 0 region: CY phase appears

Mcy = {(Sz‘;Pz) e CN*! ’ r = i |87:|2 — (N — £)|P2|2a Gz(Si) — 0}/U(1)

=1

=> O(—N + £) bundle on CPYN 1]

e Fluctuation modes tangent to M cy remain massless
e Modes non-tangent to My and gauge fields

obtain masses of order O(e?r) via Higgs mechanism

taking the IR limit (e — o0)

— all the massive modes are decoupled from the theory

N = (2,2) SUSY nonlinear sigma model on Mcy I




Vv r < 0 region: orbifold phase and “new” phase appear

Morbifold = {(Phpz; Si) S CN+2 | D = Gﬁ(si) = p10;G, =0, r < 0}/U(1)
— M71~<0 U Mz<0
M, o = {(plv p2) € C° ‘ D=0,r< 0}/U(1) = WCP,n_,

M2_ = {(pg;si)E(CNJrl‘D:Gg:O, r <o} /U(1)

Homogeneity of G,(s) and p,9;G/(s) = 0 decompose M pifo1d iNto two parts!!

For simplicity, we only consider the case of 3 < ¢ < N — 1.



YV Massless effective theory on M} _:

N = (2, 2) supersymmetric NLSM on WCP, , _,
coupled to “LG” theory with {WLG = ({p1) + Pl)Gg(S)} / Ze

(@ = GCM{¢, N — ¢£})

Especially on the point (p;, p2) = (*,0) € M},<0, the theory looks like

{CFT on C' ® LG theory with Wi = <p1>Gg(S)}/Z£ (?)

and on the point (pi,p2) = (0, %) € M, _,, the theory looks like

{LG theory with Wic = P; - G¢(S) on CN+1} / Zn—e |(?)

WV Massless effective theory on M?_:

Conformal NLSM on M?

<0 NEW phase!




VW Supersymmetric vacua

D CY phase on My

conformal sigma model on M ¢y

D orbifold phase on M/ _, (two “LG”s appear)
{CFT on C' ® LG with Wic = (p1)G«(S)}/Zs
{“LG” with Wic = Py - Go(S)}/Zn_s

3rd phase

|2?2|2

O 3rd phase on M?_, NEW!

conformal sigma model on M?2_,

Mcey = {(Si;Pz) € CNH‘D =Gg=0, r> 0}/U(1)
M, = {(p1,p2) € C? ‘ D=0,r< 0}/U(1) = WCPE,N—E
Mo = {(Si;Pz) e CN*?

O(—N + £) bundle on CPY 1]

D =G, =0, r<0}/U(1)

Caution!: These effective theories are just approximately described

because we do not integrate out but ignore all massive mode.



V¥ CY/LG correspondence and topology change

The four theories are related to each other via CY /LG correspondence and topology change:

CY phase
at r >0

3rd phase
at r <0

topology change

singularity
[

CY /LG corresp. CY /LG corresp.

Zg—OI‘b.
LG

ZN_g-OI‘b.
“LG”

||
[ Orbifold phase ]

at r <0

as a Conjecture

We also notice that we have obtained various massless effective theories by decomposing (not by

integrating out) all massive modes. Thus they are just approximate descriptions.



T-dual description of the GLSM is also powerful

to investigate low energy theories.

Analyzing them

we will re-investigate the massless effective theories in the original GLSM.
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T-dual Theory |

7 = /d49 ——EE Z( (Ye + Y,) log(Y, —|—Y)> \/_/dZHW—I—cc)

= E(Z Y, —€Yp, — (N — 0)Yp, — t) + Ze—Yi + e YP L e YR
=1 =

We often use the following functional integral:

——

N
Period integral : TI = / d= [ [ dY; dYp, dYp, (43) exp ( — W)

=1

roughly, this functional is a “partition function of topological theory”

chiral superfield S So S SN P Py
"""" U@1)charge | 1 1 -+ 1 —£ -N+£
""" twisted chiral | Y; Y, -+ Yy Yp  Yp
where, 2 ®,e’?Vd, = Y, +7Y,

U (1) phase rotation symmetry on &, =2 shift symmetry on Y,: Y, =Y, + 271



In the IR limit e — oo, the gauge field X is no longer dynamical and integrated out!
o

In order to perform this, we replace > to > — — or > — ——
ot OYp

(via partial integration)

There are two ways to solve: Yp = Yp, or Yp = Yp,.

We will obtain (Z;)*- or (Zx_¢)*-orbifolded theories, respectively.

(Zy)*-orbifolded theory: related to Wiy /Z, ] o ]
in the original GLSM side
(Zn—¢)*-orbifolded theory: related to Wi /Zn—_¢

In order to avoid some confusions, we consider only (Z,)*-orbifolded cases.



W Twisted Landau-Ginzburg theory:

N 8 [T v _
0 = ﬁa/il:[ldndeldeza(;n—eypl—(N—E)sz—t) exp(—;e Yi _ e Yr _e YPz)

Solve the d-functional in terms of Yp;:

N
Yp, = %{t—ZYTH—(N—E)YPQ}
1=1

Field re-definition preserving canonical measure in Il (to avoid anomaly):

_ly N—ty-
X;, = e ¢, szzeﬁ PR, X, — wX;, Xp

, — wp,Xp,, (Zy)" symmetry

Thus we obtain the twisted LG superpotential:

— __t
{(We = X{+ + XL+ X, + /Xy XnXp, } [ (Z0)Y

The negative power term describes N/ = 2 Kazama-Suzuki model on SL(2,R),/U(1):
¢ 2
— k = —

N —¢ Q?

Thus we argue that

this effective theory is the LG minimal model coupled to the KS model with (Z,)"V orbifold symmetry



W Twisted mirror geometry:

We replace £X to and obtain

Yp,
R N
I = / [[ dYi (e"dYp,) dYp, 5(2 Y; — £Yp, — (N — £)Yp, — t> exp ( —) eVi—en — e_YPz)
i=1 i i
Re-defining the variables in order to obtain the canonical measure (to avoid anomaly):
P, Zt

e Y = P, e Yo = et/
Zl e o o ZN

-Y, -Y; D 70
) e :—Pz, e b:PQZb

Mo = {{F(Z) = 0}/C, G(Zsu,0) = 0} /(2)"

We obtain F(Z) = Z'+ -+ ZE 492y Zyy, Yy = Zy - Zn

G(Zp;u,v) = Zf+1—|—---—|—Z]{,—|—1—uv

Zg — AwgZ, for a = 1,---,¢ (homogeneous coordinates of CP*~1[{])

Zy +— wy Ly for b = £+1,---,N (homogeneous coordinates of CV~¢)

W, = wﬁ = wyrrrwy = 1, A : C*-value



W Return to the original GLSM

Recall the following two arguments:

e N =2SCFT on SL(2,R);/U (1) is equivalent to N/ = 2 Liouville theory via T-duality

e If a CFT C has an abelian discrete symmetry group I', the orbifold CFT C’ = C /T has a symmetry
group I'V which is isomorphic to I'. Furthermore a new orbifold CFT C’/T” is identical to the
original CFT C.

Thus we insist that

“{CFT on C' ® LG with Wyg = (p1)G¢(S)}/Zs" in the original GLSM
is described by
{N = 2 Liouville theory coupled to the LG minimal model with Wc}/Z,

as an exact effective theory







Summary

e We found three non-trivial phases and four effective theories in the GLSM
two CY sigma models

two orbifolded LG theories coulped to 1-dim. SCFT

e We constructed four exact effective theories in the T-dual theory
two NLSMs on mirror CY geometries
two orbifolded LG theories including a term with negative power —k
This term represents a gauged WZW model
on SL(2,R),/U(1) at level k

e We argue that the LG theories in the orignal GLSM can be interpreted as N = 2

Liouville theories coupled to LG minimal models



CY e CY/LG N = 2 Liouville X LG
Zy orbifold theory

on noncompact Mcy

T-dual

Mirror

equivalent

SL(2,R),/U(1) x LG
(Zg)N orbifold theory

CY sigma model

on noncompact M,



Discussions I

CY M
fi—sector

(Kahler)

<) explained by Hori-Vafa

not explained

CY M

B-sector

CY M

B-sector

(complex)

(complex)

e Hori-Vafa’s T-dual theory is only valid when we consider the GLSM without a superpotential or with a superpotential
given simply by a homogeneous polynomial such as Wgpsny = P - G¢(S). Even though the polynomial G,(S) has
an additional symmetry, the period integral II cannot recognize the existence of this additional symmetry. Thus the

T-dual theory does not map all structures of the CY M to the mirror geometry completely.



Example: resolved/deformed conifold

53 (CPl

deformed conifold: deformation of complex moduli

resolved conifold: deformation of Kahler moduli

GLSM for possible Hori-Vafa’s theory
resolved conifold for resolved conifold

GLSM for now impossible! Hori-Vafa’s theory
deformed conifold for deformed conifold
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— APPENDIX

N = (2,2) “LG” SCFT and (compact) Calabi-Yau geometry |

( (¢, ¢) ring element:

((a, c) ring element:

Spectral flow (p — d, q) charged
0 =1,0r=0 NS-NS chiral primary
p—d<O0

(p, ) charged
NS-NS chiral primary

p,q >0

One-to-one Spectral flow

6, =0p=1

correspondence

(" harmonic (d — p, q)-form ( R-R gound state
on Calabi-Yau d-fold
d—p,q=>0

d=c/3

One-to-one (SUSY ground state)

correspondence (qr,qr) = (P — 2,9 — 9)

hL = hR = 0/24

| would like to apply the above strategy to “noncompact” CY varieties

Now we ignore precise definitions of “topological charges” (normalizability etc.)




Derivation of the T-dual Lagrangian I

Here we briefly review the T-duality of a generic GLSM without any superpotentials. We start from
1_ 1 — 1 ~
7 = /d49{ )5 (ezQa”Ba (Y, 4+ Y, Ba)} (— /d29 _St) + (cec. ) 1
222+ Z 5 (Ya+ Vo) (5 (—2t) + (c.c))) , (1)
where Y, and B, are twisted chiral superfields and a real superfields B,,.

Integrating out twisted chiral superfields Y,, we obtain D_.D_B, = D,D_B, = 0, whose solutions are written in

terms of chiral superfields ¥, and ¥, such as B, = ¥, + ¥,. When we substitute them into (1), ZcLsm appears:

% = /d40{ - éiz +3° 3, e2Q“V<I>a} i (\% /dzé(—z £) + (c.c.)) = Loism 2)

B,=Y,+%,

where we re-wrote &, = e%e,

Y, +Y,
On the other hand, when we first integrate out B, in .¢’, we obtain B, = —2Q,V + log (%)

Q.

d20xyY,,
\/_

Let us insert these solutions into (1). By using a deformation /d49 Q. VY, = _&a /d29 D.D_VY, =

we find that a Lagrangian of twisted chiral superfields appears:
1_ 1 — — 1 -
_ a9 [ . - o 2
S = /d 0{ =% ; (Z(Ya 1Y) log(Y, + Ya))} n (ﬁ/d OW + (c.c.)) :
— E(ZQaYa_t)+NZeY

Notice that the twisted superpotential W is corrected by instanton effects where the instantons are the vortices of the

gauge theory. In attempt to analyze a model satisfying >, Q, = 0, the scale parameter p is omitted by field re-definitions.

p. 2



Derivation of the twisted geometry |

Let us study how to obtain the geometry with Z,-type orbifold symmetry. Replacing £X in II to

0
Y — ——,
0Yp,

we can perform the integration of 3 and obtain
N
= /H dY; (e YPldel )dYp, 6 (Z Y, —¢Yp, — (N — £)Yp, — t) exp ( — Z e Yi —e Y e_YP2> . (3)
i=1 ;

We perform the re-definitions of the variables Y;, Yp, and Yp,:

en = P, e¥ = PU, fora=1,...,¢, e = Py, e = PU, forb=£+1,...,N.

Substituting these re-defined variables into (3), we continue the calculation:

= /]El (dUi) d131 (d?ﬁz)g(]og(HUi)—kt) exp{—ﬁ1(an+1> P2< Z Uy + )}

Ui 2 i a=1 b=¢+1

= /_ (défz) d152dudv6<log(HUi> —|—t) 6<;Ua—|—1) exp{ —Pz(;Ub‘Fl —U’U>}

%

- 11 (dé_j>dud'v6<log(HU) +6)8( Y Uat1) (Y Up+1-uv), (4)

2

(2

where we introduced new variables u and v taking values in C and used a following equation
1 ~
— = /dudv exp (Pz uv) .
P,

p.3



It is obvious that (4) still includes a non-canonical integral measure. Thus we perform further re-definitions such as
ZE
U, = et——2__ U = Z.
T 00 Drs

Note that the period integral (4) is invariant under the following transformations acting on the new variables Z;:

Lo v Awg Ly, Zp +— wply, wﬁ:w,f:wl---wj\r:l,

where A is an arbitrary number taking in C*. The w; come from the shift symmetry of the original variables Y; = Y; 4 2ms.
Combining these transformations we find that IT has C* X (Z;)V~2 symmetries. Substituting Z; into (4), we obtain

_ /Vol ) HdZ dudv5(22£+et/ezl - Zn) 8 i Zy+1—uv),

b=¢+1

which indicates that the resulting mirror geometry is described by

M, = {(Zi;u,v) ECN"'Z‘{.’F(ZZ') = 0}/C*, G(Zpu,v) = 0}/(Zg)N_2,

£ N
F(Z;) = Zzﬁ+¢21"'zea G(Zp;u,v) = Z ZE+1—wv, o = eZy - Zn.
= b=t+1

This is an (N — 1)-dimensional complex manifold.

The equation F(Z;) = 0 denotes that the complex variables Z, consist of the degree ¢ hypersurface in the projective
space: CP*~1[£]. This subspace itself is a compact CY manifold, which is parametrized by a parameter 1) which is subject
to the equation G(Zy;u,v) = 0. Moreover we can also interpret that the total space is a noncompact CY manifold

whose compact directions are described by Z;, while the variables v and v run in the noncompact directions under the

equations.

p.4



— APPENDIX

(Zn —¢)*-orbifolded LG theory I

Solve Yp, by using the constraint derived from integrating out X:

1 N
Y, = {t =" Yi+ovn,|
=1

N —¢

Field re-definition preserving canonical measure in 11:

1

— —N=Y: — Y
X, = e Nt Xp = eN-tPh, X, — wlX;, Xp

N
1 . — wp,Xp , (Zn—¢)" symmetry

Thus we obtain the twisted LG superpotential:

N—¢

{WN—K = XNt 4 XNt 4 Xp ¢+ e/tX ... XNXpl}/(ZN—e)N

negative power term = interpreted as N’ = 2 Kazama-Suzuki model on SL(2,R),/U(1):
N —¢ 2

— k = —

¢ Q?

Thus we argue that

this effective theory is the LG minimal model coupled to the KS model with (Zx_;)" orbifold symmetry

p.- o



— APPENDIX

(Zn—¢)*-orbifolded algebraic geometry I
o

We replace £3 to and obtain

Yp,

N
I = /H dY; dYp, (e YPdYp,) 5(2 Y, —£€Yp, — (N — £)Yp, — t> exp < _ Z o Yi _ oY _ e‘YPz)

=1 2

Re-defining the variables in order to obtain the canonical measure, we obtain

My = {F(Zsuv) = 0, {G(Z) = 0}/C"} [ (Zn-)™

F(Z,;u,v) = Z{V_e—l—---—FZéV_e—kl—uv

G(Z) = ZN' 4+ ZN "+ Zea - Zn, p=e/NT0Z, ... 7,

Z, — weZ, for a = 1,.---,%¢ (homogeneous coordinates of C*)

Zy — AwpZy, for b = £+1,---,N (homogeneous coordinates of CPN—‘"1[N — ¢])

wlV=t = wév_z = wicrrwny = 1, A : C*-value

p-6



— APPENDIX

linear dilaton CFT and Liouville theory I

R = RIML x X ~ R¥TMIx RyxS' x M/UQ)
N———

N—— ~—— N—_——
free SCFT singular CY linear dilaton SCFT N = 2 Landau-Ginzburg
. . . L Q
linear dilaton: ¢ = —Z¢
Landau-Ginzburg: Wig = F(Z,), F(A\"*Z,) = AF(Z,)
n+1

Ctotal = Cd + Cdilaton + CLc — 15 = §d-l-(§-|-36f)-I-?)z:(l—Z’l“)
ota 11aton 2 2 —~ a

N =2"“LG" onRy x S'x M/U(1): W = —uZ;* + F(Z,)

1 2
I{?:E:@, TQ:ZGTG—]_

linear dilaton SCFT on Ry x S' “LG” with TW = —pz; ")

Kazama-Suzuki model on SL(2,R);/U(1)

T-du

? Liouville theory of charge
Strictly, we consider the Euclidean black hole: SL(2,R),/U(1) — [SL(2,C),/SU(2)]/U(1)

p.7



