

Comments on Heterotic

Flux Compactifications

木村 哲士（Kimura，Tetsuji） KIAS

hep－th／0605247

in collaboration with Piljin Yi（KIAS）

Seminar＠KEK July 7， 2006

Introduction

Purpose

Construct a realistic model of 4-dim. particle physics

- matter contents
- gauge symmetry and its breaking
- gravity, cosmology
- etc., etc.

Supergravity with fluxes has a long, and interesting story

Supergravity with fluxes has a long, and interesting story

∇ Freund-Rubin Ansatz in 11- and 10-dimensional supergravities

$$
F_{p}=|\boldsymbol{F}| \times(\text { vol. }) \text { generates a cosmological constant in } A d S_{q^{-}} \text {space }
$$

Supergravity with fluxes has a long, and interesting story

∇ Freund-Rubin Ansatz in 11- and 10-dimensional supergravities

$$
\boldsymbol{F}_{p}=|\boldsymbol{F}| \times(\text { vol. }) \text { generates a cosmological constant in } A d S_{q^{-}} \text {-space }
$$

∇ Gauge/Gravity Dualities in type II theories
F_{p} generates a superpotential in 4-dim. $\mathcal{N}=1 \mathrm{SYM}\left(\right.$ e.g., $\left.W=\int_{\mathrm{CY}_{3}} \Omega \wedge F_{3}\right)$
Both solutions have given us new insights in higher-dimensional theories
∇ Flux can be a torsion on a (compactified) geometry

$$
\delta \psi_{M}=\left(\partial_{M}+\left(\omega_{M}^{A B}-H_{M}^{A B}\right) \Gamma_{A B}\right) \xi
$$

If $H_{M}{ }^{A B} \neq 0$, the geometry looks no longer a Kähler manifold.

G-structure manifold

∇ Flux can be a torsion on a (compactified) geometry

$$
\delta \psi_{M}=\left(\partial_{M}+\left(\omega_{M}^{A B}-H_{M}^{A B}\right) \Gamma_{A B}\right) \xi
$$

If $H_{M}{ }^{A B} \neq 0$, the geometry looks no longer a Kähler manifold.

G-structure manifold

∇ How does the flux work in heterotic theory?

$$
\left\{\begin{array}{l}
\text { anomaly cancellation in a miraculous way } \\
\text { gauge symmetry } E_{8} \times E_{8} \text { or } S O(32)
\end{array}\right.
$$

conitants

$\nabla S U(3)$-structure manifold
∇ Heterotic theory on $S U(3)$-structure manifold

- Vacuum configuration
- Towards low energy effective theory: (zero mode eqs., gauge groups)
∇ Summary and Discussion
useful Refs. Becker, Becker, Dasgupta and Green [hep-th/0301161]
Cardoso, Curio, Dall'Agata and Lüst [hep-th/0306088]
Becker and Tseng [hep-th/0509131] etc., etc..

$S U(3)$-structure Manifold

- mathematics -

G-structure group

 on an n-dim. manifold $\mathcal{M}$$$
\begin{cases}F(\mathcal{M}) \text { frame bundle }: & \text { principal } G L(n) \text { bundle } \\ G \text {-structure } & : \text { principal } G \text { sub-bundle of } F(\mathcal{M})\end{cases}
$$

\Leftrightarrow nowhere vanishing tensors on \mathcal{M}

tensors	G-structure	
$\boldsymbol{\eta}_{a b}$	$O(n)$	
$\eta_{a b} \quad \varepsilon_{a_{1} \cdots a_{n}}$	$S O(n)$	
$\boldsymbol{\eta}_{a b} \quad J_{a}{ }^{b}$	$\boldsymbol{U}(\boldsymbol{m})$	$J^{2}=-1$
$\boldsymbol{\eta}_{a b}$	$J_{a}{ }^{b}$	$\Omega^{(m, 0)}$

6-dim. $S U(3)$-structure on manifold

Consider a geometry \mathcal{K}_{6} with a Killing spinor equation including torsion

$$
{ }^{\exists} \xi \quad \text { s.t. } \quad \nabla^{(T)} \xi=0
$$

This is a definition of the geometry with $S U(3)$-structure.

Consider a geometry \mathcal{K}_{6} with a Killing spinor equation including torsion

$$
{ }^{\exists} \boldsymbol{\xi} \quad \text { s.t. } \quad \nabla^{(T)} \boldsymbol{\xi}=0
$$

This is a definition of the geometry with $S U(3)$-structure.
Invariant p-forms on the $S U(3)$-structure manifold:
2-form in $S O(6) \Rightarrow$ a real 2 -form in $S U(3)$

$$
{ }_{6} C_{2}=15 \quad=\quad 1+3+\overline{3}+8 \quad: \quad J_{a b}=-i \xi^{\dagger} \Gamma_{a b} \xi
$$

3-form in $S O(6) \Rightarrow$ an (almost) complex 3 -form in $S U(3)$

$$
{ }_{6} C_{3}=20 \quad=\quad 1+1+3+\overline{3}+6+\overline{6}: \quad \Omega_{a b c}=\xi^{\mathrm{T}} \Gamma_{a b c} \xi
$$

Furthermore

$$
J \wedge \Omega=0, \quad J \wedge J \wedge J=\frac{3 i}{4} \Omega \wedge \bar{\Omega}=3!\times(\text { vol } .)_{\mathcal{K}_{6}}
$$

Heterotic Theory

- vacuum, gauge group and zero modes -

Heterotic theory on $S U(3)$-structure manifold

Supergravity

∇ Bosonic part of the Lagrangian (without fermion condensations)

$$
\begin{aligned}
\mathscr{L}=\frac{1}{4} \sqrt{-G} \mathrm{e}^{-2 \Phi}[& R(\omega)-\frac{1}{3} H_{M N P} H^{M N P}+4\left(\nabla_{M} \Phi\right)^{2} \\
& \left.-\alpha^{\prime}\left\{\operatorname{tr}\left(F_{M N} F^{M N}\right)\right\}\right]
\end{aligned}
$$

∇ Bianchi identity $\quad[\omega]$

$$
\mathrm{d} \boldsymbol{H}=-\boldsymbol{\alpha}^{\prime}[\operatorname{tr}\{\boldsymbol{F} \wedge \boldsymbol{F}\}]
$$

Chapline and Manton [Phys. Lett. B120 (1983) 105]
(supergravity)

Heterotic theory on $S U(3)$-structure manifold

Supergravity

∇ Bosonic part of the Lagrangian (without fermion condensations)

$$
\begin{aligned}
\mathscr{L}=\frac{1}{4} \sqrt{-G} \mathrm{e}^{-2 \Phi}[& R(\omega)-\frac{1}{3} \boldsymbol{H}_{M N P} \boldsymbol{H}^{M N P}+4\left(\nabla_{M} \Phi\right)^{2} \\
& \left.-\alpha^{\prime}\left\{\operatorname{tr}\left(\boldsymbol{F}_{M N} \boldsymbol{F}^{M N}\right)\right\}\right]
\end{aligned}
$$

∇ Bianchi identity $\quad[\omega]$

$$
\mathrm{d} \boldsymbol{H}=-\alpha^{\prime}[\operatorname{tr}\{\boldsymbol{F} \wedge \boldsymbol{F}\}-\operatorname{tr}\{\boldsymbol{R}(\boldsymbol{\omega}) \wedge \boldsymbol{R}(\boldsymbol{\omega})\}]
$$

Green and Schwarz [Phys. Lett. B149 (1984) 117]
(anomaly cancellation)
(worldsheet 1-loop β-function)

Heterotic theory on $S U(3)$-structure manifold

Supergravity al

∇ Bosonic part of the Lagrangian (without fermion condensations)

$$
\begin{aligned}
\mathscr{L}=\frac{1}{4} \sqrt{-G} \mathrm{e}^{-2 \Phi}[& R(\omega)-\frac{1}{3} H_{M N P} H^{M N P}+4\left(\nabla_{M} \Phi\right)^{2} \\
& \left.-\alpha^{\prime}\left\{\operatorname{tr}\left(F_{M N} F^{M N}\right)-\operatorname{tr}\left(R_{M N}\left(\omega_{+}\right) R^{M N}\left(\omega_{+}\right)\right)\right\}\right]
\end{aligned}
$$

∇ Bianchi identity $\quad\left[\omega_{+}=\omega+H\right]$

$$
\mathrm{d} \boldsymbol{H}=-\boldsymbol{\alpha}^{\prime}\left[\operatorname{tr}\{\boldsymbol{F} \wedge \boldsymbol{F}\}-\operatorname{tr}\left\{\boldsymbol{R}\left(\boldsymbol{\omega}_{+}\right) \wedge \boldsymbol{R}\left(\omega_{+}\right)\right\}\right]
$$

Hull [Phys. Lett. B178 (1986) 357]
Bergshoeff and de Roo [Nucl. Phys. B328 (1989) 439] (worldsheet 2-loop β-function)

∇ Study vacuum configuration

- SUSY variations \rightarrow geometry with $S U(3)$-structure
∇ Investigate low energy effective theory
- Gauge symmetry
- Zero mode equations
- Norm of fields

Vacuum Configuration

$\mathcal{M}^{3,1}$
\mathcal{K}_{6}

$$
\begin{aligned}
& G_{M N} \mathrm{~d} x^{M} \mathrm{~d} x^{N} \\
& =\eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n} \mathrm{~d} y^{m} \mathrm{~d} y^{n} \\
& G_{M N}^{\mathrm{E}} \mathrm{~d} x^{M} \mathrm{~d} x^{N} \\
& =\mathrm{e}^{-\Phi / 2}\left(\boldsymbol{\eta}_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n} \mathrm{~d} y^{m} \mathrm{~d} y^{n}\right)
\end{aligned}
$$

Vacuum Configuration

$\mathcal{M}^{3,1}$
\mathcal{K}_{6}

$$
\begin{aligned}
& G_{M N} \mathrm{~d} x^{M} \mathrm{~d} x^{N} \\
& =\eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{m n} \mathrm{~d} y^{m} \mathrm{~d} y^{n} \\
& G_{M N}^{\mathrm{E}} \mathrm{~d} x^{M} \mathrm{~d} x^{N} \\
& =\mathrm{e}^{-\Phi / 2}\left(\eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+\boldsymbol{g}_{m n} \mathrm{~d} y^{m} \mathrm{~d} y^{n}\right)
\end{aligned}
$$

$$
\operatorname{Spin}(9,1) \rightarrow S L(2, \mathbb{C}) \times S U(4)
$$

$$
16=(2,4)+(\overline{2}, \overline{4}): \quad \epsilon_{+}=\eta_{+} \otimes \xi_{+}+\eta_{-} \otimes \xi_{-}
$$

$$
\begin{gathered}
\mathcal{N}=1 \text { SUSY } \\
\text { on } \mathcal{M}^{3,1}
\end{gathered} \leftrightarrow\left[\begin{array}{c}
1 \text { Killing spinor } \xi_{+} \\
\text {on } \mathcal{K}_{6}
\end{array} \leftrightarrow \leftrightarrow \begin{array}{c}
S U(3) \text {-structure } \\
\text { on } \mathcal{K}_{6}
\end{array}\right.
$$

∇ SUSY variations

$$
0 \equiv \delta \psi_{m}=D_{m}\left(\omega_{-}\right) \xi_{+} \leftarrow \text { Killing spinor eq. } \quad\left[\omega_{-}=\omega-H\right]
$$

$$
\begin{aligned}
J_{a b} & =-i \xi_{+}^{\dagger} \Gamma_{a b} \xi_{+} & : & D_{m}\left(\omega_{-}\right) J_{a b} & =0 \\
\Omega_{a b c} & =\xi_{+}^{\mathrm{T}} \Gamma_{a b c} \xi_{+} & : & D_{m}\left(\omega_{-}\right) \Omega_{a b c} & =0
\end{aligned}
$$

∇ SUSY variations

$0 \equiv \delta \psi_{m}=D_{m}\left(\omega_{-}\right) \xi_{+} \leftarrow$ Killing spinor eq. $\quad\left[\omega_{-}=\omega-H\right]$

$$
\begin{array}{rlrlrl}
J_{a b} & =-i \xi_{+}^{\dagger} \Gamma_{a b} \xi_{+} & : & D_{m}\left(\omega_{-}\right) J_{a b} & =0 \\
\Omega_{a b c} & =\xi_{+}^{\mathrm{T}} \Gamma_{a b c} \xi_{+} & : & D_{m}\left(\omega_{-}\right) \Omega_{a b c}=0
\end{array}
$$

Furthermore " $0 \equiv \delta$ (fermions)" indicates

$$
\begin{array}{rlrl}
0 & =R^{a b}{ }_{m n}\left(\omega_{-}\right) J_{a b} & & : c_{1}\left(R_{-}\right) \text {vanishes } \\
0 & =N_{m n}{ }^{p} & & \mathcal{K}_{6} \text { is complex } \mathbb{} \\
H_{m n p} & =H_{m n p}^{0}+\widehat{H}_{m n p} & & \\
0 & =H_{m n p}^{0} J^{n p} & \widehat{H}_{m n p}=\frac{3}{2} J_{[m n} J_{p]}{ }^{q} \nabla_{q} \Phi \\
0 & =F_{m n} J^{m n} & \\
*(J \wedge \mathrm{~d} H)=-\nabla_{m}^{2} \Phi+\left(\nabla_{m} \Phi\right)^{2}-\frac{1}{3}\left(H_{m n p}^{0}\right)^{2} \\
& R(\omega)=-\frac{1}{3}\left(H_{m n p}^{0}\right)^{2}-6 \nabla_{m}^{2} \Phi+7\left(\nabla_{m} \Phi\right)^{2}
\end{array}
$$

Gauge Symmetry Breaking

$$
\text { gauge algebra } \quad \mathcal{G}=\mathcal{F} \oplus \mathcal{F}_{\perp}, \quad \mathcal{F}_{\perp}=\mathcal{H} \oplus \mathcal{Q}, \quad[\mathcal{H}, \mathcal{F}]=0
$$

with $\boldsymbol{F}_{m n}$ taking a value in \mathcal{F}

Gauge Symmetry Breaking

gauge algebra $\quad \mathcal{G}=\mathcal{F} \oplus \mathcal{F}_{\perp}, \quad \mathcal{F}_{\perp}=\mathcal{H} \oplus \mathcal{Q}, \quad[\mathcal{H}, \mathcal{F}]=0$ with $\boldsymbol{F}_{m n}$ taking a value in \mathcal{F}

$$
\begin{aligned}
\nabla E_{8} \rightarrow E_{6} \times \frac{S U(3)}{248} & =(78,1)+(1,8)+(27,3)+(\overline{27}, \overline{3})
\end{aligned}
$$

$\nabla E_{8} \rightarrow S O(16)$

$$
\begin{aligned}
\rightarrow S O(10) & \times \underline{S O(6)}: \quad\left(\mathcal{G}=E_{8}, \quad \mathcal{F}=S O(6), \quad \mathcal{H}=S O(10)\right) \\
248 & =120_{S O(16) \text { adj. }}+128_{S O(16) \text { spinor }} \\
& =(45,1)+(1,15)+(10,6)+(16,4)+(\overline{16}, \overline{4})
\end{aligned}
$$

Each breaking scenario deeply depends on the way of embedding the holonomy group into the gauge groups.

Candidates:

$$
A \leftrightarrow\left\{\begin{array}{rr}
\omega_{-}: & S U(3) \text { holonomy } \\
\omega_{+}: & S O(6) \text { holonomy } \\
\text { etc. }
\end{array} \quad\left[\omega_{ \pm}=\omega \pm H\right]\right.
$$

Candidates:

$$
A \leftrightarrow\left\{\begin{aligned}
\omega_{-}: & S U(3) \text { holonomy } \\
\omega_{+}: & S O(6) \text { holonomy } \\
\text { etc. } &
\end{aligned} \quad\left[\omega_{ \pm}=\omega \pm H\right]\right.
$$

with following constraints

$$
\begin{aligned}
& \boldsymbol{R}_{m n p q}\left(\omega_{+}\right)= \boldsymbol{R}_{p q m n}\left(\omega_{-}\right)+(\mathrm{d} \boldsymbol{H})_{p q m n} \\
& \mathrm{~d} \boldsymbol{H}=-\alpha^{\prime}\left[\operatorname{tr}(\boldsymbol{F} \wedge \boldsymbol{F})-\operatorname{tr}\left\{\boldsymbol{R}\left(\omega_{+}\right) \wedge \boldsymbol{R}\left(\omega_{+}\right)\right\}\right] \quad \begin{array}{l}
\frac{\mathrm{d} H=0}{\mathrm{~d} H \neq 0}
\end{array} \\
& \boldsymbol{R}^{a b}{ }_{m n}\left(\omega_{-}\right): \quad \text { type }(1,1) \mathrm{w} / \text { indices } a, b \\
& F: \quad(1,1) \text {-form } \\
& \mathrm{d} H:(2,2) \text {-form, higher order in } \alpha^{\prime} \\
& R\left(\omega_{+}\right):(1,1) \text {-form }+ \text { higher order in } \alpha^{\prime}
\end{aligned}
$$

Mainly we consider $E_{8} \rightarrow S O(10) \times S O(6)$ breaking: $A=\omega_{+}$

Zero mode equations

Zero mode eq. for gaugino:

$$
\begin{aligned}
0 & =\not D(\omega, A) \chi^{0}-\frac{1}{12} H_{m n p} \Gamma^{m n p} \chi^{0} \\
& =\not D(\hat{\omega}, A) \chi^{0} \quad\left[\hat{\omega} \equiv \omega-\frac{1}{3} \boldsymbol{H}\right]
\end{aligned}
$$

Zero mode equations

Zero mode eq. for gaugino:

$$
\begin{aligned}
0 & =\not D(\omega, A) \chi^{0}-\frac{1}{12} H_{m n p} \Gamma^{m n p} \chi^{0} \\
& =\not D(\hat{\omega}, A) \chi^{0} \quad\left[\hat{\omega} \equiv \omega-\frac{1}{3} \boldsymbol{H}\right]
\end{aligned}
$$

Decompose χ^{0} into

$$
0=\mathbb{P}(\hat{\omega}) \chi_{\mathcal{H}}^{0} \quad \text { and } \quad 0=\mathbb{D}\left(\hat{\omega}, A_{\mathcal{Q}}\right) \chi_{\mathcal{Q}}^{0}
$$

which correspond to the neutral and charged matter fermions, respectively.
[\# of zero mode $\chi_{\mathcal{H}}^{0}$] $=\lim _{\beta \rightarrow 0} \operatorname{Tr} \Gamma_{(6+1)} \mathrm{e}^{-\beta \Delta_{\mathcal{H}}} \equiv \operatorname{index} \not \mathbb{D}(\hat{\omega})$

Evaluate the square of the Dirac operators with $\hat{\omega}=\omega-\frac{1}{3} H$:

$$
\begin{aligned}
\Delta_{\mathcal{H}} & \equiv-[D D(\hat{\omega})]^{2} \\
& =D_{m}\left(\omega_{-}\right)^{\dagger} D^{m}\left(\omega_{-}\right)+V \\
\Delta_{\mathcal{Q}} & \equiv-\left[D\left(\hat{\omega}\left(\hat{\omega}, A_{\mathcal{Q}}\right)\right]^{2}\right. \\
& =D_{m}\left(\omega_{-}\right)^{\dagger} D^{m}\left(\omega_{-}\right)+V+\frac{i}{2} F_{m n}^{\mathcal{Q}} \Gamma^{m n} \\
V & =\frac{1}{4}\left[R(\omega)-\frac{1}{3} H_{m n p} H^{m n p}+\frac{1}{12}(\mathrm{~d} \boldsymbol{H})_{m n p q} \Gamma^{m n p q}\right] \quad \begin{array}{l}
d H=0 \\
d H \neq 0
\end{array}
\end{aligned}
$$

The "potential" V plays a crucial role in

- the zero mode equations of Klein-Gordon type
- the Atiyah-(Patodi)-Singer index density
- etc.

Minimal embedding: $\mathrm{d} \boldsymbol{H}=0$
Zero mode equation tells us $\quad\left[\boldsymbol{V}=\frac{1}{3}\left(\boldsymbol{H}_{m n p}^{0}\right)^{2}\right]$

$$
\begin{aligned}
0 & =\left[D_{m}\left(\omega_{-}\right)^{\dagger} D^{m}\left(\omega_{-}\right)+\frac{1}{3}\left(H_{m n p}^{0}\right)^{2}\right] \chi_{\mathcal{H}}^{0} \\
\therefore \quad 0 & =\int_{\mathcal{K}_{6}}\left[\left|D_{m}\left(\omega_{-}\right) \chi_{\mathcal{H}}^{0}\right|^{2}+\frac{1}{3}\left|H_{m n p}^{0}\right|^{2}\left|\chi_{\mathcal{H}}^{0}\right|^{2}\right]
\end{aligned}
$$

If no boundaries/singularities $\Leftrightarrow\left\{\begin{array}{c}H^{0}=0 \text { or } \\ \chi_{\mathcal{H}}^{0}=0 \Rightarrow \text { no massless modes }\end{array}\right.$

Minimal embedding: $\mathrm{d} H=0$
Zero mode equation tells us $\quad\left[V=\frac{1}{3}\left(H_{m n p}^{0}\right)^{2}\right]$

$$
\begin{aligned}
0 & =\left[D_{m}\left(\omega_{-}\right)^{\dagger} D^{m}\left(\omega_{-}\right)+\frac{1}{3}\left(H_{m n p}^{0}\right)^{2}\right] \chi_{\mathcal{H}}^{0} \\
\therefore \quad 0 & =\int_{\mathcal{K}_{6}}\left[\left|D_{m}\left(\omega_{-}\right) \chi_{\mathcal{H}}^{0}\right|^{2}+\frac{1}{3}\left|H_{m n p}^{0}\right|^{2}\left|\chi_{\mathcal{H}}^{0}\right|^{2}\right]
\end{aligned}
$$

If no boundaries/singularities $\Leftrightarrow\left\{\begin{array}{c}H^{0}=0 \text { or } \\ \chi_{\mathcal{H}}^{0}=0 \Rightarrow \text { no massless modes }\end{array}\right.$
The condition $*(J \wedge \mathrm{~d} H)=0$ denotes

$$
\frac{1}{2} \nabla_{m}^{2} \mathrm{e}^{-\Phi}=\frac{1}{3} \mathrm{e}^{-\Phi}\left(\boldsymbol{H}_{m n p}^{0}\right)^{2}
$$

If there are no boundaries/singularities on \mathcal{K}_{6}, then

$$
\frac{1}{3} \int_{\mathcal{K}_{6}} \mathrm{e}^{-\Phi}\left|\boldsymbol{H}_{m n p}^{0}\right|^{2}=\frac{1}{2} \int_{\mathcal{K}_{6}} \nabla_{m}^{2} \mathrm{e}^{-\Phi}=0
$$

This means $H^{0}=0 \Rightarrow \Phi=$ const. $\Rightarrow \mathcal{K}_{6}=\mathrm{CY}_{3}$

Without boundaries/singularities on \mathcal{K}_{6} :

- all fluxes are trivial $H=\mathrm{d} \Phi=0$
- $\mathcal{K}_{6}=\mathrm{CY}_{3}$
- $\omega_{+}=\omega_{-}=\omega, E_{8} \rightarrow E_{6} \times S U(3)$
- \# of zero modes - AS index theorem

Candelas, Horowitz, Strominger and Witten
[Nucl. Phys. B258 (1985) 46]

Without boundaries/singularities on \mathcal{K}_{6} :

- all fluxes are trivial $H=\mathrm{d} \Phi=0$
- $\mathcal{K}_{6}=\mathrm{CY}_{3}$
- $\omega_{+}=\omega_{-}=\omega, E_{8} \rightarrow E_{6} \times S U(3)$
- \# of zero modes - AS index theorem

Candelas, Horowitz, Strominger and Witten
[Nucl. Phys. B258 (1985) 46]

With boundaries/singularities on \mathcal{K}_{6} :

- non-trivial fluxes can exist

$$
\partial_{m} \Phi=0, H_{m n p}^{0} \neq 0: \text { conformally balanced } T
$$

- $E_{8} \rightarrow S O(10) \times S O(6)$
- $\chi_{\mathcal{H}}^{0}$ lives in the boundaries
- \# of zero modes - APS index theorem

Non-minimal embedding: $\mathrm{d} \boldsymbol{H} \neq 0$

In this case we should notice the α^{\prime}-ordering in the Lagrangian with keeping

$$
\frac{\alpha^{\prime}}{L^{2}} \ll 1 \quad L=\text { linear size of } \mathcal{K}_{6}
$$

In this case we should notice the α^{\prime}-ordering in the Lagrangian with keeping

$$
\frac{\alpha^{\prime}}{L^{2}} \ll 1 \quad L=\text { linear size of } \mathcal{K}_{6}
$$

Notice that the scaling orders of variables:

$$
\begin{gathered}
F_{m n} \sim \boldsymbol{R}_{q m n}^{p}(\omega) \sim \frac{1}{L^{2}} \\
\left(\nabla_{m} \Phi\right)^{2} \sim \mathrm{~d} \boldsymbol{H} \sim\left(\boldsymbol{H}_{m n p}\right)^{2} \sim(\text { Ric })_{m n}(\omega) \sim \frac{\alpha^{\prime}}{L^{4}} \\
\boldsymbol{R}_{q m n}^{p}\left(\omega_{+}\right)=\boldsymbol{R}_{q m n}^{p}(\omega)+2 \nabla_{[m} \boldsymbol{H}^{p}{ }_{|q| n]}+2 \boldsymbol{H}_{r[m}^{p} \boldsymbol{H}^{r}{ }_{|q| n]}
\end{gathered}
$$

In this case we should notice the α^{\prime}-ordering in the Lagrangian with keeping

$$
\frac{\alpha^{\prime}}{L^{2}} \ll 1 \quad L=\text { linear size of } \mathcal{K}_{6}
$$

Notice that the scaling orders of variables:

$$
\begin{gathered}
\boldsymbol{F}_{m n} \sim \boldsymbol{R}_{q m n}^{p}(\omega) \sim \frac{1}{L^{2}} \\
\left(\nabla_{m} \Phi\right)^{2} \sim \mathrm{~d} \boldsymbol{H} \sim\left(\boldsymbol{H}_{m n p}\right)^{2} \sim(\boldsymbol{R i c})_{m n}(\omega) \sim \frac{\alpha^{\prime}}{L^{4}} \\
\boldsymbol{R}_{q m n}^{p}\left(\omega_{+}\right)=\boldsymbol{R}_{q m n}^{p}(\omega)+2 \nabla_{[m} \boldsymbol{H}^{p}{ }_{|q| n]}+2 \boldsymbol{H}_{r[m}^{p} \boldsymbol{H}^{r}{ }_{|q| n]}
\end{gathered}
$$

Then, in the leading order in α^{\prime}, we replace $\boldsymbol{R}_{a b m n}\left(\omega_{+}\right)$to $\boldsymbol{R}_{a b m n}(\omega)$ in the Lagrangian and the Bianchi identity

$$
\rightarrow \quad \mathrm{d} \boldsymbol{H}=-\alpha^{\prime}[\operatorname{tr}(F \wedge F)-\operatorname{tr}\{\boldsymbol{R}(\omega) \wedge \boldsymbol{R}(\omega)\}]
$$

Combining equations of motion and SUSY conditions, we obtain

$$
\begin{gathered}
\operatorname{tr}\left(\boldsymbol{R}_{m n} \boldsymbol{R}^{m n}\right)-\operatorname{tr}\left(\boldsymbol{F}_{m n} \boldsymbol{F}^{m n}\right)=-2 *[J \wedge(\operatorname{tr}(\boldsymbol{R} \wedge \boldsymbol{R})-\operatorname{tr}(\boldsymbol{F} \wedge \boldsymbol{F}))]+\mathcal{O}\left(\boldsymbol{\alpha}^{\prime}\right) \\
0=\frac{1}{2} \nabla_{m}^{2} \mathrm{e}^{-2 \Phi}-\frac{1}{3} \mathrm{e}^{-2 \Phi}\left(\boldsymbol{H}_{m n p}\right)^{2}-\mathrm{e}^{-2 \Phi} *(J \wedge \mathrm{~d} \boldsymbol{H})+\mathcal{O}\left(\boldsymbol{\alpha}^{\prime 2}\right)
\end{gathered}
$$

Then, within the linear order in α^{\prime}, we find

$$
\nabla_{m}^{2} \mathrm{e}^{-2 \Phi}=\mathrm{e}^{-2 \Phi}\left[\frac{2}{3}\left|\boldsymbol{H}_{m n p}\right|^{2}+\alpha^{\prime}\left(\operatorname{tr}\left|\boldsymbol{F}_{m n}\right|^{2}-\operatorname{tr}\left|\boldsymbol{R}_{m n}\right|^{2}\right)\right]
$$

Integral on a smooth manifold \mathcal{K}_{6} :

$$
\begin{aligned}
\int_{\mathcal{K}_{6}} \mathrm{e}^{-2 \Phi}\left[\frac{2}{3}\left|\boldsymbol{H}_{m n p}\right|^{2}+\alpha^{\prime} \operatorname{tr}\left|\boldsymbol{F}_{m n}\right|^{2}\right] & =\int_{\mathcal{K}_{6}} \mathrm{e}^{-2 \Phi}\left[\alpha^{\prime} \operatorname{tr}\left|\boldsymbol{R}_{m n}\right|^{2}\right] \\
\text { with } \quad \operatorname{tr}\left|\boldsymbol{F}_{m n}\right|^{2} & \neq \operatorname{tr}\left|\boldsymbol{R}_{m n}\right|^{2}
\end{aligned}
$$

Smooth compactification scenario is possible!

Summary and Discussions

Summary and Discussion

∇ Vacuum configuration of the flux compactifications in heterotic theory
∇ No-go theorem on smooth manifolds with $\boldsymbol{H} \neq 0$ and $\mathrm{d} \boldsymbol{H}=0$
∇ Possibility of smooth compactifications with $\boldsymbol{H} \neq 0$ and $\mathrm{d} \boldsymbol{H} \neq 0$

Summary and Discussion

∇ Vacuum configuration of the flux compactifications in heterotic theory
∇ No-go theorem on smooth manifolds with $\boldsymbol{H} \neq 0$ and $\mathrm{d} \boldsymbol{H}=0$
∇ Possibility of smooth compactifications with $H \neq 0$ and $\mathrm{d} H \neq 0$
∇ ? \# of zero modes under the condition $\mathrm{d} H \neq 0$
modification of the Atiyah-(Patodi)-Singer index theorem
∇ other possibilities of gauge symmetry breaking
∇ compactifications on non-complex geometries susy
Frey and Lippert [hep-th/0507202]
Manousselis, Prezas and Zoupanos [hep-th/0511122]

Appendix

$$
\begin{equation*}
\mathscr{L}_{\text {total }}=\mathscr{L}_{0}(R)+\mathscr{L}_{\beta}\left(F^{2}\right)+\mathscr{L}_{\alpha}\left(R^{2}\right) \tag{L}
\end{equation*}
$$

$$
\begin{aligned}
& \mathscr{L}_{0}(R)=\frac{1}{2 \kappa_{10}^{2}} \sqrt{-G} \mathrm{e}^{-2 \Phi}\left[R(\omega)-\frac{1}{3} H_{M N P} H^{M N P}+4\left(\nabla_{M} \Phi\right)^{2}-\bar{\psi}_{M} \Gamma^{M N P} D_{N}(\omega) \psi_{P}+16 \bar{\lambda} D D(\omega) \lambda\right. \\
&+8 \bar{\lambda} \Gamma^{M N} D_{M}(\omega) \psi_{N}+8 \bar{\psi}_{M} \Gamma^{N} \Gamma^{M} \lambda\left(\nabla_{N} \Phi\right)-2 \bar{\psi}_{M} \Gamma^{M} \psi_{N}\left(\nabla^{N} \Phi\right) \\
&+\frac{1}{12} H^{P Q R}\left\{\bar{\psi}_{M} \Gamma^{[M} \Gamma_{P Q R} \Gamma^{N]} \psi_{N}+8 \bar{\psi}_{M} \Gamma^{M}{ }_{P Q R} \lambda-16 \bar{\lambda}^{\prime} \Gamma_{P Q R} \lambda\right\} \\
&\left.+\frac{1}{48} \bar{\psi}^{M} \Gamma^{A B C} \psi_{M}\left\{2 \bar{\lambda} \Gamma_{A B C} \lambda+\bar{\lambda} \Gamma_{A B C} \Gamma^{N} \psi_{N}-\frac{1}{4} \bar{\psi}^{N} \Gamma_{A B C} \psi_{N}-\frac{1}{8} \bar{\psi}^{N} \Gamma_{N} \Gamma_{A B C} \Gamma^{P} \psi_{P}\right\}\right] \\
& \mathscr{L}_{\beta}\left(F^{2}\right)=\frac{1}{2 \kappa_{10}^{2}} \frac{\kappa_{10}^{2}}{2 g_{10}^{2}} \sqrt{-G} \mathrm{e}^{-2 \Phi}\left[-\operatorname{tr}\left(F_{M N} F^{M N}\right)-2 \operatorname{tr}\{\bar{\chi} \not D(\omega, A) \chi\}+\frac{1}{6} \operatorname{tr}\left(\bar{\chi} \Gamma^{A B C} \chi\right) \hat{H}_{A B C}\right. \\
&-\frac{1}{2} \operatorname{tr}\left\{\bar{\chi} \Gamma^{M} \Gamma^{A B}\left(F_{A B}+\hat{F}_{A B}\right)\right\}\left(\psi_{M}+\frac{2}{3} \Gamma_{M} \lambda\right)-\frac{1}{48} \operatorname{tr}\left(\bar{\chi} \Gamma^{A B C} \chi\right) \bar{\psi}_{M}\left(4 \Gamma_{A B C} \Gamma^{M}+3 \Gamma^{M} \Gamma_{A B C}\right) \lambda \\
&\left.+\frac{1}{12} \operatorname{tr}\left(\bar{\chi}^{\prime} \Gamma^{A B C} \chi\right) \bar{\lambda} \Gamma_{A B C} \lambda-\frac{\beta}{96} \operatorname{tr}\left(\bar{\chi}^{A B C} \chi\right) \operatorname{tr}\left(\bar{\chi} \Gamma_{A B C} \chi\right)\right] \\
& \mathscr{L}_{\alpha}\left(R^{2}\right)=\frac{1}{2 \kappa_{10}^{2}} \frac{\kappa_{10}^{2}}{2 g_{10}^{2}} \sqrt{-G} \mathrm{e}^{-2 \Phi}\left[-R_{A B M N}\left(\omega_{+}\right) R^{A B M N}\left(\omega_{+}\right)-2 \bar{\psi}^{A B} \not D\left(\omega(e, \psi), \omega_{+}\right) \psi_{A B}+\frac{1}{6} \bar{\psi}^{A B} \Gamma^{M N P} \psi_{A B} \hat{H}_{M N P}\right. \\
&+\frac{1}{2} \bar{\psi}_{A B} \Gamma^{M} \Gamma^{N P}\left\{R^{A B}{ }_{N P}\left(\omega_{+}\right)+\hat{R}^{A B}{ }_{N P}\left(\omega_{+}\right)\right\}\left(\psi_{M}+\frac{2}{3} \Gamma_{M} \lambda\right) \\
&-\frac{1}{48} \bar{\psi}_{A B} \Gamma^{C D E} \psi_{A B} \cdot \bar{\psi}_{M}\left(4 \Gamma_{C D E} \Gamma^{M}+3 \Gamma^{M} \Gamma_{C D E}\right) \lambda \\
&\left.+\frac{1}{12} \bar{\psi}^{A B} \Gamma^{C D E} \psi_{A B}\left(\bar{\lambda}^{2} \Gamma_{C D E} \lambda\right)-\frac{\alpha}{96} \bar{\psi}^{A B} \Gamma^{F G H} \psi_{A B}\left(\bar{\psi}^{C D} \Gamma_{F G H} \psi_{C D}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
\delta_{0} e_{M}^{A} & =\frac{1}{2} \bar{\epsilon} \Gamma^{A} \psi_{M} \\
\delta_{0} \psi_{M} & =\left(\partial_{M}+\frac{1}{4} \omega_{-M}{ }^{A B} \Gamma_{A B}\right) \epsilon+\left\{\epsilon\left(\bar{\psi}_{M} \lambda\right)-\psi_{M}(\bar{\epsilon} \lambda)+\Gamma^{A} \lambda\left(\bar{\psi}_{M} \Gamma_{A} \epsilon\right)\right\} \\
\delta_{0} B_{M N} & =\bar{\epsilon} \Gamma_{[M} \psi_{N]} \\
\delta_{0} \lambda & =-\frac{1}{4} \not D \Phi \epsilon+\frac{1}{24} \Gamma^{A B C} \epsilon\left(\hat{H}_{A B C}-\frac{1}{4} \bar{\lambda} \Gamma_{A B C} \lambda\right) \\
\delta_{0} \Phi & =-\bar{\epsilon} \lambda \\
\delta_{0} A_{M} & =\frac{1}{2} \bar{\epsilon} \Gamma_{M} \chi \\
\delta_{0} \chi & =-\frac{1}{4} \Gamma^{A B} \epsilon \hat{F}_{A B}+\left\{\epsilon(\bar{\chi} \lambda)-\chi(\bar{\epsilon} \lambda)+\Gamma^{A} \lambda\left(\bar{\chi} \Gamma_{A} \epsilon\right)\right\} \\
\delta_{\beta} \psi_{M} & =\frac{\beta}{192} \Gamma^{A B C} \Gamma_{M} \epsilon \operatorname{tr}\left(\bar{\chi} \Gamma_{A B C} \chi\right) \\
\delta_{\beta} B_{M N} & =-\beta \operatorname{tr}\left\{A_{[M} \delta_{0} A_{N]}\right\} \\
\delta_{\beta} \lambda & =\frac{\beta}{384} \Gamma^{A B C} \epsilon \operatorname{tr}\left(\bar{\chi} \Gamma_{A B C} \chi\right) \\
\delta_{\alpha} \psi_{M} & =\frac{\alpha}{192} \Gamma^{C D E} \Gamma_{M} \epsilon \bar{\psi}^{A B} \Gamma_{C D E} \psi_{A B} \\
\delta_{\alpha} B_{M N} & =-\alpha \omega_{+[M}^{A B} \delta_{0} \omega_{+N]}^{A B} \\
\delta_{\alpha} \lambda & =\frac{\alpha}{384} \Gamma^{C D E} \Gamma_{M} \epsilon \bar{\psi}^{A B} \Gamma_{C D E} \psi_{A B}
\end{aligned}
$$

Bergshoeff and de Roo [Nucl. Phys. B328 (1989) 439]

Heterotic theory on $S U(3)$-structure manifold

Supergravity al

∇ Bosonic part of the Lagrangian (without fermion condensations)

$$
\begin{aligned}
\mathscr{L}=\frac{1}{4} \sqrt{-G} \mathrm{e}^{-2 \Phi}[& R(\omega)-\frac{1}{3} \boldsymbol{H}_{M N P} H^{M N P}+4\left(\nabla_{M} \Phi\right)^{2} \\
& \left.-\alpha^{\prime}\left\{\operatorname{tr}\left(\boldsymbol{F}_{M N} \boldsymbol{F}^{M N}\right)-\operatorname{tr}\left(\boldsymbol{R}_{M N}(\widetilde{\omega}) \boldsymbol{R}^{M N}(\widetilde{\omega})\right)\right\}\right]
\end{aligned}
$$

∇ Bianchi identity $\quad\left[\omega_{+}=\omega+H \rightarrow \widetilde{\omega}\right]$

$$
\mathrm{d} \boldsymbol{H}=-\boldsymbol{\alpha}^{\prime}[\operatorname{tr}\{\boldsymbol{F} \wedge \boldsymbol{F}\}-\operatorname{tr}\{\boldsymbol{R}(\widetilde{\omega}) \wedge \boldsymbol{R}(\widetilde{\omega})\}]
$$

Hull [Phys. Lett. B167 (1986) 51]
(worldsheet 2 -loop β-function)

Let κ be a contorsion in $\nabla^{(T)}$ with acting on the $S U(3)$ Killing spinor ξ :

$$
0=\nabla^{(T)} \xi=\left(\nabla+\kappa^{0}+\kappa^{\mathfrak{g}}\right) \xi
$$

where we decomposed $\kappa \equiv \kappa^{0}+\kappa^{\mathfrak{g}}$ in such a way as $\kappa^{\mathfrak{g}} \boldsymbol{\xi}=0$ (where $\mathfrak{g}=\mathfrak{s u}(3)$):

$$
\boldsymbol{\xi}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\hline *
\end{array}\right) \quad \boldsymbol{\kappa}^{\mathfrak{g}} \equiv\left(\begin{array}{ccc|c}
* & * & * & 0 \\
* & * & * & 0 \\
* & * & * & 0 \\
\hline 0 & 0 & 0 & 0
\end{array}\right) \quad \boldsymbol{\kappa}^{0} \equiv\left(\begin{array}{ccc|c}
0 & 0 & 0 & * \\
0 & 0 & 0 & * \\
0 & 0 & 0 & * \\
\hline * & * & * & *
\end{array}\right)
$$

Then, under the same structure group G we find

$$
\left(\nabla^{\left(T_{1}\right)}-\nabla^{\left(T_{2}\right)}\right) \xi \propto \kappa^{\mathfrak{g}} \xi=0
$$

So, from the group-theoretical viewpoint, κ^{0} carries an intrinsic part of the contorsion when we consider the classification of the $S U(3)$-structure manifolds!

Torsion $T_{m n} \equiv T_{m n}^{p} \mathrm{~d} x^{p}=\kappa^{p}{ }_{[m n]} \mathrm{d} x^{p}$ is given in the various representations:

$$
\begin{gathered}
T_{m n}^{\mathfrak{g}}=\kappa_{[m n]}^{\mathfrak{g}} \sim \mathfrak{s u}(3), \quad T_{m n}^{0}=\kappa_{[m n]}^{0} \sim \mathfrak{s o}(6) / \mathfrak{s u}(3) \equiv \mathfrak{s u}(3)^{\perp} \\
\therefore \quad\left(T^{0}\right)^{p}{ }_{m n} \in \Lambda^{1} \otimes \mathfrak{s u}(3)^{\perp} \quad \text { on } \mathcal{K}_{6}
\end{gathered}
$$

$$
\Lambda^{1} \sim 3 \oplus \overline{3}, \quad \mathfrak{s u}(3) \sim 8, \quad \mathfrak{s u}(3)^{\perp}=\mathfrak{s o}(6) / \mathfrak{s u}(3) \sim 1 \oplus 3 \oplus \overline{3}
$$

Thus the intrinsic torsion T^{0} can be decomposed

$$
\begin{aligned}
\left(T^{0}\right)^{p}{ }_{m n} \in \Lambda^{1} \otimes \mathfrak{s u}(3)^{\perp}= & (3 \oplus \overline{3}) \otimes(1 \oplus 3 \oplus \overline{3}) \\
= & (1 \oplus 1) \oplus(8 \oplus 8) \oplus(6 \oplus \overline{6}) \oplus(3 \oplus \overline{3}) \oplus(3 \oplus \overline{3})^{\prime} \\
& W_{1}
\end{aligned} W_{2} \quad W_{3} \quad W_{4} \quad W_{5} \quad l y
$$

where
W_{1} : complex scalar in $(1 \oplus 1)$
W_{2} : complex primitive 2 -form in $(8 \oplus 8)$
W_{3} : real primitive $(2,1) \oplus(1,2)$-form in $(6 \oplus \overline{6})$
W_{4} : real 1-form in $(3 \oplus \overline{3})$
W_{5} : complex $(1,0)$-form in $(3 \oplus \overline{3})^{\prime}$
∇ complex manifolds susy dH=0 dH$\neq 0$
$W_{1}=W_{2}=0$
$\boldsymbol{W}_{1}=\boldsymbol{W}_{2}=\boldsymbol{W}_{4}=0$
$\boldsymbol{W}_{1}=\boldsymbol{W}_{2}=\boldsymbol{W}_{4}=\boldsymbol{W}_{5}=\mathbf{0}$
$W_{1}=W_{2}=W_{3}=W_{4}=0$
$\boldsymbol{W}_{1}=\boldsymbol{W}_{2}=\boldsymbol{W}_{3}=\boldsymbol{W}_{4}=\boldsymbol{W}_{5}=\mathbf{0}$
$W_{1}=W_{2}=W_{3}=3 W_{4}+2 W_{5}=0$
$\boldsymbol{T}^{0} \in \boldsymbol{W}_{4} \oplus \boldsymbol{W}_{5}$
hermitian balanced special-hermitian Kähler

Calabi-Yau
conformally Calabi-Yau
∇ non-complex manifolds Summary

$$
\begin{array}{lll}
W_{1}=W_{3}=W_{4}=0 & T^{0} \in W_{2} \oplus W_{5} & \text { symplectic } \\
\boldsymbol{W}_{2}=W_{3}=W_{4}=W_{5}=0 & T^{0} \in W_{1} & \text { nearly-Kähler } \\
\boldsymbol{W}_{1}=W_{3}=W_{4}=W_{5}=0 & \boldsymbol{T}^{0} \in \boldsymbol{W}_{2} & \text { almost-Kähler } \\
\boldsymbol{W}_{3}=W_{4}=W_{5}=0 & \boldsymbol{T}^{0} \in W_{1} \oplus \boldsymbol{W}_{2} & \text { quasi-Kähler } \\
\boldsymbol{W}_{4}=\boldsymbol{W}_{5}=0 & \boldsymbol{T}^{0} \in \boldsymbol{W}_{1} \oplus \boldsymbol{W}_{2} \oplus \boldsymbol{W}_{3} & \text { semi-Kähler } \\
\boldsymbol{W}_{1}^{-}=\boldsymbol{W}_{2}^{-}=\boldsymbol{W}_{4}=\boldsymbol{W}_{5}=0 & \boldsymbol{T}^{0} \in \boldsymbol{W}_{1}^{+} \oplus \boldsymbol{W}_{2}^{+} \oplus \boldsymbol{W}_{3} & \text { half-flat }
\end{array}
$$

