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Exotic structure of hadrons
Various excitations of baryons

en
er

gy

Introduction (Part I)

internal 
excitation qq ̄pair 

creation

hadronic 
molecule

multiquark

B
M

Physical state: superposition of 3q, 5q, MB, ...
|⇤(1405) i = N3q|uds i+N5q|uds qq̄ i+NK̄N | K̄N i+ · · ·

Find out the dominant component among others.

conventional exotic
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Structure of resonances?
Excited states : finite width
(unstable against strong decay)

We need a classification scheme applicable to resonances.

Most of hadrons are unstable!

- stable (ground) states
- unstable states

State vector of resonance?
?
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|⇤(1405) i = N3q|uds i+N5q|uds qq̄ i+NK̄N | K̄N i+ · · ·

Introduction (Part I)
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Compositeness of bound states
Compositeness approach: decompose Hamiltonian

En
erg
y

H = H0 + V

Complete set for free Hamiltonian: bare |B0 > + continuum
1 = |B0 ihB0 |+

Z
dp|p ihp |

Physical bound state |B>
H |B i = �B|B i, hB |B i = 1

1 = hB |B0 ihB0 |B i+
Z

dphB |p ihp |B i

Z : elementariness X : compositeness

Z, X : real and nonnegative --> probabilistic interpretation
) 0  Z  1, 0  X  1

S. Weinberg, Phys. Rev. 137, B672 (1965); T. Hyodo, arXiv:1310.1176 [hep-ph]

Field renormalization constant Z and compositeness (Part I)
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Weak binding limit
In general, Z depends on the choice of the potential V.

Field renormalization constant Z and compositeness (Part I)

1� Z =

Z
dp

|hp |V |B i|2

(Ep +B)2

- Z : model-(scheme-)dependent quantity

a =
2(1� Z)

2� Z
R+O(Rtyp), re =

�Z

1� Z
R+O(Rtyp),

a : scattering length, re : effective range
R = (2μB)-1/2 : radius (binding energy)
Rtyp : typical length scale of the interaction

In the weak binding limit, Z is related to observables
S. Weinberg, Phys. Rev. 137, B672 (1965); T. Hyodo, arXiv:1310.1176 [hep-ph]

(
a ⇠ Rtyp ⌧ �re (elementary dominance),

a ⇠ R � re ⇠ Rtyp (composite dominance).

Criterion for the structure:
Z ~ 1
Z ~ 0
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Interpretation of negative effective range
For Z>0 , effective range is always negative.

Negative re -->  Something other than |p> : CDD pole

Field renormalization constant Z and compositeness (Part I)

a =
2(1� Z)

2� Z
R+O(Rtyp), re =

�Z

1� Z
R+O(Rtyp),

(
a ⇠ Rtyp ⌧ �re (elementary dominance),

a ⇠ R � re ⇠ Rtyp (composite dominance).

Simple attractive potential: re > 0 
--> only “composite dominance” is possible.

D. Phillips, S. Beane, T.D. Cohen, Annals Phys. 264, 255 (1998)
E. Braaten, M. Kusunoki, D. Zhang, Annals Phys. 323, 1770 (2008)

re < 0 : energy- (momentum-)dependence of the potential

<-- pole term/Feshbach projection of coupled-channel effect
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Application to resonances
Compositeness approach at the weak binding:

- Model-independent (no potential, wavefunction, ... )
- Related to experimental observables
- Only for bound states with small binding

What about near-threshold resonances (~ small binding) ?

Application to general resonances
T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C85, 015201 (2012)
F. Aceti, E. Oset, Phys. Rev. D86, 014012 (2012)

- Z and X are in general complex. Interpretation?
hR |R i ! 1, h R̃ |R i = 1

1 = h R̃ |B0 ihB0 |R i+
Z

dph R̃ |p ihp |R i

Application to near-threshold resonances (Part I)
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Poles of the amplitude
Near-threshold phenomena: effective range expansion

Application to near-threshold resonances (Part I)

f(p) =

✓
�1

a
� pi+

re
2
p2
◆�1

p± =
i

re
± 1

re

r
2re
a

� 1

Resonance pole position <--> (a, re)

T. Hyodo, Phy. Rev. Lett. 111, 132002 (2013) with opposite sign of scattering length

Pole trajectories 
with a fixed re < 0

1/a ! +1

1/a ! �11/re

2/re

p

bound 
state

virtual 
state

resonance
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Example of resonance: Λc(2595)
Pole position of Λc(2595) in πΣc scattering

Application to near-threshold resonances (Part I)

E = 0.67 MeV, � = 2.59 MeV

a =� p+ + p�

ip+p�
= �10.5 fm, re =

2i

p+ + p�
= �19.5 fm

- deduced threshold parameters

- field renormalization constant: complex
Z = 1� 0.608i

Large negative effective range

<-- substantial elementary contribution other than πΣc
      (three-quark, other meson-baryon channel, or ... )

- central values in PDG

Λc(2595) is not likely a πΣc molecule
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Part I : Summary

Renormalization constant Z measures 
elementariness of a stable bound state.

In general, Z of a resonance is complex.

Negative effective range re : CDD pole 

Near-threshold resonance: pole position 
is related to re --> elementariness

Composite/elementary nature of resonances

Summary (Part I)

T. Hyodo, Phy. Rev. Lett. 111, 132002 (2013)
T. Hyodo, arXiv:1310.1176 [hep-ph]
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Universal phenomena in hadron physics
Universal few-body physics <-- large scattering length

S-wave ππ scattering length
- aI=0 ~ -0.31 fm, aI=2 ~ 0.06 fm / QCD scale ~ 1 fm

- Realizable by lattice QCD / nuclear medium

Introduction (Part II)

- I=0 component can be increased by mπ ↗ or fπ ↘ 

C. Hanhart, J.R. Pelaez, G. Rios, Phys. Rev. Lett. 100, 152001 (2008) 
T. Hyodo, D. Jido, T. Kunihiro, Nucl. Phys. A848, 341-365 (2010)

103lr4 ! 6:2" 5:7. Then, we fit the mIAM to data up to the
resonance region and find 103lr1 ! #3:7" 0:2, 103lr2 !
5:0" 0:4. All these LEC are evaluated at ! ! 0:77 GeV.

The values of m" considered should fall within the
ChPT range of applicability and allow for some elastic
"" regime to exist below K !K threshold. Both criteria are
satisfied, if m" $ 0:5 GeV, since we know SU(3) ChPT
still works fairly well with such a kaon mass, and because
for m" ’ 0:5 GeV, the kaon mass becomes ’ 0:6 GeV,
leaving a 0.2 GeV gap to the two-kaon threshold. For larger
values of m", a coupled-channel IAM is needed, which is
feasible, but lies beyond our present scope, and lacks a
dispersive derivation.

Figure 1 shows, in the second Riemman sheet, the # and
$ poles for the physical m", and how they move as m"
increases. Note that, associated to each resonance, there are
two conjugate poles that move symmetrically on each side
of the real axis. In order to see more clearly that all poles
move closer to the two-pion threshold, which is also in-
creasing, all quantities are given in units of m" so that the
two-pion threshold is fixed at

!!!
s
p ! 2. Let us recall that, for

narrow resonances, their massM and width " are related to
the pole position in the lower half plane as !!!!!!!!!spole

p ’ M#
i"=2, and customarily this notation is also kept for broader
resonances. Hence, both "$ and "# decrease for increasing
m". In particular, "# vanishes exactly at threshold where
one pole jumps into the first sheet, thus becoming a tradi-
tional stable state, while its partner remains on the second
sheet practically at the very same position as the one in the
first. In contrast, when M$ reaches the two-pion threshold,
its poles remain on the second sheet with a nonzero imagi-
nary part before they meet on the real axis and become
virtual states. As m" increases further, one of those virtual
states moves towards threshold and jumps onto the first
sheet, whereas the other one remains in the second sheet.
Such an analytic structure, with two very asymmetric poles
in different sheets of an angular momentum zero partial

wave, is a strong indication for a prominent molecular
component [16,17]. Differences between P-wave and
S-wave pole movements were also found within quark
models [18], the latter also showing two second sheet poles
on the real axis below threshold.

In the upper panel of Fig. 2, we show them" dependence
of M$ and M# normalized to their physical values. The
bands cover the LEC uncertainties. Note, that significant,
additional uncertainties may emerge at the two loop level
for pion masses larger than 0.3 GeV—see, e.g., Ref. [19].
We see that both masses grow with increasing m", but the
rise of M$ is stronger than that of M#, and again we see
that around m" ’ 0:33 GeV, the $ state splits into two
virtual states with different behavior. The upper branch
moves closer to threshold and thus has the biggest influ-
ence in the physical region, eventually jumping to the first
Riemann sheet. Note that the m" dependence of M$ is
much softer than that suggested in the model of [8], shown
as the dotted line, which in addition does not show the
virtual pole splitting.

In the lower panel of Fig. 2, we show them" dependence
of "$ and "# normalized to their physical values. The
decrease in "# is largely kinematical, following remark-
ably well the expected reduction from phase space as m"
and M# increase. In other words, the effective coupling of
the # to "" is almost m" independent. This was assumed
in the analysis of Ref. [20]; however, so far this assumption
has not been supported by theory. In sharp contrast to this

1 2 3 4 5
Re (√

s / mπ)

-1.5

-1

-0.5

0

0.5

1

1.5

Im
 ( √

 s 
/ m

π)

ππ
 th

re
sh

ol
d

FIG. 1 (color online). Movement of the $ (dashed lines) and #
(dotted lines) poles for increasing pion masses (direction indi-
cated by the arrows) on the second sheet. The filled (open) boxes
denote the pole positions for the $ (#) at pion massesm" ! 1, 2,
and 3%mphys

" , respectively. Note, for m" ! 3mphys
" , three poles

accumulate in the plot very near the "" threshold.
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FIG. 2 (color online). m" dependence of resonance masses
(upper panel) and widths (lower panel) in units of the physical
values. In both panels, the dark (light) band shows the results for
the $ (#). The width of the bands reflects the uncertainties
induced from the uncertainties in the LEC. The dotted line
shows the $ mass dependence estimated in Ref. [8]. The dashed
(continuous) line shows the m" dependence of the $ (#) width
from the change of phase space only, assuming a constant
coupling of the resonance to "".

PRL 100, 152001 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
18 APRIL 2008

152001-3

T. Hyodo et al. / Nuclear Physics A 848 (2010) 341–365 357

Fig. 3. Spectra of the σ meson (left) and the trajectory of the pole positions (right) in model B (x = 0). The symbols
are marked with each 0.1 step of Φ = 〈σ 〉/〈σ 〉0. The arrows indicate the direction of the movement of the pole as the
condensate 〈σ 〉 is decreased from 〈σ 〉0 to 0. The poles on the first Riemann sheet is denoted by triangles, while the poles
on the second Riemann sheet is plotted by crosses. The dotted (dashed) line represents the energy of the threshold (mass
of the pion).

where the movement of the pole is driven by the decrease of the bare mass of the σ pole in the
interaction kernel.6

The results of model B is shown in Fig. 3, where the pole is dynamically generated by the
attractive ππ interaction. In this case, the change of the spectrum as well as the trajectory of the
pole are qualitatively different from those of model A. We observe that the pole moves below the
threshold keeping the finite width [40]. This phenomena is caused by the appearance of the virtual
state. It is known that when the attractive interaction is strengthened, an s-wave resonance can
become a virtual state which is characterized by the pole on the second Riemann sheet below the
threshold energy. In model B, the reduction of the chiral condensate results in the enhancement
of the attractive interaction as seen in Eq. (8), and hence the resonance in vacuum turns into a
virtual state, before the two-body ππ system forms the bound state.

Because of this special nature of an s-wave resonance, the change of the spectrum shows a
different pattern from the softening of model A in Fig. 2. In model A, the peak of the σ meson
becomes sharp and it causes the divergence of the spectral function when the real part of the pole
approaches the threshold. On the other hand, the pole of the dynamically generated σ meson
first moves to the second Riemann sheet of lower energy region than the threshold. In this case,
due to the finite width, the spectrum does not shows the prominent peak structure, when the
real part of the pole crosses the threshold. Once the pole reaches the real axis it moves toward
the threshold on the second Riemann sheet,7 and finally it becomes a bound state on the first
Riemann sheet, where we observe the divergence of the spectral function at the threshold. Since
the interaction kernel given in Eq. (8) is a monotonically increasing function of s, we can use
the argument in Refs. [80,81] to define the critical coupling strength with which the two-body
attractive interaction generates a bound state. In the present case, the decay constant is changed

6 Around the threshold, there is a small region in which the virtual state is formed as in model B. This reflects the effect
of the change of the property of the pole, as we discuss for model C.

7 There are always two poles in the amplitude, namely, there is another branch of the pole trajectory in addition to
the trajectory shown in Fig. 3. When the pole has finite imaginary part, the other pole exists at z = z∗ with Im z > 0 on
the second Riemann sheet. After the pole reaches the real axis, the other pole goes to the lower energy direction on the
second Riemann sheet. Here we focus on the most relevant pole to the spectrum above the threshold.

mπ ↗ fπ ↘ 

σ pole

==> Three-pion system with a large scattering length
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Isospin symmetric three pions
Pion has an internal degree of freedom : isospin I=1

Universal physics (Part II)

- s-wave two-body amplitude: I=0 and I=2

it0(p) =
8⇡

m

i

1
a �

q
p2

4 �mp0 � i0+
, it2(p) = 0

Eigenvalue equation (eigenvalue B3 for eigenfunction z(|p|))

z(|p|) = 2

3⇡

Z 1

0
d|q| |q||p| ln

✓
q2 + p2 + |q||p|+mB3

q2 + p2 � |q||p|+mB3

◆
z(|q|)q

3
4q

2 +mB3 � 1
a

S-wave three-pion system in total I=1
✓
|⇡ ⌦ [⇡ ⌦ ⇡]I=0 iI=1

|⇡ ⌦ [⇡ ⌦ ⇡]I=2 iI=1

◆
=

✓
1/3

p
5/3p

5/3 1/6

◆✓
| [⇡ ⌦ ⇡]I=0 ⌦ ⇡ iI=1

| [⇡ ⌦ ⇡]I=2 ⌦ ⇡ iI=1

◆

I = 0

I = 0

=
1

3

Factor 1/3 difference from the identical boson case
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Spectrum in the isospin symmetric limit
Result: one universal three-pion bound state

Universal physics (Part II)

B3 =

1.04391

ma2
for 1/a > 0

No resonance for all a
<-- interchange of Riemann sheet = sign flip of a

Negative a: virtual state
<-- rotation of B3 by 2π = sign flip of a

-1.0

-0.5

mE |mE|3

-1.0 -0.5 0.5 1.0

1/(a|a|3)

 B2
 B3
 V2
 V3

0

-1.0

-0.5

mE |mE|3

-1.0 -0.5 0.5 1.0

1/(a|a|3)

 B2
 B3

0

B3 ! B3e
i✓ , 1

a
! 1

a
e�i✓/2

Resonances?
- phase rotation of binding energy = phase rotation of a

c.f. B2 =
1

ma2
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With isospin breaking
In nature, mπ± = mπ0 + Δ with Δ > 0

Universal physics (Part II)

- In the energy region E ≪ Δ, heavy π± can be neglected.

cutoff

-2

-1

1

2

sgn(E)|mE/g*
2|1/4

-2 -1 1

sgn(a)|1/ag*|
1/4

0

 B2
 B3

Universal physics at E ≪ (2mΛ)1/2 
<-- Efimov parameter κ*

Identical three-boson system with a large scattering length
--> Efimov effect

z(|p|) = 2

⇡

Z 1

0
d|q| |q||p| ln

✓
q2 + p2 + |q||p|+mB3

q2 + p2 � |q||p|+mB3

◆

⇥ z(|q|)q
3
4q

2 +mB3 � 1
a

f⇤(|q|)



16

Efimov resonances
Resonance solution is now possible.

Universal physics (Part II)

-12

-10

-8

-6

-4

-2

0

Im
 [m

E/
g *

2 ]

-12 -8 -4 0
Re [mE/g*

2]
-2

-1

1

2

sgn(E)|mE/g*
2|1/4

-2 -1 1

sgn(a)|1/ag*|
1/4

0

 B2
 B3

-2

-1

1

2

sgn(E)|mE/g*
2|1/4

-2 -1 1

sgn(a)|1/ag*|
1/4

0

 B2
 B3
 Re R3
 - Im R3

- phase rotation of binding energy = phase rotation of a
  and Λ + proper treatment of singularity in fΛ(|q|)

B3 ! B3e
i✓ , 1

a
! 1

a
e�i✓/2 and ⇤ ! ⇤e�i✓/2

Efimov bound state --> resonance
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Interpolation by model
A model with finite mass difference Δ = mπ± - mπ0

Discussion (Part II)

L =
X

i=0,±
⇡†
i

✓
i@t +

r2

2mi
�mi

◆
⇡i +

g

4

⇡†
0⇡

†
0 � 2⇡†

+⇡
†
�p

3

⇡0⇡0 � 2⇡�⇡+p
3

-1.5

-1.0

-0.5

sgn(E)|6/E|1/2

0.80.60.40.2-0.2-0.4

sgn(a)|(m06)1/2/a|1/2

 B2
 B3

0

Efimov

Lowest Efimov level --> universal bound state

universal 
(isospin 
symmetry)

universal 
(isospin 
breaking)

- E ≪ Δ : Efimov states, (Λ ≫) E ≫ Δ : single bound state
- cutoff for the Efimov effect is introduced by Δ.



18

Large ππ scattering length (I=0) can be 
realized by mπ ↗ or fπ ↘.

With isospin symmetry: single three-
body bound state for I=1, J=0.

With isospin breaking: Efimov states for 
three neutral pions.

Universal physics of three pions

Summary (Part II)

T. Hyodo, T. Hatsuda, Y. Nishida, in preparation

Part II : Summary

--> turn into resonances

--> turns into virtual state


