## Three Exotics

## 木村 哲士

(立教大学 理学部物理学科/数理物理学研究センター)

研究会「エキゾチック時空幾何とその応用」理化学研究所 和光キャンパス

2013年2月23日



## embedding tensors (non)geometric fluxes e



## 超重力理論は

## 超弦理論を起源とするか?

## 極大超重力理論

| D   | U-duality $G_0$                            | R-symmetry $H$       | $\dim(G_0/H)$ | T-duality                                  |
|-----|--------------------------------------------|----------------------|---------------|--------------------------------------------|
| 11  | 1                                          | 1                    | 0             | 1                                          |
| IIA | $\mathbb{R}^+$                             | 1                    | 1             | 1                                          |
| IIB | $SL(2,\mathbb{R})$                         | SO(2)                | 2             | 1                                          |
| 9   | $GL(2,\mathbb{R})$                         | SO(2)                | 3             | SO(1,1)                                    |
| 8   | $SL(3,\mathbb{R}) \times SL(2,\mathbb{R})$ | $SO(3) \times SO(2)$ | 7             | $SL(2,\mathbb{R}) \times SL(2,\mathbb{R})$ |
| 7   | $SL(5,\mathbb{R})$                         | Sp(2)                | 14            | $SL(4,\mathbb{R})$                         |
| 6   | SO(5,5)                                    | $Sp(2) \times Sp(2)$ | 25            | SO(4,4)                                    |
| 5   | $E_{6(6)}$                                 | USp(8)               | 42            | SO(5,5)                                    |
| 4   | $E_{7(7)}$                                 | SU(8)                | 70            | SO(6,6)                                    |
| 3   | $E_{8(8)}$                                 | SO(16)               | 128           | SO(7,7)                                    |

11次元理論をトーラスコンパクト化すれば実現できる

### 32個より少ない超対称生成子を持つ超重力理論



特殊ホロノミー群多様体によるコンパクト化で実現できる

しかし…

## ゲージ場が物質場と結合していない

#### その一方で

#### ゲージ場と物質場が結合した低次元超重力理論は構成できる

(超重力理論の変形)









(non)geometric fluxes



embedding tensors







embedding tensors

(non)geometric fluxes







## (non)geometric fluxes

![](_page_13_Picture_0.jpeg)

embedding tensors

![](_page_13_Picture_2.jpeg)

![](_page_14_Picture_0.jpeg)

![](_page_14_Picture_1.jpeg)

embedding tensors

(non)geometric fluxes

![](_page_15_Picture_0.jpeg)

## Contents

- 🔵 あらすじ
- ම  $Q^{ab}{}_{c}$ : (Non)geometric Fluxes フラックスコンパクト化
- ම  $\Theta_M{}^{lpha}$ : Embedding Tensors 超重力理論の変形
- $igstarrow b_n^c$  : Exotic Branes

変形の弦理論起源

## 🏮 なすべきこと

![](_page_17_Picture_0.jpeg)

![](_page_18_Figure_1.jpeg)

Levi-Civita 接続の共変微分について共変定数な2形式(J)と正則3形式( $\Omega$ ):  $dJ = \nabla_{[m}J_{np]} = 0$   $d\Omega = \nabla_{[m}\Omega_{npq]} = 0$ 

![](_page_19_Figure_1.jpeg)

CY からのズレ:

$$\mathrm{d}J = \frac{3}{2} \operatorname{Im}(\overline{\mathcal{W}}_1 \Omega) + \mathcal{W}_4 \wedge J + \mathcal{W}_3, \qquad \mathrm{d}\Omega = \mathcal{W}_1 J \wedge J + \mathcal{W}_2 \wedge J + \overline{\mathcal{W}}_5 \wedge \Omega$$

閉形式でない  $(dJ, d\Omega)$  を、基底形式の外微分の性質に翻訳する:

$$\mathcal{D} \equiv \mathrm{d} - H^{\mathrm{fl}} \wedge -f \cdot -Q \cdot -R \sqcup \qquad (H = H^{\mathrm{fl}} + \mathrm{d}B)$$
$$\mathcal{D} \begin{pmatrix} \beta^{I} \\ \alpha_{I} \end{pmatrix} \sim \begin{pmatrix} e_{\Lambda}^{I} & m^{\Lambda I} \\ e_{\Lambda I} & m^{\Lambda}_{I} \end{pmatrix} \begin{pmatrix} \widetilde{\omega}^{\Lambda} \\ \omega_{\Lambda} \end{pmatrix}$$

$$e_0{}^I, e_{0I}$$
: H-flux charges  $(H^{\mathsf{fl}} = -e_0{}^I \alpha_I + e_{0I} \beta^I)$   
 $e_a{}^I, e_{aI}$ : geometric flux charges  $( \mathbf{b} - \mathbf{i} \mathbf{j} \mathbf{j})$   
 $m^{\Lambda I}, m^{\Lambda}{}_I$ : Non-geometric flux charges  $(e_{\Lambda}{}^I, e_{\Lambda I} \ \mathbf{o} \text{``磁気的'' 双対})$ 

Non-geometric structure という概念の出現

構造群 = 「Diffeo 群  $(GL(d, \mathbb{R})) \subset$ 双対変換群 (O(d, d), U-双対変換)」  $\uparrow$ 弦理論の双対性に起因

![](_page_21_Figure_3.jpeg)

Generalized Geometry Doubled Geometry

## 幾何を記述する「要素」として、計量 $g_{mn}$ 以外の場を組み込む

| $\mathcal{M}_6$ | geometry associated with $g_{mn}$                              | Conventional geometry (manifold)<br>O(6) global symmetry       |
|-----------------|----------------------------------------------------------------|----------------------------------------------------------------|
|                 | geometry associated with $g_{mn}$ , $B_{mn}$                   | Generalized geometry $O(6,6)$ <b>T-duality</b> symmetry        |
|                 | geometry<br>associated with<br>$g_{mn}$ , $B_{mn}$ , $C_{(p)}$ | Exceptional generalized geometry $E_{7(7)}$ U-duality symmetry |

![](_page_23_Picture_0.jpeg)

✓ 共変微分化(例):

$$\nabla_{\mu}q^{u} = \partial_{\mu}q^{u} + g k^{u}_{\Lambda} A^{\Lambda}_{\mu} + g k^{u\Lambda} A_{\mu\Lambda}$$

$$k_{\Lambda} = -\left[2 e_{\mathsf{R}\Lambda} + e_{\Lambda}{}^{I} (\mathbb{C}_{\mathsf{H}}\xi)_{I}\right] \frac{\partial}{\partial a} - e_{\Lambda}{}^{I} \frac{\partial}{\partial \xi^{I}}$$

$$k^{\Lambda} = -\left[2 m_{\mathsf{R}}^{\Lambda} + m^{\Lambda I} (\mathbb{C}_{\mathsf{H}}\xi)_{I}\right] \frac{\partial}{\partial a} + m^{\Lambda I} \frac{\partial}{\partial \xi^{I}}$$

✓ (RR fluxes m<sup>Λ</sup><sub>R</sub> を導入して)スカラー場からテンソル場への双対変換:

$$-h_{uv}\,\partial_{\mu}q^{u}\,\partial^{\mu}q^{v} \quad \longrightarrow \quad -\mathcal{M}_{AB}\,H^{A}_{\mu\nu\rho}\,H^{\mu\nu\rho B}$$

![](_page_24_Picture_0.jpeg)

超重力理論の変形:ゲージ化

## 理論には最初から自由なゲージ場 $A^M_\mu$ が含まれている 理論が持つ大域的対称性 $G_0$ をゲージ対称性に格上げする ゲージ化可能な全てを構築したい

$$T_{M} \equiv \Theta_{M}{}^{\alpha} t_{\alpha} \qquad \begin{cases} t_{\alpha} \in \operatorname{Lie} G_{0} & \operatorname{global} \\ T_{M} \in \operatorname{Lie} G & \operatorname{gauge} \end{cases}$$
$$\partial_{\mu} \longrightarrow \mathcal{D}_{\mu} \equiv \partial_{\mu} - gA_{\mu}^{M} T_{M} \end{cases}$$

一見「通常の」手段に見えるが…

# $[T_M, T_N] = -T_{MN}{}^P T_P$ $T_M = \Theta_M{}^\alpha t_\alpha$

構造定数  $T_{MN}^{P}$  の対称部分が非自明でも良い!ただし

$$T_{(MN)}{}^P \Theta_P{}^\alpha = 0$$

こんな事すると  $\mathcal{F}_2 = dA + A \land A$  が共変でなくなるが、

共変性を回復させるためにテンソル補助場を導入

![](_page_27_Figure_1.jpeg)

$$(m{ extsf{0}}) D = 4$$
 電磁双対  $\left\{egin{array}{ccc} & \mathbf{c} & \mathbf{c$ 

 $\Theta_M{}^{lpha}$ の配位を指定すれば定まる

(テンソル補助場が力学場に)

原理的に全ての可能なゲージ化(電気的だけでなく磁気的なものも)が構成できる

超対称性:  $\Theta_M{}^{\alpha}$ の自由度 dim  $G \times \dim G_0$ に制限が課される  $\left( \mathcal{D}_{\mu} = \partial_{\mu} - g A^M_{\mu} \Theta_M{}^{\alpha} t_{\alpha} \right)$ 

| D | U-duality $G_0$      | COI                                | nstraints on $R(M)\otimes R(lpha)$                             |
|---|----------------------|------------------------------------|----------------------------------------------------------------|
| 9 | GL(2)                | $(2\oplus 1)\otimes (3\oplus 1)$   | $= \mathcal{X} \oplus 2 \oplus 2 \oplus 3 \oplus \mathcal{A}$  |
| 8 | $SL(3)\otimes SL(2)$ | $(3,2)\otimes [(8,1)\oplus (1,3)]$ | $= (3,2) \oplus (3,2) \oplus (3,4) \oplus (6,2) \oplus (15,2)$ |
| 7 | SL(5)                | $10\otimes 24$                     | $= 10 \oplus 15 \oplus 40 \oplus 175$                          |
| 6 | SO(5,5)              | $16 \otimes 45$                    | $=$ 16 $\oplus$ 144 $\oplus$ 560                               |
| 5 | $E_{6(6)}$           | $27 \otimes 78$                    | $=$ 27 $\oplus$ 351 $\oplus$ 1728                              |
| 4 | $E_{7(7)}$           | $56 \otimes 133$                   | $=56 \oplus 912 \oplus 6480$                                   |
| 3 | $E_{8(8)}$           | $248\otimes 248$                   | $= 1 \oplus 248 \oplus 3875 \oplus 27000 \oplus 30380$         |

F.Riccioni, D.Steele and P.West, arXiv:0906.1177

## ✓ 共変微分化:

$$\nabla_{\mu}\phi^{A} = \partial_{\mu}\phi^{A} - g \mathscr{K}^{A}{}_{\Sigma} A^{\Sigma}_{\mu} - g \mathscr{K}^{A\Sigma} A_{\mu\Sigma}$$
$$\mathscr{K}_{\Sigma} = \Theta_{\Sigma}^{\mathsf{m}} (t_{\mathsf{m}})^{\alpha}{}_{\beta} B_{a}{}^{\beta} (\mathcal{U}^{-1})^{Aa}{}_{\alpha} \frac{\partial}{\partial\phi^{A}}$$
$$\mathscr{K}^{\Sigma} = \Theta^{\Sigma\mathsf{m}} (t_{\mathsf{m}})^{\alpha}{}_{\beta} B_{a}{}^{\beta} (\mathcal{U}^{-1})^{Aa}{}_{\alpha} \frac{\partial}{\partial\phi^{A}}$$

✓ (⊖<sub>M</sub><sup>m</sup> を指定して)スカラー場からテンソル場への双対変換:

 $-\mathcal{G}_{AB}\,\nabla_{\mu}\phi^{A}\,\nabla^{\mu}\phi^{B} \longrightarrow -\mathcal{M}_{\mathrm{mn}}\,H^{\mathrm{m}}_{\mu\nu\rho}\,H^{\mu\nu\rho\mathrm{n}}$ 

 $\Theta^{\Sigma m}$ : nongeometric flux charges が起源(?)

![](_page_30_Figure_2.jpeg)

![](_page_30_Picture_3.jpeg)

| D | 32-SUSY         | 16-SUSY         | 8-SUSY          |
|---|-----------------|-----------------|-----------------|
| 9 | arXiv:1105.1760 | (unknown)       | _               |
| 8 | arXiv:1203.6562 | (unknown)       | _               |
| 7 | hep-th/0506237  | (unknown)       | _               |
| 6 | arXiv:0712.4277 | (unknown)       | arXiv:1012.1818 |
| 5 | hep-th/0412173  | hep-th/0702084  | (unknown)       |
| 4 | arXiv:0705.2101 | hep-th/0602024  | arXiv:1107.3305 |
| 3 | hep-th/0103032  | arXiv:0806.2584 | arXiv:0807.2841 |

![](_page_32_Picture_0.jpeg)

## ある適当な方向をコンパクト化すると「風変わりな」物体が登場する:

| M-theory on $S^1(R_s)$          | mass/tension ( $l_{\rm s}\equiv 1$ ) | type IIA    |
|---------------------------------|--------------------------------------|-------------|
| longitudinal M2                 | 1                                    | F1          |
| transverse M2                   | $\frac{1}{g_{s}}$                    | D2          |
| longitudinal M5                 | $\frac{1}{g_s}$                      | D4          |
| transverse M5                   | $\frac{1}{g_s^2}$                    | NS5         |
| longitudinal KK6                | $\frac{R_{\rm TN}^2}{g_{\rm S}^2}$   | KK5         |
| KK6 with $R_{\rm TN}=R_{\rm s}$ | $\frac{1}{g_s}$                      | D6          |
| transverse KK6                  | $\frac{R_{\rm TN}^2}{g_{\rm S}^3}$   | $6_{3}^{1}$ |

| 0               | 1            | 2            | 3            | 4            | 5            | 6            | 7     | 8    | 9              | М |
|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|-------|------|----------------|---|
| $\checkmark$    | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $S^1$ |      | $\mathbb{R}^3$ |   |
| $KK6 \to 6_3^1$ |              |              |              |              |              |              | Т     | aub- | NU             | Г |

$$b_n^c: \ M = \frac{(R_1 \cdots R_c)^2}{g_{\rm s}^n}$$

for review: N. Obers and B. Pioline, hep-th/9809039

![](_page_34_Figure_1.jpeg)

風変わりな物体は「風変わりな振る舞い」をする

Exotic feature

$$ds^{2} = -dt^{2} + dx_{12345}^{2} + H(dr^{2} + r^{2}d\theta^{2}) + \frac{H}{K}dx_{89}^{2}$$

$$B_{89} = -\frac{\theta\sigma}{K}, \quad e^{2\Phi} = \frac{H}{K}, \quad K \equiv H^{2} + \sigma^{2}\theta^{2}$$

$$H(r) = h + \sigma \log\left(\frac{\mu}{r}\right), \quad \sigma \equiv \frac{R_{8}R_{9}}{2\pi\alpha'}$$

$$\theta = 0 \quad : \quad G_{88} = G_{99} = H^{-1}$$

$$\theta = 2\pi \quad : \quad G_{88} = G_{99} = \frac{H}{H^{2} + (2\pi\sigma)^{2}}$$

Globally nongeometric :  $\theta$ -方向の座標張り替えで fiber  $T^{89}$  が single-valued でない Locally geometric : いたるところで、局所座標系が張れる (non)geometric flux  $Q^{ab}_c$  を体現する T-fold

## このような振る舞いをする exotic branes の出現は D-次元時空の co-dim. 2,1 な物体で顕著

co-dim. 2 : Defect Branes  $\leftarrow (D-2)$ -form potentials co-dim. 1 : Domain Walls  $\leftarrow (D-1)$ -form potentials

#### これらは D-次元超重力理論にも「出現」する

$$\begin{array}{c|c} (D-1) \text{-form} \\ \text{potentials} \end{array} \leftrightarrow \end{array} \begin{array}{c} D \text{-form} \\ \text{field strengths} \end{array} \sim \end{array} \begin{array}{c} \text{Domain Walls} \end{array}$$

![](_page_38_Figure_0.jpeg)

• D8-brane in 10-dim.

RR potential  $C_9$  の源 \* $_{10}$ d $C_9 = m$  (定数) を与え、IIA型超重力理論を変形する  $\rightarrow$  Romans' massive IIA SUGRA

• (D-2)-branes in D-dim.

各次元にいくつの SUSY Domain Walls が存在するのか? Domain Walls が超重力理論をどのように変形するか? そもそも Domain Walls の弦理論起源は全て理解できているか?

## (D-1)-form potentials は DWs に結合する + $\Theta_M{}^{\alpha}$ は D次元理論の(D-1)-form potentials の表現に等しい

**THREE EXOTICS** 

| D   | U-duality $G_0$                            | 1-forms                  | 2-forms                 | 3-forms                                                        | 4-forms                                           | 5-forms                                      | 6-forms                                                              | 7-forms                                                                     | 8-forms                                            | 9-forms               | 10-forms             |
|-----|--------------------------------------------|--------------------------|-------------------------|----------------------------------------------------------------|---------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------|-----------------------|----------------------|
| IIA | $\mathbb{R}^+$                             | 1                        | 1                       | 1                                                              | _                                                 | 1                                            | 1                                                                    | 1                                                                           | 1                                                  | 1                     | $1\oplus1$           |
| IIB | $SL(2,\mathbb{R})$                         | —                        | 2                       | _                                                              | 1                                                 | _                                            | 2                                                                    | _                                                                           | 3                                                  | -                     | ${f 4} \oplus {f 2}$ |
| 9   | $GL(2,\mathbb{R})$                         | ${f 2}\oplus{f 1}$       | 2                       | 1                                                              | 1                                                 | 2                                            | ${f 2}\oplus{f 1}$                                                   | ${f 3}\oplus {f 1}$                                                         | $3\oplus2$                                         | $4 \oplus 2 \oplus 2$ | _                    |
| 8   | $SL(3,\mathbb{R}) \times SL(2,\mathbb{R})$ | $(\overline{f 3},{f 2})$ | ( <b>3</b> , <b>1</b> ) | ( <b>1</b> , <b>2</b> )                                        | $(\overline{f 3}, f 1)$                           | ( <b>3</b> , <b>2</b> )                      | $egin{array}{l} ({f 8},{f 1}) \ \oplus ({f 1},{f 3}) \end{array}$    | $egin{array}{l} ({f 6},{f 2}) \ \oplus ({f \overline 3},{f 2}) \end{array}$ | $egin{array}{llllllllllllllllllllllllllllllllllll$ | -                     | -                    |
| 7   | $SL(5,\mathbb{R})$                         | $\overline{10}$          | 5                       | $\overline{5}$                                                 | 10                                                | <b>24</b>                                    | $\overline{\bf 40}\oplus\overline{\bf 15}$                           | $egin{array}{c} 70 \ \oplus 45 \ \oplus 5 \end{array}$                      | _                                                  | _                     | _                    |
| 6   | SO(5,5)                                    | 16                       | 10                      | $\overline{16}$                                                | 45                                                | 144                                          | $egin{array}{c} 320 \ \oplus \overline{126} \ \oplus 10 \end{array}$ | _                                                                           | -                                                  | -                     | -                    |
| 5   | $E_{6(6)}$                                 | 27                       | $\overline{27}$         | 78                                                             | 351                                               | $\overline{f 1728} \ \oplus \overline{f 27}$ | -                                                                    | -                                                                           | _                                                  | _                     | _                    |
| 4   | $E_{7(7)}$                                 | 56                       | 133                     | 912                                                            | $\begin{array}{c} 8645 \\ \oplus 133 \end{array}$ | -                                            | -                                                                    | -                                                                           | -                                                  | _                     | -                    |
| 3   | $E_{8(8)}$                                 | <b>248</b>               | $3875 \oplus 1$         | $egin{array}{c} 147250 \ \oplus 3875 \ \oplus 248 \end{array}$ | _                                                 | _                                            | _                                                                    | _                                                                           | -                                                  | _                     | _                    |

(D-1)-forms: Embedding Tensors  $\Theta_M{}^{\alpha}$ の表現はこれと一致

F.Riccioni, D.Steele and P.West, arXiv:0906.1177

## # of (Elementary SUSY) DWs

|                    | fundamental      | Dirichlet                    | solitonic                                  |                                          |                                                                                             |                                           |                |
|--------------------|------------------|------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------|----------------|
| D                  | n = 0            | n = -1                       | n = -2                                     | n = -3                                   | n = -4                                                                                      | n = -5                                    | #              |
| IIA                |                  | 1                            |                                            |                                          |                                                                                             |                                           | 1              |
| 9                  |                  | 1                            | _                                          | 1                                        |                                                                                             |                                           | 2              |
| 8                  |                  | $(1,2)_{\mathrm{T}}$         | -                                          | $4 \subset (3, 2)_{\mathrm{T}}$          |                                                                                             |                                           | 6              |
| 7                  |                  | $4_{\mathrm{T}}$             | $4 \subset 10_{\mathrm{T}}$                | $12 \subset \overline{20}_{\mathrm{T}}$  |                                                                                             |                                           | 25             |
|                    |                  |                              | $4 \subset \overline{10}_{\mathrm{T}}$     | _                                        | $1_{\mathrm{T}}$                                                                            |                                           |                |
| 6                  |                  | $\mathbf{8_S} _{\mathrm{T}}$ | $32 \subset \mathbf{56_C} _{\mathrm{T}}$   | $32 \subset \mathbf{56_S} _{\mathrm{T}}$ | $\mathbf{8_C} _{\mathrm{T}}$                                                                |                                           | 80             |
| 5                  |                  | $\overline{16}_{\mathrm{T}}$ | $80 \subset \boldsymbol{120}_{\mathrm{T}}$ | $80 \subset 144_{\mathrm{T}}$            | $40 \subset 45_{\mathrm{T}}$                                                                |                                           | 216            |
| 4                  |                  | $32_{\mathrm{T}}$            | $160 \subset 220_{\mathrm{T}}$             | $192 \subset 352_{\mathrm{T}}$           | $160 \subset 220_{\mathrm{T}}$                                                              | ${f 32}_{ m T}$                           | 576            |
| 3                  | $1_{\mathrm{T}}$ | $\overline{64}_{\mathrm{T}}$ | $280 \subset 364_{\mathrm{T}}$             | $448 \subset 832_{\mathrm{T}}$           | $\begin{array}{l} 560 \subset 1001_{\mathrm{T}} \\ 14 \subset 104_{\mathrm{T}} \end{array}$ | $448 \subset \overline{832}_{\mathrm{T}}$ | 2160           |
| $(\alpha \leq -6)$ |                  |                              |                                            | $280 \subset 364_{\mathrm{T},-6}$        | $64_{\mathrm{T},-7}$                                                                        | $1_{\mathrm{T},-8}$                       | <br> <br> <br> |

brane's tension  $\sim g_{\rm s}^{+n}$ 

E.A. Bergshoeff et al, arXiv:1108.5067, arXiv:1210.1422

String theory "origin" of EDWs in *D*-dim.

| D   | n = 0                | n = -1               | n = -2                                                 | n = -3                          | n = -4                                                                       | $n \leq -5$ |
|-----|----------------------|----------------------|--------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------|-------------|
| IIA |                      | D8 [C <sub>9</sub> ] |                                                        |                                 |                                                                              |             |
| 9   |                      | D7 [C <sub>8</sub> ] |                                                        | $7_3^{(0,1)} [E_{9,1,1}]$       |                                                                              |             |
| 8   |                      | D6 [C <sub>7</sub> ] |                                                        | $6_{3}^{(1,1)}$ [ $E_{9,2,1}$ ] |                                                                              |             |
| 7   |                      | D5 [C <sub>6</sub> ] | NS5 $[D_6]$<br>KKM $[D_{7,1}]$<br>5 $_2^2$ $[D_{8,2}]$ | $5_3^{(2,1)} \ [E_{9,3,1}]$     | $5^3_4 \; [F_{9,3}]$                                                         |             |
| 6   |                      | D4 [C <sub>5</sub> ] |                                                        | $4_{3}^{(3,1)}$ [ $E_{9,4,1}$ ] | ${\sf 4}_4^{(3,1)}[F_{9,4,1}]$                                               |             |
| 5   |                      | D3 $[C_4]$           |                                                        | $3_{3}^{(4,1)}$ [ $E_{9,5,1}$ ] | $3_{4}^{(3,2)}$ [F <sub>9,5,2</sub> ]                                        |             |
| 4   |                      | D2 $[C_3]$           |                                                        | $2_3^{(5,1)}$ [ $E_{9,6,1}$ ]   | $2_4^{(3,3)}$ $[F_{9,6,3}]$                                                  |             |
| 3   | F1 [B <sub>2</sub> ] | D1 $[C_2]$           |                                                        | $1_3^{(6,1)} [E_{9,7,1}]$       | $egin{split} 1^{(3,4)}_4[F_{9,7,4}]\ 1^{(6,0,1)}_4[F_{9,7,1,1}] \end{split}$ |             |

 $A_{D-T,I_1+I_2,I_2}$ -forms : "mixed-symmetry fields"  $\leftrightarrow b_n^{(I_1,I_2)}$ -branes

 $T + b + \sum_i I_i = D - 1$  with T = 1: transverse, b: spatial,  $I_i$ : isometry directions

## Exotic branes $b_n^c$ とは一体何か まだほとんど分かってない

(様々なところで重要な役割を果たすと期待される)

J. de Boer and M. Shigemori, arXiv:1004.2521 and arXiv:1209.6056

## なすべきこと

![](_page_46_Picture_0.jpeg)

![](_page_47_Picture_0.jpeg)

θ<sub>M</sub>

*Qab* 

![](_page_47_Picture_3.jpeg)

embedding tensors

(non)geometric fluxes

なすべきこと

#### 極大超重力理論においては、対応関係がある程度把握できている

 $Q^{ab}{}_c$  vs  $\Theta_M{}^{\alpha}$  : G. Dall'Agata et al, arXiv:0712.1026  $\Theta_M{}^{\alpha}$  vs  $b^c_n$  : E. Bergshoeff et al, arXiv:1206.5697

超対称性が低い場合に

対応関係を追究する → 超弦理論起源の完備に向けて

現在: 4D 
$$\mathcal{N}=2$$
 理論での  $Q^{ab}{}_c$  vs  $\Theta_M{}^lpha$  を追跡中

(注意) 超対称性が低くなると、大域的対称性に対する縛りが弱くなる

Flux Compactifications on  $SU(3) \times SU(3)$  generalized geometry

VS

Embedding Tensor Formalism in 4D  $\mathcal{N} = 2$  theory

双方で記述される gauged supergravity の相互作用項を比較して $Q^{ab}{}_c$  vs  $\Theta_M{}^{lpha}$  を直接関連付ける

一見「単純作業」だが、超重力理論なので、計算がいちいち入り組んでいる

さらに、embedding tensor formalism 側は共形超重力理論で記述されている

<sup>r</sup>rigid special Kähler vs local special Kähler j <sup>r</sup>hyper-Kähler cone vs quaternonic Kähler j etc.

## おしまい

![](_page_51_Picture_0.jpeg)

## NS-NS場の展開:

$$\begin{split} \phi(x,y) &= \varphi(x) \\ g_{\mathfrak{m}\overline{\mathfrak{n}}}(x,y) &= \mathrm{i} v^{a}(x) \left(\omega_{a}\right)_{\mathfrak{m}\overline{\mathfrak{n}}}(y), \quad g_{\mathfrak{m}\mathfrak{n}}(x,y) = \mathrm{i} \,\overline{z}^{\overline{\jmath}}(x) \left(\frac{(\overline{\chi}_{\overline{\jmath}})_{\mathfrak{m}\overline{\mathfrak{p}}\overline{\mathfrak{q}}}\Omega^{\overline{\mathfrak{p}}\overline{\mathfrak{q}}}_{||\Omega||^{2}}\right)(y) \\ B_{2}(x,y) &= B_{2}(x) + b^{a}(x)\omega_{a}(y) \\ \mathfrak{t}^{a}(x) &\equiv b^{a}(x) + \mathrm{i} v^{a}(x) \end{split}$$

R-R場の展開:

$$C_1(x,y) = A_1^0(x)$$
  

$$C_3(x,y) = A_1^a(x) \wedge \omega_a(y) + \xi^I(x)\alpha_I(y) - \widetilde{\xi}_I(x)\beta^I(y)$$

| コホモロジー                     | 基底                                                                                            | 自由度                            |                                                                           |
|----------------------------|-----------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------|
| $H^{(1,1)}$                | $\omega_a$                                                                                    | $a = 1, \dots, h^{(1,1)}$      |                                                                           |
| $H^{(0)}\oplus H^{(1,1)}$  | $\omega_{\Lambda}=(1,\omega_a)$                                                               | $\Lambda=0,1,\ldots,h^{(1,1)}$ | $\mathrm{d}\omega_{\Lambda}~=~0~=~\mathrm{d}\widetilde{\omega}^{\Lambda}$ |
| $H^{(2,2)} \oplus H^{(6)}$ | $\widetilde{\omega}^{\Lambda} = (\widetilde{\omega}^a, rac{\mathrm{vol.}}{ \mathrm{vol.} })$ |                                | $\mathrm{d}\alpha_I = 0 = \mathrm{d}\beta^I$                              |
| $H^{(2,1)}$                | $\chi_i$                                                                                      | $i = 1, \dots, h^{(2,1)}$      |                                                                           |
| $H^{(3)}$                  | $(lpha_I,eta^I)$                                                                              | $I = 0, 1, \dots, h^{(2,1)}$   |                                                                           |

4D  $\mathcal{N} = 2$  SUGRA from type IIA on Calabi-Yau

10D type IIA action  $S_{\text{IIA}}^{(10D)} = S_{\text{NS}} + S_{\text{R}} + S_{\text{CS}}$ :  $S_{\text{NS}} = \frac{1}{2} \int e^{-2\phi} \left\{ \widehat{R} * \mathbb{1} + 4d\phi \wedge *d\phi - \frac{1}{2} \widehat{H}_{3} \wedge *\widehat{H}_{3} \right\}$   $S_{\text{R}} + S_{\text{CS}} = -\frac{1}{4} \int \left\{ \widehat{F}_{2} \wedge *\widehat{F}_{2} + (\widehat{F}_{4} - \widehat{C}_{1} \wedge \widehat{F}_{3}) \wedge *(\widehat{F}_{4} - \widehat{C}_{1} \wedge \widehat{F}_{3}) \right\} - \frac{1}{4} \int \widehat{B}_{2} \wedge \widehat{F}_{4} \wedge \widehat{F}_{4}$ 

4D  $\mathcal{N} = 2$  ungauged SUGRA: Neither gauge couplings, Nor scalar potential

$$S^{(4\mathsf{D})} = \int \left\{ \frac{1}{2} R * \mathbb{1} - G_{a\overline{b}} \, \mathrm{d}\mathfrak{t}^a \wedge * \mathrm{d}\overline{\mathfrak{t}}^{\overline{b}} - h_{uv} \, \mathrm{d}q^u \wedge * \mathrm{d}q^v + \frac{1}{2} \, \mathrm{Im}\mathcal{N}_{\Lambda\Sigma}F_2^{\Lambda} \wedge *F_2^{\Sigma} + \frac{1}{2} \, \mathrm{Re}\mathcal{N}_{\Lambda\Sigma}F_2^{\Lambda} \wedge F_2^{\Sigma} \right\}$$

| gravitational multiplet                                                                            | $g_{\mu u},A_1^0$                                                                        |                                                                       |                                                           |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------|
| vector multiplet (VM)                                                                              | $A^a_1, \mathfrak{t}^a, ar{\mathfrak{t}}^{\overline{b}}$                                 | $\mathfrak{t}^a\inSKG_{V}$                                            |                                                           |
| hypermultiplet (HM)                                                                                | $z^i,\;\overline{z}^{\overline{\jmath}},\;\xi^i,\;\widetilde{\xi}_j$                     | $z^i\inSKG_H$                                                         |                                                           |
| universal hypermultiplet (UHM)                                                                     | $arphi,a,\xi^0,\widetilde{\xi_0}$                                                        | $a \leftrightarrow B_{2}$                                             | (Hodge dual)                                              |
|                                                                                                    | $- \mathcal{HM} = {\sf Special} \; {\sf QG}$                                             | G ———                                                                 |                                                           |
| $\{q^u\} = \{z^i, \overline{z}^{\overline{\jmath}}\} + \{\xi^i, 4n_{H} + 4  2n_{H}(SKG_{H})  2r\}$ | $\widetilde{\xi}_{j}\} + \{\varphi, a, \xi^{0}, \widetilde{\xi}_{0}\}$ $a_{H} = 4 (UHM)$ | $= \{z^i, \overline{z}^{\overline{\jmath}}\} + \{\varphi_{SKG_{H}}\}$ | $\{ egin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ |

$$\mathrm{d}J = \frac{3}{2}\mathrm{Im}(\overline{\mathcal{W}}_1\Omega) + \mathcal{W}_4 \wedge J + \mathcal{W}_3, \qquad \mathrm{d}\Omega = \mathcal{W}_1J \wedge J + \mathcal{W}_2 \wedge J + \overline{\mathcal{W}}_5 \wedge \Omega$$

|                | hermitian         | $\mathcal{W}_1 = \mathcal{W}_2 = 0$                                                       |
|----------------|-------------------|-------------------------------------------------------------------------------------------|
|                | balanced          | $\mathcal{W}_1 = \mathcal{W}_2 = \mathcal{W}_4 = 0$                                       |
| complex        | special hermitian | $\mathcal{W}_1 = \mathcal{W}_2 = \mathcal{W}_4 = \mathcal{W}_5 = 0$                       |
| complex        | Kähler            | $\mathcal{W}_1 = \mathcal{W}_2 = \mathcal{W}_3 = \mathcal{W}_4 = 0$                       |
|                | Calabi-Yau        | $\mathcal{W}_1 = \mathcal{W}_2 = \mathcal{W}_3 = \mathcal{W}_4 = \mathcal{W}_5 = 0$       |
|                | conformally CY    | $\mathcal{W}_1 = \mathcal{W}_2 = \mathcal{W}_3 = 3\mathcal{W}_4 + 2\mathcal{W}_5 = 0$     |
|                | symplectic        | $\mathcal{W}_1 = \mathcal{W}_3 = \mathcal{W}_4 = 0$                                       |
|                | nearly Kähler     | $\mathcal{W}_2 = \mathcal{W}_3 = \mathcal{W}_4 = \mathcal{W}_5 = 0$                       |
| almost complex | almost Kähler     | $\mathcal{W}_1 = \mathcal{W}_3 = \mathcal{W}_4 = \mathcal{W}_5 = 0$                       |
| almost complex | quasi Kähler      | $\mathcal{W}_3 = \mathcal{W}_4 = \mathcal{W}_5 = 0$                                       |
|                | semi Kähler       | $\mathcal{W}_4 = \mathcal{W}_5 = 0$                                                       |
|                | half-flat         | $\mathrm{Im}\mathcal{W}_1 = \mathrm{Im}\mathcal{W}_2 = \mathcal{W}_4 = \mathcal{W}_5 = 0$ |

10D type IIA action  $S_{\text{IIA}}^{(10D)} = S_{\text{NS}} + \tilde{S}_{\text{R}} = S_{\text{NS}} + S_{\text{R}} + S_{\text{CS}}$ : (democratic form)

$$S_{\mathsf{NS}} = \frac{1}{2} \int e^{-2\phi} \left\{ \widehat{R} * \mathbb{1} + 4 \mathrm{d}\phi \wedge * \mathrm{d}\phi - \frac{1}{2} \widehat{H}_{3} \wedge * \widehat{H}_{3} \right\}, \quad \widetilde{S}_{\mathsf{R}} = -\frac{1}{8} \int \left[ \widehat{\mathbf{F}} \wedge * \widehat{\mathbf{F}} \right]_{10}$$

with "constraint  $\widehat{\mathbf{F}} = \lambda(\ast \widehat{\mathbf{F}})$ " and "EoM (Bianchi)  $(\mathbf{d} + \widehat{H} \wedge) \ast \widehat{\mathbf{F}} = 0 \Leftrightarrow (\mathbf{d} - \widehat{H} \wedge) \widehat{\mathbf{F}} = 0$ "

 $\checkmark$  non-CY with SU(3)-structure with  $m_{\rm R}^{\Lambda}=0$ 

4D  $\mathcal{N} = 2$  abelian gauged SUGRA (with  $\xi^{I} \equiv (\xi^{I}, \widetilde{\xi}_{I})^{\mathrm{T}}$ ):

$$S^{(4\mathsf{D})} = \int \mathrm{d}^{4}x \sqrt{-g} \left[ \frac{1}{2}R + \frac{1}{4} \mathrm{Im}\mathcal{N}_{\Lambda\Sigma} F^{\Lambda}_{\mu\nu} F^{\Sigma\mu\nu} - \frac{\epsilon^{\mu\nu\rho\sigma}}{8\sqrt{-g}} \mathrm{Re}\mathcal{N}_{\Lambda\Sigma} F^{\Lambda}_{\mu\nu} F^{\Sigma}_{\rho\sigma} - g_{a\bar{b}} \partial_{\mu} \mathfrak{t}^{a} \partial^{\mu} \bar{\mathfrak{t}}^{\bar{b}} - g_{i\bar{j}} \partial_{\mu} z^{i} \partial^{\mu} \bar{z}^{\bar{j}} - \partial_{\mu} \varphi \partial^{\mu} \varphi + \frac{\mathrm{e}^{2\varphi}}{2} (\mathbb{M}_{\mathsf{H}})_{IJ} D_{\mu} \xi^{I} D^{\mu} \xi^{J} - \frac{\mathrm{e}^{2\varphi}}{4} \left( D_{\mu} a - \xi^{I} (\mathbb{C}_{\mathsf{H}})_{IJ} D_{\mu} \xi^{J} \right)^{2} - V(\mathfrak{t}, \bar{\mathfrak{t}}, q) \right]$$

•  $t^a \in \mathsf{SKG}_{\mathsf{V}}$  and  $z^i \in \mathsf{SKG}_{\mathsf{H}} \subset \mathcal{HM}$  are ungauged (in general)

• 
$$D_{\mu}\xi^{I} = \partial_{\mu}\xi^{I} - e_{\Lambda}{}^{I}A^{\Lambda}_{\mu}$$
 &  $D_{\mu}\widetilde{\xi}_{I} = \partial_{\mu}\widetilde{\xi}_{I} - e_{\Lambda I}A^{\Lambda}_{\mu}$ 

• 
$$D_{\mu}a = \partial_{\mu}a - (2e_{\mathsf{R}\Lambda} - \xi^{I}e_{\Lambda I} + \overline{\xi}_{I}e_{\Lambda}{}^{I})A^{\Lambda}_{\mu}$$

•  $V(\mathfrak{t}, \overline{\mathfrak{t}}, q)$ : scalar potential D. Cassani, arXiv:0804.0595

Non-vanishing  $m_{\rm R}^{\Lambda}$  dualizes the axion field a in standard SUGRA to B-field.

4D gauged action is different from the standard one:

$$S^{(4\mathrm{D})} = \int \left[ \frac{1}{2} R(*\mathbb{1}) + \frac{1}{2} \mathrm{Im} \mathcal{N}_{\Lambda\Sigma} F_{2}^{\Lambda} \wedge *F_{2}^{\Sigma} + \frac{1}{2} \mathrm{Re} \mathcal{N}_{\Lambda\Sigma} F_{2}^{\Lambda} \wedge F_{2}^{\Sigma} - g_{a\bar{b}} \,\mathrm{d}\mathfrak{t}^{a} \wedge *\mathrm{d}\bar{\mathfrak{t}}^{\bar{b}} - g_{i\bar{\jmath}} \,\mathrm{d}z^{i} \wedge *\mathrm{d}\bar{z}^{\bar{\jmath}} \right. \\ \left. -\mathrm{d}\varphi \wedge *\mathrm{d}\varphi - \frac{\mathrm{e}^{-4\varphi}}{4} H_{3} \wedge *H_{3} - \frac{\mathrm{e}^{2\varphi}}{2} (\mathbb{M}_{\mathsf{H}})_{IJ} D\xi^{I} \wedge *D\xi^{J} - V(*\mathbb{1}) \right. \\ \left. + \frac{1}{2} \mathrm{d}B \wedge \left[ \xi^{I} (\mathbb{C}_{\mathsf{H}})_{IJ} D\xi^{J} + \left( 2e_{\mathsf{R}\Lambda} - \xi^{I} e_{\Lambda I} + \tilde{\xi}_{I} e_{\Lambda}^{I} \right) A_{1}^{\Lambda} \right] - \frac{1}{2} m_{\mathsf{R}}^{\Lambda} e_{\mathsf{R}\Lambda} B_{2} \wedge B_{2} \right]$$

Constraints among flux charges:

$$e_{\Lambda}{}^{I}e_{\Sigma I} - e_{\Lambda I}e_{\Sigma}{}^{I} = 0, \quad m_{\mathsf{R}}^{\Lambda}e_{\Lambda}{}^{I} = 0 = m_{\mathsf{R}}^{\Lambda}e_{\Lambda I}$$

Scalar potential from (non)geometric flux compactifications:

$$V = \mathbf{g}^{2} \Big[ 4h_{uv}k^{u}\overline{k}^{v} + \sum_{x=1}^{3} \Big( g^{a\overline{b}}D_{a}\mathcal{P}_{x}D_{\overline{b}}\overline{\mathcal{P}}_{x} - 3|\mathcal{P}_{x}|^{2} \Big) \Big] = \dots \equiv V_{\mathsf{NS}} + V_{\mathsf{R}} \quad (\text{abelian: } k_{\mathsf{A}}^{a} = 0)$$

$$V_{\mathsf{NS}} = g^{a\overline{b}}D_{a}\mathcal{P}_{+}D_{\overline{b}}\overline{\mathcal{P}}_{+} + g^{i\overline{\jmath}}D_{i}\mathcal{P}_{+}D_{\overline{\jmath}}\overline{\mathcal{P}}_{+} - 2|\mathcal{P}_{+}|^{2}$$

$$= -2\,\mathbf{g}^{2}\mathbf{e}^{2\varphi} \Big[\overline{\Pi}_{\mathsf{H}}^{\mathsf{T}}\,\widetilde{Q}^{\mathsf{T}}\,\mathsf{M}_{\mathsf{V}}\,\widetilde{Q}\,\Pi_{\mathsf{H}} + \overline{\Pi}_{\mathsf{V}}^{\mathsf{T}}\,Q\,\mathsf{M}_{\mathsf{H}}\,Q^{\mathsf{T}}\,\Pi_{\mathsf{V}} + 4\overline{\Pi}_{\mathsf{H}}^{\mathsf{T}}\,\mathbb{C}_{\mathsf{H}}^{\mathsf{T}}\,Q^{\mathsf{T}}\,(\Pi_{\mathsf{V}}\overline{\Pi}_{\mathsf{V}}^{\mathsf{T}} + \overline{\Pi}_{\mathsf{V}}\Pi_{\mathsf{V}}^{\mathsf{T}})\,Q\,\mathbb{C}_{\mathsf{H}}\,\Pi_{\mathsf{H}} \Big]$$

$$V_{\mathsf{R}} = g^{a\overline{b}}D_{a}\mathcal{P}_{3}D_{\overline{b}}\overline{\mathcal{P}}_{3} + |\mathcal{P}_{3}|^{2}$$

$$= -\frac{1}{2}\,\mathbf{g}^{2}\mathbf{e}^{4\varphi}(c_{\mathsf{RA}} - e_{AI}\xi^{I} + e_{A}{}^{I}\widetilde{\xi}_{I})(\mathrm{Im}\mathcal{N})^{-1|\mathsf{A}\Sigma}(e_{\mathsf{R}\Sigma} - e_{\Sigma I}\xi^{I} + e_{\Sigma}{}^{I}\widetilde{\xi}_{I})$$

$$\Pi_{\mathsf{V}} = \mathbf{e}^{\mathsf{K}_{\mathsf{V}}/2}(X^{\mathsf{A}}, \mathcal{F}_{\mathsf{A}})^{\mathsf{T}}$$

$$t^{a} = X^{a}/X^{0}$$

$$a = 1, \dots, n_{\mathsf{V}}$$

$$\mathsf{SKG}_{\mathsf{V}} \text{ of vector-moduli}$$

$$\mathcal{P}_{+} \equiv \mathcal{P}_{1} + i\mathcal{P}_{2} = 2\mathbf{e}^{\varphi}\,\Pi_{\mathsf{V}}^{\mathsf{T}}\,Q\,\mathbb{C}_{\mathsf{H}}\,\Pi_{\mathsf{H}}$$

$$\mathcal{P}_{-} \equiv \mathcal{P}_{1} - i\mathcal{P}_{2} = 2\mathbf{e}^{\varphi}\,\Pi_{\mathsf{V}}^{\mathsf{T}}\,Q\,\mathbb{C}_{\mathsf{H}}\,\overline{\Pi}_{\mathsf{H}}$$

$$SKG_{\mathsf{V}} \text{ of vector-moduli}$$

$$\mathcal{C}_{\mathsf{V},\mathsf{H}} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; \quad Q = \begin{pmatrix} e_{\mathsf{A}^{I}} & e_{\mathsf{A}I} \\ m^{\Lambda I} & m^{\Lambda_{I}} \end{pmatrix}, \quad \widetilde{Q} = \mathbb{C}_{\mathsf{H}}^{\mathsf{T}}Q\,\mathbb{C}_{\mathsf{V}} \quad c_{\mathsf{R}} = \begin{pmatrix} m_{\mathsf{R}}^{\mathsf{A}} \\ e_{\mathsf{R}\Lambda} \end{pmatrix}$$

Cassani et.al., arXiv:0804.0595, arXiv:0911.2708