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Exotic structure of hadrons
Introduction: compositeness of hadrons

Various excitations of baryons
conventional exotic

en
er

gy

internal 
excitation

B
M

qq̄ pair 
creation

multiquark hadronic
molecule

|⇤(1405) i = N3q|uds i+N5q|uds qq̄ i+NK̄N | K̄N i+ · · ·

Physical state: superposition of 3q, 5q, MB, ...

Is this relevant strategy?
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Ambiguity of definition of hadron structure
Introduction: compositeness of hadrons

Decomposition of hadron “wave function”
|⇤(1405) i = N3q|uds i+N5q|uds qq̄ i+NK̄N | K̄N i+ · · ·

- 5q v.s. MB: double counting (orthogonality)?

- 3q v.s. 5q: not clearly separated in QCD

- hadron resonances: unstable, finite decay width

hudsqq̄ | K̄N i 6= 0

huds |udsqq̄ i 6= 0

|⇤(1405) i = ?

- NX ≠ probability?

What is the suitable basis to classify the hadron structure?
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Strategy
Introduction: compositeness of hadrons

Elementary/composite nature of bound states near the lowest 
energy two-body threshold

composite Xelementary Z

- orthogonality <— eigenstates of bare Hamiltonian
- normalization <— eigenstate of full Hamiltonian
- model dependence <— low energy universality

* Basis must be asymptotic states (in QCD, hadrons).
* “Elementary” stands for any states other than two-body 
composite (missing channels, CDD pole, …).

- 6q for deuteron
- cc ̅for X(3872)

- NN for deuteron
- D̅D* for X(3872)
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Coupled-channel Hamiltonian (bare state + continuum)

Near-threshold bound state

Formulation

- Bound state normalization + completeness relation
h | i = 1 1 = | 0 ih 0 |+

Z
d3q| q ih q |

Z, X: real and nonnegative —> probabilistic interpretation

bare state 
contribution

1 =

����h |
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| 0 i
0

◆����
2

+

Z
d3q
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continuum
contribution

 
M0 V̂

V̂ p2

2µ

!
| i = E| i, | i =

✓
c(E)| 0 i
�E(p)|p i

◆

elementariness (field 
renormalization constant)

compositeness



7

Near-threshold bound state

Z(B) =
1

1� d
dE

R |h 0 |V̂ | q i|2
E�q2/(2µ)+i0+ d

3q
���
E=�B

⌘ 1

1� ⌃0(�B)

Z in model calculations
In general, Z is determined by the potential V.

⌃(E) ⇠

- Z is model dependent (c.f. potential, wave function)
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Structure and Compositeness of Hadron Resonances

Table 1. Field renormalization constant Z of the hadron resonances evaluated on the resonance
pole. The momentum cutoff qmax is chosen to be 1 GeV for the ρ(770) and K∗(892) mesons,55,59

0.5 GeV for the ∆(1232) baryon, and 0.45 GeV for the Σ(1385), Ξ(1535), Ω baryons.60

Baryons Z |Z| Mesons Z |Z|

Λ(1405) higher pole (Ref. 58) 0.00 + 0.09i 0.09 f0(500) or σ (Ref. 58) 1.17 − 0.34i 1.22

Λ(1405) lower pole (Ref. 58) 0.86− 0.40i 0.95 f0(980) (Ref. 58) 0.25 + 0.10i 0.27

∆(1232) (Ref. 60) 0.43 + 0.29i 0.52 a0(980) (Ref. 58) 0.68 + 0.18i 0.70

Σ(1385) (Ref. 60) 0.74 + 0.19i 0.77 ρ(770) (Ref. 55) 0.87 + 0.21i 0.89

Ξ(1535) (Ref. 60) 0.89 + 0.99i 1.33 K∗(892) (Ref. 59) 0.88 + 0.13i 0.89

Ω (Ref. 60) 0.74 0.74

Λc(2595) (Ref. 56) 1.00− 0.61i 1.17

We summarize the results of the field renormalization constant Z in Table 1. We
also show the absolute values |Z| for reference. In some cases, the result depends
on the cutoff of the loop function, reflecting the scheme-dependent nature of the
field renormalization constant.

The field renormalization constant Z measures the effect of the elementary con-
tribution as the deviation from unity, while it is obtained as a complex number.
A naive prescription for the interpretation is to take the absolute value.55,58,59

Another prescription is to take the real part.60 In the examples shown in Table 1,
two prescriptions provide roughly the same result, thanks to the relatively small
imaginary part.

We should again keep in mind that these numbers are not directly interpreted
as the “probability” of the elementary component. This is clear because the result
sometimes exceeds unity, as seen in the σ meson and the Λc(2595) baryon cases.
On the other hand, it is clear that the magnitude of Z (or ReZ) should reflect the
amount of the elementary component,60 to some extent. It is an important future
project to establish a firm interpretation of the field renormalization constant of
the resonances.

5. Other Approaches to the Hadron Structure

We have been discussing the structure of hadrons from the viewpoint of the com-
positeness. This approach satisfies two conditions for a proper classification scheme
summarized in Subsec. 2.5; the compositeness is defined by the hadronic degrees of
freedom and can be related to experimental observables. On the other hand, the
extension to the resonances is not straightforward and we have not yet established
a satisfactory method, as shown in Sec. 4. In the followings, we review the other
approaches to study the structure of hadrons from different viewpoints. Since the
different approaches shed light on the different aspects of the hadrons, the com-
parison of several approaches will be helpful to elucidate the nature of the exotic
hadrons.

1330045-31

Applications:

for details, see T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)

Z can be evaluated in specific models.
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Near-threshold bound state

Weak binding limit

a : scattering length, re : effective range
R = (2μB)-1/2 : radius <— binding energy
Rtyp : typical length scale of the interaction

a =
2(1� Z)

2� Z
R+O(Rtyp), re =

�Z

1� Z
R+O(Rtyp),

Z of weakly-bound (R ≫ Rtyp) s-wave state <— observables.
S. Weinberg, Phys. Rev. 137, B672 (1965);
T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)

- Deuteron is found to be composite (Z ~ 0), 
  without referring to the nuclear force/wave function.

T. Sekihara, T. Hyodo, D. Jido, arXiv: 1411.2308 [hep-ph], to appear in PTEP
- Another derivation (expansion of the amplitude):
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Near-threshold bound state

Scaling limit
Scaling (zero-range) limit: scattering length a ≠ 0, Rtyp -> 0

- All (2-body) quantities are expressed by a: universality
E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006)

Finite Rtyp: Z expresses the violation of the scaling

B = 1/(2µa2) ) R = a ) Z = 0

- Bound state is always composite in the scaling limit.

 (r) =
e�r/a

p
2⇡ar

Rtyp

V (r)

r (r)

/ e�r/R r

r (r)|Rtyp!0 / e�r/a

a =
2(1� Z)

2� Z
R+O(Rtyp)
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a =
2(1� Z)

2� Z
R+O(Rtyp), re =

�Z

1� Z
R+O(Rtyp),

(
a ⇠ Rtyp ⌧ �re (elementary dominance),

a ⇠ R � re ⇠ Rtyp (composite dominance).

Near-threshold bound state

Interpretation of negative effective range
For Z > 0 and R ≫ Rtyp, effective range is always negative.

Simple (e.g. square-well) attractive potential: re > 0
- Only “composite dominance” is possible.

re < 0 : energy- (momentum-)dependence of the potential
D. Phillips, S. Beane, T.D. Cohen, Annals Phys. 264, 255 (1998);
E. Braaten, M. Kusunoki, D. Zhang, Annals Phys. 323, 1770 (2008)

- pole term/Feshbach projection of coupled-channel effect

Negative re —>  something other than |p>: CDD pole



11

Near-threshold resonances

Generalization to resonances

Z(B) =
1

1� ⌃0(�B)

Compositeness of bound states

complexcomplex

<— Normalization of resonances
- Problem of interpretation (probability?)

Naive generalization to resonances:
T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C85, 015201 (2012)

Z(ER) =
1

1� ⌃0(ER)

hR |R i ! 1, h R̃ |R i = 1

complex

| R̃ i ⌘ |R⇤ i

|R i

E

T. Berggren, Nucl. Phys. A 109, 265 (1968)

1 = h R̃ | 0 ih 0 |R i+
Z

dph R̃ |p ihp |R i

h R̃ | 0 i = h 0 |R i 6= h 0 |R i⇤
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Near-threshold resonances

Near-threshold resonances
Weak binding limit for bound states

- Model-independent (no potential, wavefunction, ... )
- Related to experimental observables

E

What about near-threshold resonances (~ small binding)?
shallow bound state:
model-independent 
structure

general bound state:
model-dependent real Z

general resonance: 
model-dependent complex Z
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p± =
i

re
± 1

re

r
2re
a

� 1

Near-threshold resonances

Poles in the effective range expansion
Near-threshold pole: effective range expansion

T. Hyodo, Phys. Rev. Lett. 111, 132002 (2013) with opposite sign of scattering length

1/a ! +1

1/a ! �11/re

2/re

p

- pole trajectories 
  with a fixed re < 0

Resonance pole position —> (a, re) —> elementariness

bound
state

virtual
state

resonance

f(p) =

✓
�1

a
+

re
2
p2 � ip

◆�1
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E = 0.67 MeV, � = 2.59 MeV p± =
p
2µ(E ⌥ i�/2)

Near-threshold resonances

Application: Λc(2595)
Pole position of Λc(2595) in πΣc scattering
- central values in PDG

a =� p+ + p�

ip+p�
= �10.5 fm, re =

2i

p+ + p�
= �19.5 fm

- deduced threshold parameters of πΣc scattering

Z = 1� 0.608i

- field renormalization constant: complex

Large negative effective range
<— substantial elementary contribution other than πΣc
      (three-quark, other meson-baryon channel, or ... )

Λc(2595) is not likely a πΣc composite

πΣcΛc(2595)
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en
er

gy

?

Hadron mass scaling

bound state

resonance

Systematic expansion of hadron masses

- ChPT: light quark mass mq

- HQET: heavy quark mass mQ

- large Nc: number of colors Nc

What happens at two-body threshold?

Mass scaling across threshold

Hadron mass scaling and threshold effect

x

mH(x)
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(a) (b)

bound state virtual state bound state resonance

Mass scaling across threshold

General threshold behavior

- δM < 0

- δM > 0

Eh /
(
��M2 l = 0

�M l 6= 0

Eh / ��M2 l = 0
(
Re Eh / �M

Im Eh / �(�M)l+1/2
l 6= 0

Expansion of the Jost function (δM: small perturbation)
T. Hyodo, Phys. Rev. C90, 055208 (2014)

Slope at Eh=0: field renormalization constant
Eh =

1

1� ⌃0(0)
�M ⌃0(E) ⌘ d⌃(E)

dE
= Z(0)�M,

slope: Z(0)

Z(0)=0 for s-wave —> quadratic scaling



17

Mass scaling across threshold

Chiral extrapolation across s-wave threshold
s-wave: bound state —> virtual state —> resonance

Near-threshold scaling: nonperturbative phenomenon

-0.15

-0.10

-0.05
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E h
 [R

2 /µ
]

-0.2 -0.1 0.0 0.1 0.2

bM [R2/µ]

l=0
 E
 Re E
 Im E

Bound Virtual Resonance

—> Naive ChPT does not work; resummation required.
       c.f.) NN sector, KN̅ sector, …
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Mass scaling across threshold

Scaling of three-body bound state
Near-threshold scaling is universal for 2-body system.

T. Hyodo, T. Hatsuda, Y. Nishida, Phys. Rev. C89, 032201 (2014)

Efimov trimer (s-wave 
3-body bound state)

3-body 
break up 
threshold

- 3-body case?
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So far, we consider the lowest energy threshold.

Near-threshold quasi-bound state

Generalization to quasi-bound state

bound state resonancescaling

Physically relevant situation: quasi-bound state

d NN πΣcΛc(2595)

- Scattering length is real.

- decomposition: 1 = +X1 +Z X2

quasi-bound state:
channel 1:

πΣ

X(3872)

ππΨ

KN̅ D̅D*

channel 2 (decay):

Λ(1405)

- Scattering length of channel 1 is complex.
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Near-threshold quasi-bound state

Application: Λ(1405)
Generalization of the formula

Λ(1405) is dominated by the KN̅ composite component.

Y. Kamiya, T. Hyodo, in preparation

- Formula is valid for complex a, R1, X1.
R1 = (�2µ1E)�1/2, l1 = (2µ1⌫)

�1/2

a = R1

⇢
2X1

1 +X1
+O(|Rtyp

R1
|) +O(| l1

R1
|3)

�

Example: Λ(1405) 

* Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B706, 63 (2011); Nucl. Phys. A881, 98 (2012)

E [MeV] * a [fm] * X1

-9.436 -i26 1.19 -i0.929 1.04 -i0.11

ν

a

T. Sekihara, T. Hyodo, D. Jido, arXiv: 1411.2308 [hep-ph], to appear in PTEP
- consistent with the residue calculation: 1.14 +i0.01



21

Near-threshold resonance:

Mass scaling across threshold: 

Near-threshold quasi-bound state:

Near-threshold states: structure <—> observables

Summary

Summary

- Pole position determines (a, re).
- Instead of complex Z, effective range serves
   as the measure of the elementariness.

- Quadratic scaling in s wave <— Z(0)=0

- Generalized formula for complex numbers.

T. Hyodo, Phys. Rev. Lett. 111, 132002 (2013)

T. Hyodo, Phys. Rev. C90, 055208 (2014)

Y. Kamiya, T. Hyodo, in preparation


