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V" Quantum Field Theory
Calculation is systematic!
Symmetry is manifest!
No restriction /prediction of gauge symmetry (Why SU(3) x SU(2) x U(1)?)
No restriction of spacetime dimensions (Why four dimensions?)

No quantum gravity as a field theory



V" Quantum Field Theory
Calculation is systematic!
Symmetry is manifest!
No restriction /prediction of gauge symmetry (Why SU(3) x SU(2) x U(1)?)
No restriction of spacetime dimensions (Why four dimensions?)

No quantum gravity as a field theory

v String Theory
Also quantum field theory! (of 2-dim. string worldsheet)
We can determine the gauge symmetries! (Eg X Eg or SO(32)!)
We can derive the dimensions of spacetime! (even 26 or 10!)
A candidate of quantum gravity

Maybe four-dimensional spacetime is dynamically favored by stringy quantum effects

(but still unknown)



Qsusy| Boson ) = | Fermion)  Qsysy| Fermion ) = | Boson )

{Qsusy, Qsysy} = 2h

Supersymmetry (SUSY) has a central role in theoretical particle physics

/" boson /fermion symmetry
V" reduce the divergence of quantum corrections
v/ necessary to Grand Unified Theories

/" control (non)perturbative dynamics of theories

v/ connect physics and geometry



Y pr: gravitino = superpartner of the graviton

SUSY condition — 0 = (dvpr) = (vac. [{Q, ¥nr}|vac.)
= (BM + (wMAB — HMAB)I‘AB) & «— Killing spinor eq.

#£ of SUSY in 4-dim. spacetime < # of Killing spinors on a geometry

movie gif

on the web “VISUALIZATION" maintained by Jeff Bryant

http://members.wri.com/jeffb/visualization/index.shtml
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Construct a realistic model of particle physics from string theories

An approach: (flux) compactification scenario

movie gif

on the web “VISUALIZATION" maintained by Jeff Bryant

http://members.wri.com/jeffb/visualization/index.shtml
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STRATEGY |

Inner space

(isospin, gauge groups)

[ Effective theory

in 4-dim. spacetime J




STRATEGY |

Superstrings
in 10-dim. spacetime

[ Effective theory J ¢ { Geometrical aspects of
e—

in 4-dim. spacetime 6-dim. space




4-dim. N = 1 Physics is given by...

ode equations

— gauge symmetry (and its breaking)




Ansatz:
; g}f‘/[ N dxeMda?N
- X
— J — ¢ 0W/3(g,,, dada” + g dy™dy" )

0 = R(g,w) ~ M>' = Minkowski




Ansatz:
g]]f‘/IN daMdx?Y

/ 8 = e 2W)/2 (gw dz¥dx” 4+ gmn dymdy")
M31(g,.) ICO(Gmn) 0 R(gu,) ~ M1 = Minkowski

Lorentz group: Spin(9,1) — SL(2,C) x SU(4)

Representations: 16 = (2,4) +(2,4) : € = n. Qe +1n_ R e_

SU (3)-structure
on KCg

1 Killing spinor €4

N = 1RsUsid
on KCg

on M31




Ansatz:

g]]f‘/IN daMdx?Y

A — ¢ *W/2(g,, datda” + g dy™dy")
M3>1(g,.) IC%(gmn) 0 = R(gu) ~ M1 = Minkowski

How many massless modes appear?

It depends on the cohomology classes

via egs. of motion




Geometrical aspects of conformally balanced manifold I

Cohomology classes? topological invariants?

@O



Geometrical aspects of conformally balanced manifold I

Cohomology classes? topological invariants?

@@

not completely known, yet

—®

M.Becker, L.-S. Tseng and S.-T.Yau, hep-th/0612290



Geometrical aspects of conformally balanced manifold I

What should we D
@ O
@ " DiracD
D @




Dirac operator in Equations of motion I

(" #£ of massless modes
on M3 x ICO
Ay F(z,y) =0

N

( #£ of massless modes ¢ (4 of zero modes )
on M1 <€ > on JCO

J

\ 4 /4

1
ex.) fermion: 0 = D(w)A — EHman‘m"p)\ = D(w—sH)X



¥ Dirac index by D(w) : C*°(S;) — C*(S-)

index ID(w) = (# of left chiral) — (# of right chiral)

= lim Tr |Te |
3—0 Cliff (D)



¥ Dirac index by D(w) : C*°(S;) — C*(S-)

index ID(w) = (# of left chiral) — (# of right chiral)

= lim Tr |Te |
3—0 Cliff (D)

¥ Euler characteristic by d + df : C®(A®V*?) — C>°(A°dd)

X(IC) = (# of harm. even-forms) — (# of harm. odd-forms)

_ Tr [r T e P% ]
BILI(I)CHFF(D,D) (5)%(3)€

¥ Hirzebruch signature by d + d' : C*°(A5P) — C>®°(AASD)

o(IC) = (# of self-dual forms) — (# of anti-self dual forms)

= lim Tr [ I‘(5)e_6% :|
B—0 CIliff (D, D)



topological invariants on geometry

index D(w) = [ljli% Cli’flf‘fD) {I‘(g,)e_ﬂ%}

can be evaluated by Path Integral Formalism!

index ID(w) : N = 1 quantum mechanics
x(K), o(K) : N = 2 quantum mechanics

L. Alvarez-Gaumé, Commun. Math. Phys. 90 (1983) 161



|dentifications I

with A/ = 1 quantum mechanics with (%) = 9®:
{T*,1°} = 26 «— {y* 9"} = hé*®
Pw) < Qi = ¢"gi(pm—
Dw)! = A < (Q)° = hA4

2
b
Ewmab ¢a

)o

=



|dentifications

with A/ = 1 quantum mechanics with (%) = 9®:

{I‘“,I‘b} — 25ab
D(w)
Pw)* = A

with A/ = 2 quantum mechanics with ¢®

<>

{¢a’ ’l,bb} — hdab

Q: = Y™"gi (pm — %wmab %bab)g_%
(@Q)* = hsA

2 (95 + dvg):
e
5
Q. = gl (pm — 1Wmab @aab)g_
Q. = P"g <pm — 1Wmab w“@”)g‘
{Q2,Q:} = 2n4

NI

AN



index
D(w) = lim Tr
B—0 Cliff (D) {I‘(5)e_5%}

xX(K) =
= lim
lin T T
0 Cliff(D,D) {I‘(5)I‘(5)e_ﬁ‘%}

o(KK) =
= lim
W Tr
0 Cliff (D, D) {I‘(5)e_5‘%}



index ID(w)

X (IC)

o (IC)

D
tim (—9)”/2 T [ 9 exp (-2.5)

a=1



index ID(w)

= lim (i> o /dDw\/ g(x) ﬁ d¢f,bg<eXp ( N 159m)>>
a=1

X (IC)

=ty ()" a7V ] e (oxn (25

B—0

o (IC)

i 1 br2 / - —a a = — 1 in
a=1 b=1

B—0



torsionless case H = 0 I well-known (dim IC = D = 2n)

Dirac index
| i i iR(w) /4
ot D) = [ s ()

Euler charcteristic

1

X(K) = iy

gAl---A2n/ RA1A2(w) Aees A RAZn—1A2n(w)
K

Hirzebruch signature

) 1 iR(w)/2m
o(K) = /,Cexp litrlog (tanh(z‘R(w)/Z“))]



How to apply it

to a geometry with torsion?

@O



@O

~ _ 1
Wmab —— Wmab = Wmab — §Hmab

Qia = Yg

How to apply it

to a geometry with torsion?

In case of index ID:

=
Ll
i

(pm — & @b“”)g‘ = pmgin/Agi



How to apply it

to a geometry with torsion?

@O

In cases of x(IC), o(K):

a non-trivial extension!

-, @
[J Naive extension Wyap — Wmap does not yield SUSY algebra

This cannot yield the Witten index corresponding to the topological invariants



How to apply it

to a geometry with torsion?

In cases of x(IC), o(K):

a non-trivial extension!

-, @
[J Naive extension Wyap — Wmap does not yield SUSY algebra

!

d > dg = d+ HA with dH =

)

=
=

m

= ¥ g

NI
AN

. a— G a — g a —
Q0 = ¥™g (pm — iWmab P @ + gHmab @ b>g (7Tm + §Hmab @ b)g

O If dH # 0, Q2,1 does not commute with 7% g ~ {Q2,m, QQ,H}



Strong Kahler with torsion H 4 0, dH = 0 I as a smooth, compact manifold [index]

Dirac index «-- modified! (& =w — i1H, wy =w + H)

iR(w.)/4m )]
sinh(zR(w,)/4m)

1
index D(w) = / exp [— tr log (
K 2

Euler charcteristic

T / RAA2 () A -+« A RAZ-1420 ()
(47‘(‘)"7’1,! K

Hirzebruch signature <-- modified!

B 1 iR(wy)/2m
o(K) = /Kexp litrlog (tanh(iR(wnL)/zﬂ-))]




Summary and Discussions l

W Modification of index theorems on torsional manifold
restricted to strong Kahler with torsion; H 4 0, dH = 0

Dirac index (or Pontrjagin class) and Hirzebruch signature

WV Towards a generalization to conformally balanced
N = 1 QM: no problem (but hard work!!)

cf.) Dirac index on 4-dim. torsional manifold by Peeters and Waldron

N = 2 QM: necessary to find a formulation including dH # 0

W Dolbeault cohomology class --+ A" = 4 QM in the case of Kahler

How to formulate in the case of non-Kahler?
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