Index Theorems on Torsional Geometries

JHEP 08 (2007) 048 arXiv:0704.2111 [hep-th]

木村 哲士

Yukawa Institute for Theoretical Physics

Kyoto University

京大COE-PDF研究発表会 (November 22, 2007)

Why

Why string

Why string theory?

Why string theory?

✓ Quantum Field Theory

Calculation is systematic!

Symmetry is manifest!

No restriction/prediction of gauge symmetry (Why SU(3) imes SU(2) imes U(1)?)

No restriction of spacetime dimensions (Why four dimensions?)

No quantum gravity as a field theory

✓ Quantum Field Theory

Calculation is systematic!

Symmetry is manifest!

No restriction/prediction of gauge symmetry (Why SU(3) imes SU(2) imes U(1)?)

No restriction of spacetime dimensions (Why four dimensions?)

No quantum gravity as a field theory

√ String Theory

Also quantum field theory! (of 2-dim. string worldsheet)

We can determine the gauge symmetries! $(E_8 imes E_8 ext{ or } SO(32)!)$

We can derive the dimensions of spacetime! (even 26 or 10!)

A candidate of quantum gravity

Maybe four-dimensional spacetime is dynamically favored by stringy quantum effects (but still unknown)

$$Q_{\sf SUSY}|$$
 Boson $angle=|$ Fermion $angle$ $Q_{\sf SUSY}|$ Fermion $angle=|$ Boson $angle$ $\{Q_{\sf SUSY},\overline{Q}_{\sf SUSY}\}=2\hbar\,\mathscr{H}$

Supersymmetry (SUSY) has a central role in theoretical particle physics

- √ boson/fermion symmetry
- ✓ reduce the divergence of quantum corrections
- √ necessary to Grand Unified Theories
- ✓ control (non)perturbative dynamics of theories
- √ connect physics and geometry

 ψ_M : gravitino = superpartner of the graviton

SUSY condition
$$o 0 = \langle \delta \psi_M \rangle = \langle \operatorname{vac.} | \{Q, \psi_M\} | \operatorname{vac.} \rangle$$

$$= \left(\partial_M + (\omega_M{}^{AB} - H_M{}^{AB}) \Gamma_{AB} \right) \xi \qquad \leftarrow \text{Killing spinor eq.}$$

of SUSY in 4-dim. spacetime \Leftrightarrow # of Killing spinors on a geometry

movie gif

on the web "VISUALIZATION" maintained by Jeff Bryant

http://members.wri.com/jeffb/visualization/index.shtml

Construct a realistic model of particle physics from string theories

An approach: (flux) compactification scenario

movie gif

on the web "VISUALIZATION" maintained by Jeff Bryant

http://members.wri.com/jeffb/visualization/index.shtml

Effective theory in 4-dim. spacetime

Inner space (isospin, gauge groups)

STRATEGY

4-dim. $\mathcal{N} = 1$ Physics is given by...

- Vacuum configuration
 - 6-dim. compactified space \leftarrow -- SUSY variation of fermionic fields
- Low energy effective theory
 - fields, zero mode equations
 - gauge symmetry (and its breaking)

Ansatz:

$$egin{aligned} g^{ ext{E}}_{MN} \, \mathrm{d}x^M \mathrm{d}x^N \ &= \, \mathrm{e}^{-\Phi(y)/2} \Big(g_{\mu
u} \, \mathrm{d}x^\mu \mathrm{d}x^
u + g_{mn} \, \mathrm{d}y^m \mathrm{d}y^n \Big) \ 0 \, = \, R(g_{\mu
u}) \, \,
ightharpoonup \, \mathcal{M}^{3,1} \, = \, \mathsf{Minkowski} \end{aligned}$$

Ansatz:

$$egin{align} g^{ ext{E}}_{MN} \, \mathrm{d}x^M \mathrm{d}x^N \ &= \, \mathrm{e}^{-\Phi(y)/2} \Big(g_{\mu
u} \, \mathrm{d}x^\mu \mathrm{d}x^
u + g_{mn} \, \mathrm{d}y^m \mathrm{d}y^n \Big) \ 0 \, = \, R(g_{\mu
u}) \, \,
ightharpoonup \, \mathcal{M}^{3,1} \, = \, \mathsf{Minkowski} \ \end{aligned}$$

Lorentz group:

$$Spin(9,1) \ o \ SL(2,\mathbb{C}) imes SU(4)$$

Representations: $16=(2,4)+(\overline{2},\overline{4}): \quad \xi=\eta_+\otimes\epsilon_++\eta_-\otimes\epsilon_-$

$$\mathcal{N}=1$$
 SUSY on $\mathcal{M}^{3,1}$ on \mathcal{K}_6 1 Killing spinor ϵ_+ on \mathcal{K}_6 on \mathcal{K}_6

Ansatz:

$$egin{aligned} g^{ ext{E}}_{MN} \, \mathrm{d}x^M \mathrm{d}x^N \ &= \, \mathrm{e}^{-\Phi(y)/2} \Big(g_{\mu
u} \, \mathrm{d}x^\mu \mathrm{d}x^
u + g_{mn} \, \mathrm{d}y^m \mathrm{d}y^n \Big) \ 0 \, = \, R(g_{\mu
u}) \,
ightharpoonup \, \mathcal{M}^{3,1} \, = \, \mathsf{Minkowski} \end{aligned}$$

How many massless modes appear?

It depends on the cohomology classes via eqs. of motion

Geometrical aspects of conformally balanced manifold

Geometrical aspects of conformally balanced manifold

M.Becker, L.-S.Tseng and S.-T.Yau, hep-th/0612290

Geometrical aspects of conformally balanced manifold

Dirac operator in Equations of motion

ex.) fermion:
$$0 = \mathcal{D}(\omega)\lambda - \frac{1}{12}\boldsymbol{H_{mnp}}\Gamma^{mnp}\lambda = \mathcal{D}(\omega - \frac{1}{3}\boldsymbol{H})\lambda$$

abla Dirac index by $abla (\omega): C^\infty(S_+) o C^\infty(S_-)$ index $abla (\omega) \equiv (\# ext{ of left chiral}) - (\# ext{ of right chiral})$ $= \lim_{eta o 0} \mathop{\mathrm{Cliff}}(D) \left[\Gamma_{(5)} \mathrm{e}^{-eta \mathscr{R}} \right]$

Dirac index by $D\!\!\!/(\omega):C^\infty(S_+) o C^\infty(S_-)$ result $\operatorname{index} D\!\!\!\!/(\omega) \equiv (\# \text{ of left chiral}) - (\# \text{ of right chiral})$ $= \lim_{\beta \to 0} \operatorname{Tr}_{\operatorname{Cliff}(D)} \left[\Gamma_{(5)} \mathrm{e}^{-\beta \mathscr{R}} \right]$

 $\begin{array}{l} \bigvee \text{ Euler characteristic by } \mathrm{d} + \mathrm{d}^{\dagger} : C^{\infty}(\Lambda^{\mathrm{even}}) \to C^{\infty}(\Lambda^{\mathrm{odd}}) \\ \\ \chi(\mathcal{K}) \; \equiv \; (\# \; \text{of harm. even-forms}) - (\# \; \text{of harm. odd-forms}) \\ \\ = \; \lim_{\beta \to 0} \mathop{\mathrm{Tr}}_{\mathrm{Cliff}(D,D)} \left[\Gamma_{(5)} \widetilde{\Gamma}_{(5)} \mathrm{e}^{-\beta \mathscr{R}} \right] \end{array}$

igwedge Hirzebruch signature by $\mathrm{d}+\mathrm{d}^\dagger:C^\infty(\Lambda^\mathrm{SD}) o C^\infty(\Lambda^\mathrm{ASD})$ $\sigma(\mathcal{K})\equiv (\# ext{ of self-dual forms})-(\# ext{ of anti-self dual forms})$ $=\lim_{eta o 0} \mathop{\mathrm{Cliff}}(D,D)\left[\Gamma_{(5)}\mathrm{e}^{-eta\mathscr{R}}
ight]$

topological invariants on geometry

$$\operatorname{index}
ot\!\!\!D(\omega) \ = \ \lim_{eta o 0} \mathop{\mathrm{Cliff}}
olimits_{(D)} \left[\, \Gamma_{(5)} \mathrm{e}^{-eta \mathscr{R}} \,
ight]$$

can be evaluated by Path Integral Formalism!

 $\chi(\mathcal{K}),\,\sigma(\mathcal{K})$: $\mathcal{N}=2$ quantum mechanics

L. Alvarez-Gaumé, Commun. Math. Phys. 90 (1983) 161

Identifications

with ${\cal N}=1$ quantum mechanics with $(\psi^a)^\dagger=\psi^a$:

$$egin{array}{lll} \{\Gamma^a,\Gamma^b\} &= 2\delta^{ab} & \leftrightarrow & \{\psi^a,\psi^b\} &= \hbar\,\delta^{ab} \ & D\!\!\!\!/(\omega) & \leftrightarrow & Q_1 &= \psi^m g^{rac{1}{4}} \Big(p_m - rac{i}{2}\omega_{mab}\,\psi^{ab}\Big)g^{-rac{1}{4}} \ & D\!\!\!\!/(\omega)^2 &= \Delta & \leftrightarrow & (Q_1)^2 &= \hbar\,\mathscr{H}_1 \end{array}$$

Identifications

with ${\cal N}=1$ quantum mechanics with $(\psi^a)^\dagger=\psi^a$:

$$egin{array}{lll} \{\Gamma^a,\Gamma^b\} &= 2\delta^{ab} & \leftrightarrow & \{\psi^a,\psi^b\} &= \hbar\,\delta^{ab} \ & D\!\!\!\!/(\omega) & \leftrightarrow & Q_1 &= \psi^m g^{rac{1}{4}} \Big(p_m - rac{i}{2}\omega_{mab}\,\psi^{ab}\Big) g^{-rac{1}{4}} \ & D\!\!\!\!\!/(\omega)^2 &= \Delta & \leftrightarrow & (Q_1)^2 &= \hbar\,\mathscr{H}_1 \end{array}$$

with ${\cal N}=2$ quantum mechanics with $arphi^a=rac{1}{\sqrt{2}}(\psi^a_1+i\psi^a_2)$:

$$\operatorname{index} D\hspace{-.05cm}/\hspace{-.05cm} (\omega) \; = \; \lim_{eta
ightarrow 0} \operatorname{Tr}_{\operatorname{Cliff}(D)} \left\{ \Gamma_{(5)} \mathrm{e}^{-eta \mathscr{R}}
ight\}$$

$$\chi(\mathcal{K}) \; = \; \lim_{eta
ightarrow 0} \mathop{\mathrm{Tr}}_{\operatorname{Cliff}(D,D)} \left\{ \Gamma_{(5)} \widetilde{\Gamma}_{(5)} \mathrm{e}^{-eta \mathscr{R}}
ight\}$$

$$oldsymbol{\sigma}(\mathcal{K}) \; = \; \lim_{eta
ightarrow 0} \mathop{
m Tr}_{{
m Cliff}(D,D)} \left\{ \Gamma_{(5)} {
m e}^{-eta \mathscr{R}}
ight\}$$

$$\mathrm{index} \, D\!\!\!\!/(\omega) \; = \; \lim_{eta
ightarrow 0} \mathrm{Tr}_{\mathrm{Cliff}(D)} \left\{ \Gamma_{(5)} \mathrm{e}^{-eta \mathscr{R}}
ight\} \; = \; \lim_{eta
ightarrow 0} (-i)^{D/2} \, \mathrm{Tr} \prod_{a=1}^D \psi^a \, \exp\left(-rac{eta}{\hbar} \mathscr{H}_1
ight) \, .$$

$$\chi(\mathcal{K}) \; = \; \lim_{eta
ightarrow 0} \mathop{\mathrm{Tr}}_{eta
ightarrow 0} \left\{ \Gamma_{(5)} \widetilde{\Gamma}_{(5)} \mathrm{e}^{-eta \mathscr{R}}
ight\} \; = \; \lim_{eta
ightarrow 0} \mathop{\mathrm{Tr}}_{a=1}^D \left(arphi^a + \overline{arphi}^a
ight) \prod_{b=1}^D \left(arphi^b - \overline{arphi}^b
ight) \; \mathrm{exp} \left(-rac{eta}{\hbar} \mathscr{H}_2
ight)$$

$$oldsymbol{\sigma}(\mathcal{K}) \; = \; \lim_{eta
ightarrow 0} \mathop{\mathrm{Tr}}_{eta
ightarrow 0} \left\{ \Gamma_{(5)} \mathrm{e}^{-eta \mathscr{R}}
ight\} \; = \; \lim_{eta
ightarrow 0} (-i)^{D/2} \mathrm{Tr} \prod_{a=1}^D \left(arphi^a + \overline{arphi}^a
ight) \, \exp \left(-rac{eta}{\hbar} \mathscr{H}_2
ight)$$

$$egin{aligned} \operatorname{index} D\!\!\!\!/ (\omega) &= \lim_{eta o 0} \mathop{\mathrm{Tr}}_{\operatorname{Cliff}(D)} \left\{ \Gamma_{(5)} \mathrm{e}^{-eta \mathscr{R}}
ight\} &= \lim_{eta o 0} (-i)^{D/2} \mathop{\mathrm{Tr}} \prod_{a=1}^D \psi^a \, \exp\left(-rac{eta}{\hbar} \mathscr{H}_1
ight) \ &= \lim_{eta o 0} \left(rac{1}{2\pi i}
ight)^{D/2} \int \! \mathrm{d}^D x \sqrt{g(x)} \prod_{a=1}^D \mathrm{d}\psi_{1,\mathrm{bg}}^a \! \left\langle \exp\left(-rac{1}{\hbar} S_1^{(\mathrm{int})}
ight)
ight
angle \end{aligned}$$

$$egin{aligned} \chi(\mathcal{K}) &= \lim_{eta o 0} \mathop{\mathrm{Tr}}_{\mathrm{Cliff}(D,D)} \left\{ \Gamma_{(5)} \widetilde{\Gamma}_{(5)} \mathrm{e}^{-eta \mathscr{R}}
ight\} &= \lim_{eta o 0} \mathop{\mathrm{Tr}}_{a=1}^D \left(arphi^a + \overline{arphi}^a
ight) \prod_{b=1}^D \left(arphi^b - \overline{arphi}^b
ight) \exp \left(-rac{eta}{\hbar} \mathscr{H}_2
ight) \ &= \lim_{eta o 0} \left(rac{1}{2\pi}
ight)^{D/2} \int \! \mathrm{d}^D x \sqrt{g(x)} \prod_{a=1}^D \mathrm{d} \overline{arphi}^a_{\mathrm{bg}} \mathrm{d} arphi^a_{\mathrm{bg}} \! \left\langle \exp \left(-rac{1}{\hbar} S_2^{(\mathrm{int})}
ight)
ight
angle \end{aligned}$$

$$egin{aligned} oldsymbol{\sigma}(\mathcal{K}) &= \lim_{eta o 0} \mathop{\mathrm{Tr}}_{\mathrm{Cliff}(D,D)} \left\{ \Gamma_{(5)} \mathrm{e}^{-eta \mathscr{R}}
ight\} &= \lim_{eta o 0} (-i)^{D/2} \mathrm{Tr} \prod_{a=1}^D \left(arphi^a + \overline{arphi}^a
ight) \exp \left(-rac{eta}{\hbar} \mathscr{H}_2
ight) \ &= \lim_{eta o 0} \left(rac{1}{2\pi i}
ight)^{D/2} \int \! \mathrm{d}^D x \sqrt{g(x)} \prod_{a=1}^D \mathrm{d} \overline{arphi}^a_{\mathrm{bg}} \mathrm{d} arphi^a_{\mathrm{bg}} \prod_{b=1}^D \left(arphi^b_{\mathrm{bg}} - \overline{arphi}^b_{\mathrm{bg}}
ight) \left\langle \exp \left(-rac{1}{\hbar} S_2^{(\mathrm{int})}
ight)
ight
angle \end{aligned}$$

torsionless case
$$oldsymbol{H}=0$$

well-known $(\dim \mathcal{K} = D = 2n)$

Dirac index

Euler charcteristic

$$\chi(\mathcal{K}) \;=\; rac{1}{(4\pi)^n n!} \, \mathcal{E}_{A_1 \cdots A_{2n}} \int_{\mathcal{K}} R^{A_1 A_2}(\omega) \wedge \cdots \wedge R^{A_{2n-1} A_{2n}}(\omega)$$

Hirzebruch signature

$$\sigma(\mathcal{K}) \; = \; \int_{\mathcal{K}} \exp \left[rac{1}{2} \operatorname{tr} \log \left(rac{i R(\omega)/2\pi}{ anh(i R(\omega)/2\pi)}
ight)
ight]$$

How to apply it to a geometry with torsion?

In case of index \mathcal{D} :

$$\omega_{mab}
ightarrow \hat{\omega}_{mab} \equiv \omega_{mab} - rac{1}{3} H_{mab}$$

$$Q_{1,H} \; = \; \psi^m g^{rac{1}{4}} \Big(p_m - rac{i}{2} \hat{m{\omega}}_{mab} \, \psi^{ab} \Big) g^{-rac{1}{4}} \; \equiv \; \psi^m g^{rac{1}{4}} m{\pi}_m^{(-1/3)} g^{-rac{1}{4}}$$

 ${\mathscr D}$ Naive extension $\omega_{mab} o \hat{\omega}_{mab}$ does not yield SUSY algebra

This cannot yield the Witten index corresponding to the topological invariants

How to apply it to a geometry with torsion?

In cases of $\chi(\mathcal{K})$, $\sigma(\mathcal{K})$: a non-trivial extension!

 \mathscr{D} Naive extension $\omega_{mab} o \hat{\omega}_{mab}$ does not yield SUSY algebra

$$\mathrm{d} \, o \, \mathrm{d}_H \, \equiv \, \mathrm{d} + H \wedge \quad \text{ with } \mathrm{d}H \, = \, 0$$

$$Q_{2,H} \; = \; arphi^m g^{rac{1}{4}} \Big(p_m - i \omega_{mab} \, arphi^a \overline{arphi}^b + rac{i}{3} rac{H_{mab}}{mab} \, arphi^{ab} \Big) g^{-rac{1}{4}} \; = \; arphi^m g^{rac{1}{4}} \Big(\pi_m + rac{i}{3} rac{H_{mab}}{mab} \, arphi^{ab} \Big) g^{-rac{1}{4}}$$

 ${\mathscr I}$ If $\mathrm{d} H
eq 0$, $Q_{2,H}$ does not commute with $\mathscr{H}_{2,H} \sim \{Q_{2,H},\overline{Q}_{2,H}\}$

Dirac index
$$\leftarrow$$
-- modified! $(\hat{\omega} = \omega - \frac{1}{3}H, \omega_+ = \omega + H)$ index $\mathcal{D}(\hat{\omega}) = \int_{\mathcal{K}} \exp\left[\frac{1}{2}\operatorname{tr}\log\left(\frac{iR(\omega_+)/4\pi}{\sinh(iR(\omega_+)/4\pi)}\right)\right]$

Euler charcteristic

$$\chi(\mathcal{K}) \; = \; rac{1}{(4\pi)^n n!} \, \mathcal{E}_{A_1 \cdots A_{2n}} \int_{\mathcal{K}} R^{A_1 A_2}(\omega) \wedge \cdots \wedge R^{A_{2n-1} A_{2n}}(\omega)$$

Hirzebruch signature ←-- modified!

$$\sigma(\mathcal{K}) \; = \; \int_{\mathcal{K}} \exp \left[rac{1}{2} \operatorname{tr} \log \left(rac{i R(\pmb{\omega}_+)/2\pi}{ anh(i R(\pmb{\omega}_+)/2\pi)}
ight)
ight] .$$

Summary and Discussions

- Modification of index theorems on torsional manifold restricted to strong Kähler with torsion; $H \neq 0$, $\mathrm{d}H = 0$ Dirac index (or Pontrjagin class) and Hirzebruch signature
- ▼ Towards a generalization to conformally balanced

 $\mathcal{N}=1$ QM: no problem (but hard work!!)

cf.) Dirac index on 4-dim. torsional manifold by Peeters and Waldron

 ${\cal N}=2$ QM: necessary to find a formulation including ${
m d} H
eq 0$

ightharpoonup Dolbeault cohomology class $--
ightharpoonup \mathcal{N} = 4$ QM in the case of Kähler How to formulate in the case of non-Kähler?

References

```
A.Strominger: [NPB274 (1986) 253]
C.M.Hull: [PLB178 (1986) 357]
E.A.Bergshoeff and M.de Roo: [NPB328 (1989) 439]
P.Yi and TK: [hep-th/0605247]
M.Becker, L.-S.Tseng and S.-T.Yau: [hep-th/0612290]
R.Rohm and E.Witten: [AP170 (1986) 454]
N.E.Mavromatos: [JPA21 (1988) 2279]
K.Peeters and A.Waldron: [hep-th/9901016]
F.Bastianelli and P.van Nieuwenhuizen,
    "Path Integrals and Anomalies in Curved Space," Cambridge University Press (2006).
   and more..
```