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K ̅meson and KN̅ interaction
Systematic analysis in chiral SU(3) dynamics

Two aspects of K(K)̅ meson
- NG boson of chiral SU(3)R ⊗ SU(3)L —> SU(3)V

—> Spontaneous/explicit symmetry breaking

- is coupled with πΣ channel
- generates Λ(1405) below threshold

KN̅ interaction ...
T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

- is fundamental building block for K-̅nuclei, K ̅in medium, ...

πΣ
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- Massive by strange quark: mK ~ 496 MeV

B
M

Λ(1405)
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SIDDHARTA measurement 
Systematic analysis in chiral SU(3) dynamics

Precise measurement of the kaonic hydrogen X-rays
M. Bazzi, et al., Phys. Lett. B704, 113 (2011); Nucl. Phys. A881, 88 (2012)

- Shift and width of atomic state <—> K-p scattering length
U.-G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)

Quantitative constraint on the KN̅ interaction at fixed energy
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SIDDHARTA Collaboration / Nuclear Physics A 881 (2012) 88–97 95

Fig. 7. Comparison of the present result for the strong-interaction 1s-energy-level shift and width of kaonic hydrogen
with the two experimental results: KEK-PS E228 (1997) [14] and DEAR (2005) [15]. The error bars correspond to
quadratically added statistical and systematic errors. The right panel shows the error in the energy shift as a function of
the width (vertical axis) for each experiment. The dashed lines represent the SIDDHARTA precision calculated assuming
the same statistics but with differing width.

both the background X-ray lines and a continuous background; (a) shows the residuals of the
measured kaonic-hydrogen X-ray spectrum after subtraction of the fitted background, clearly
displaying the kaonic-hydrogen K-series transitions.

As a result, the 1s-level shift ϵ1s and width Γ1s of kaonic hydrogen were determined by
SIDDHARTA to be

ϵ1s = −283 ± 36(stat) ± 6(syst) eV and

Γ1s = 541 ± 89(stat) ± 22(syst) eV,

respectively, where the first error is statistical and the second is systematic. The quoted systematic
error is a quadratic summation of the following contributions: the SDD gain shift, the SDD re-
sponse function, the ADC linearity, the low-energy tail of the kaonic-hydrogen higher transitions,
the energy resolution, and the procedural dependence shown by an independent analysis [31].

4. Conclusion

We have determined the strong-interaction energy-level shift and width of the kaonic-
hydrogen atom 1s state with the best accuracy up to now [31]. The obtained shift and width
are plotted in Fig. 7 along with the other two recent results [14,15]. It should be noted that the
smaller the width, the better the accuracy of determining the energy. The right panel of Fig. 7
shows the errors on the energy shift as a function of the width (vertical axis) for each exper-
iment, together with guide lines representing SIDDHARTA precision calculated assuming the
same statistics but with differing width. In comparison with the DEAR result, the accuracy of
determining the energy in SIDDHARTA is obviously improved.

�E
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Strategy for KN̅ interaction
Systematic analysis in chiral SU(3) dynamics

Above the KN̅ threshold: direct constraints

- K-p total cross sections (old data)

Below the KN̅ threshold: indirect constraints

- πΣ mass spectra (new data: LEPS, CLAS, HADES,…)

- KN̅ threshold branching ratios (old data)
- K-p scattering length (new data: SIDDHARTA)

KN̅

πΣ
energy

Λ(1405)
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Construction of the realistic amplitude
Systematic analysis in chiral SU(3) dynamics

Chiral coupled-channel approach with systematic χ2 fitting

= +

TW model

Chiral perturbation theory

TWB model NLO model

T V TV

Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B706, 63 (2011); Nucl. Phys. A881 98 (2012)

O(p2)O(p)

O(p)

2) Born terms1) TW term 3) NLO terms

7 LECs6 cutoffs



TW TWB NLO Experiment

�E [eV] 373 377 306 283± 36± 6 [10]

� [eV] 495 514 591 541± 89± 22 [10]

� 2.36 2.36 2.37 2.36± 0.04 [11]

Rn 0.20 0.19 0.19 0.189± 0.015 [11]

Rc 0.66 0.66 0.66 0.664± 0.011 [11]

�2/d.o.f 1.12 1.15 0.96

pole positions 1422� 16i 1421� 17i 1424� 26i

[MeV] 1384� 90i 1385� 105i 1381� 81i

Table 1
Results of the systematic �2 analysis using leading order (TW) plus Born terms (TWB) and full NLO
schemes. Shown are the energy shift and width of the 1s state of the kaonic hydrogen (�E and �),
threshold branching ratios (�, Rn and Rc), �2/d.o.f of the fit, and the pole positions of the isospin I = 0
amplitude in the K̄N -⇡⌃ region.

the subtraction constants ai in Eq. (7), especially those in the ⇡⇤ and ⌘⌃ channels,
exceed their expected “natural” values ⇠ 10�2 by more than an order of magnitude [14].
This clearly indicates the necessity of including higher order terms in the interaction
kernel Vij . It also emphasizes the important role of the accurate kaonic hydrogen data in
providing sensitive constraints.

The additional inclusion of direct and crossed meson-baryon Born terms does not
change �E and �2/d.o.f. in any significant way. It nonetheless improves the situation
considerably since the subtraction constants ai now come down to their expected “nat-
ural” sizes.

The best fit (with �2/d.o.f. = 0.96) is achieved when incorporating NLO terms in the
calculations. The inputs used are: the decay constants f⇡ = 92.4 MeV, fK = 110.0 MeV,
f⌘ = 118.8 MeV, and axial vector couplings D = 0.80, F = 0.46 (i.e. gA = D+F = 1.26);
subtraction constants at a renormalization scale µ = 1 GeV (all in units of 10�3): a1 =
a2 = �2.38, a3 = �16.57, a4 = a5 = a6 = 4.35, a7 = �0.01, a8 = 1.90, a9 = a10 =
15.83; and NLO parameters (in units of 10�1 GeV�1): b̄0 = �0.48, b̄D = 0.05, b̄F =
0.40, d1 = 0.86, d2 = �1.06, d3 = 0.92, d4 = 0.64. Within the set of altogether
“natural”-sized constants ai the relative importance of the K⌅ channels involving double-
strangeness exchange is worth mentioning.

As seen in Table 1, the results are in excellent agreement with threshold data. The
same input reproduces the whole set of K�p cross section measurements as shown in
Fig. 2 (Coulomb interaction e↵ects are included in the diagonal K�p ! K�p channel
as in Ref. [6]). A systematic uncertainty analysis has been performed by varying the
parameters obtained from �2 fits within the range permitted by the uncertainty measures
of the kaonic hydrogen experimental data. Since the shift and width of kaonic hydrogen
are rather insensitive to the I = 1 scattering amplitudes, the total cross section of
K�p ! ⇡0⇤ reaction is also used for the uncertainty analysis. We find that all cross
sections are well reproduced with the constraint from the kaonic hydrogen measurement
as shown by the shaded areas in Fig. 2. A detailed description of this analysis will be
given in a longer forthcoming paper [15].

Equipped with the best fit to the observables at K�p threshold and above, an opti-
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Best-fit results
Systematic analysis in chiral SU(3) dynamics

K-hydrogen and cross sections are consistent (c.f. DEAR).
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Comparison with SIDDHARTA
Systematic analysis in chiral SU(3) dynamics

TW and TWB are reasonable, while best-fit requires NLO.
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Subthreshold extrapolation
Systematic analysis in chiral SU(3) dynamics

SIDDHARTA is essential for subthreshold extrapolation.

Uncertainty of KN̅ —> KN̅ (I=0) amplitude below threshold

Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise, 
Nucl. Phys. A954, 41 (2016)
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Figure 5.13: Real (left panel) and imaginary part (right panel) of the I = 0 K̄N and
πΣ amplitudes in the full approach. The best fit is represented by the solid lines while
the bands comprise all fits in the 1σ region. The πΣ and K̄N thresholds are indicated
by the dotted vertical lines.

R. Nissler, Doctoral Thesis (2007)

SIDDHARTA
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Construction of KN̅ potential
Local KN̅ potential is useful for

Realistic KN̅ potential

- extraction of the wave function of Λ(1405)
- application to few-body Kaonic nuclei

T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)
Single-channel energy-dependent KN̅ potential

TETSUO HYODO AND WOLFRAM WEISE PHYSICAL REVIEW C 77, 035204 (2008)
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FIG. 10. (Color online) Scattering

amplitudes FK̄N from the local potential
U (r, E) (thick lines) and from the ampli-
tude T eff in the original chiral coupled-
channel approach (thin lines) obtained
by using the HNJH model for the I =
0 channel (left) and the I = 1 channel
(right). Real parts are shown as solid lines
and imaginary parts as dashed lines.

s-wave scattering amplitude is

FK̄N = 1
k(cot δ0 − i)

,

where the phase shift δ0 is determined by the asymptotic wave
function,

u(r)
r

→ A0[cos δ0j0(kr) − sin δ0n0(kr)] for r → ∞,

with spherical Bessel and Neumann functions j0 and n0.
The wave number k =

√
2µE becomes imaginary below

threshold, E < 0.
Given V eff(

√
s) as input, the range parameter b is then

fixed by requiring that the real part of the K̄N amplitude
develops its zero at

√
s ≃ 1420 MeV to satisfy the condition

for the quasibound K̄N state at this point. For the HNJH
model, this condition determines b = 0.47 fm. Note that this
scale is somewhat smaller than the typical range associated
with vector meson exchange, the picture that one has in mind
as underlying the vector current interaction generating the
Weinberg-Tomozawa term.

With b = 0.47 fm fixed, the I = 0 and I = 1 amplitudes
generated by the equivalent local pseudopotential U (r, E)
reproduce the full K̄N coupled-channel amplitudes perfectly
well in the threshold and subthreshold region above

√
s ≃

1420 MeV. However, at energies below the quasibound state,
the local ansatz [Eq. (11)] does not extrapolate correctly
into the far-subthreshold region. One has to keep in mind
that the complex, off-shell effective K̄N interaction is in
general nonlocal and energy dependent to start with. Its
detailed behavior over a broader energy range cannot be
approximated by a simple local potential without paying the
price of extra energy dependence. This is demonstrated in
Fig. 10. In the subthreshold region below

√
s < 1400 MeV,

the amplitudes calculated with the local potential overesti-
mate the ones resulting from the coupled-channel approach
significantly, in both I = 0 and I = 1 channels. One observes
that subthreshold extrapolations using a naive local potential
tend to give much stronger K̄N attraction than what chiral
coupled-channel dynamics actually predicts. Corrections to
the energy dependence of the local potential need to be applied
to repair this deficiency.

C. Improved local potentials and uncertainty analysis

The necessary corrections just mentioned can easily be
implemented by introducing a third-order polynomial in

√
s,

U (r = 0, E) = K0 + K1
√

s + K2(
√

s)2 + K3(
√

s)3,

1300 !
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FIG. 11. (Color online) Upper
panels: Strength of the fitted potential
at r = 0 (thick lines) and the strength
without correction [Eq. (11); dotted
lines] with the HNJH model. Lower
panels: Scattering amplitude f from
the local potential (thick lines) and the
amplitude Teff. in the original chiral
unitary approach (thin lines) with the
HNJH model. The real parts are shown
by the solid lines, and the imaginary parts
are depicted by the dotted lines. Left:
I = 0 channel. Right: I = 1 channel.
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U(W, r)

T (W ) = V (W ) + V (W )G(W )T (W )

- Chiral dynamics (thin)

- Potential (thick)
+ Schrödinger eq.

- Reasonable on-shell scattering amplitude on real axis
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Realistic KN̅ potential

Kyoto KN̅ potential reproduces data χ2/dof ~ 1: realistic

Realistic KN̅ potential

Issues to be improved:
- Amplitude was not constrained by SIDDHARTA
- Pole structure of the amplitude was not reproduced.

STRUCTURE OF !(1405) AND CONSTRUCTION . . . PHYSICAL REVIEW C 93, 015201 (2016)

FIG. 6. The contour plot of "F of SIDDHARTA potential (I =
0). The precise region is defined as "F < 0.2. The crosses represent
the original pole positions of !(1405).

C. Region far from the real axis

While Potential I reproduces the original amplitude near
the real energy axis, the deviation of the amplitude increases
in the region far from the real axis (see Fig. 3) and the π$
pole does not appear. Here we further improve the potential,
paying attention to the region far from the real axis.

In principle, if the original amplitude is completely re-
produced in the whole range on the real energy axis, the
analytic continuation in the complex energy plane is unique.
This suggests that the increase of the parametrized range will
improve the precision of the potential far from the real axis.3

However, there is a limitation of extension of the parametrized
range because of the threshold effect. In the present framework
of the effective single-channel potential with polynomial
parametrization, it is difficult to incorporate the nonanalytic
threshold effect of the other channels. The parametrized range
can only be extended to the nearest thresholds. In this case,
the parametrization of the K̄N potential strength should be
performed between the π$ threshold (1331 MeV) and the η!
threshold (1664 MeV). To keep the precision on the real axis
for the larger parametrized range, we increase the degree of
the polynomial from the third order to the tenth order.

To examine the above strategy, we construct the potentials
varying the parametrized range by 1 MeV. The typical results
of "Freal, Pcomp, and the pole positions of these potentials
are shown in Table III. In all cases, "Freal is reduced by an
order of magnitude from that of Potential I. This is because
we change the parametrization from the third-order to the
tenth-order polynomial. Though the wider fitting range leads
to the slightly larger "Freal, the order of magnitude remains
same. In general, when a high-degree polynomial is used for

3In this section, the correction range is chosen to be the same with
the parametrized range.

FIG. 7. Strength of SIDDHARTA potential (I = 0) U (r,E) at
r = 0. The real part is shown by the solid line, and the imaginary part
is shown by the dotted line.

the parametrization, artificial poles appear between the K̄N
and π$ thresholds. In the present case, this occurs when
the fitting range is smaller than ∼1500 MeV. However, as
the fitting range increases, these unphysical poles move away
from the relevant energy region and only two physical poles
remain. The K̄N pole appears at the original pole position,
1428 − 17i MeV and is stable against the variation of the
parametrized range. However, the position of the π$ pole
depends on the parametrized range. The optimized value of
the upper boundary of the parametrized range is 1521 MeV to
reproduce the original pole position, 1400 − 76i MeV. At the
same time, the maximum value of Pcomp is achieved. We call
the potential with the best parametrized range Potential II. We
show the contour plot of "F with Potential II in Fig. 4. As
shown in Fig. 4, we succeed in extending the precise region
to Imz ∼ −80 MeV, near the π$ pole. As a consequence, we
obtain two poles, both at the correct positions.

It turns out that the largest parametrized range does not
always lead to the best potential. In the present case, this is
because the π$ pole position moves along with the change of
the parametrized range. The best potential is achieved when
the π$ pole comes closest to the original position.

IV. APPLICATION

In the previous section, we established the construction
procedure to reproduce the original amplitude in the complex
energy plane, considering the high precision on the real
energy axis and the wider parametrized range. In this section,
we apply this procedure to chiral unitary approach with
SIDDHARTA constraint [48,49] and construct the realistic
K̄N local potential. This new potential is then used to estimate
the mean distance between K̄ and nucleon, that is, the spatial
structure of !(1405).

A. Realistic K̄ N potential

As we explained in Sec. I, the constraint from the precise
SIDDHARTA data is crucial for the quantitative calculation of

015201-7

deviation from 
original amplitude

Construction of realistic potential
K. Miyahara, T. Hyodo, Phys. Rev. C93, 015201 (2016)

- Chiral SU(3) at NLO with SIDDHARTA
- Equivalent amplitude 
   in the complex energy plane

STRUCTURE OF !(1405) AND CONSTRUCTION . . . PHYSICAL REVIEW C 93, 015201 (2016)

FIG. 1. Scattering amplitudes from the local potentials FK̄N (thick lines) and the amplitudes directly from chiral unitary approach F Ch
K̄N

(thin lines) with models ORB [68], HNJH [66,67], BNW [56,57], and BMN [58]. The real (imaginary) parts are shown by the solid (dotted)
lines.

where E, EN , and ωK are, respectively, the nonrelativistic
energy, the energy of the nucleon, and the energy of the
antikaon,

E =
√

s − MN − mK,

EN = s − m2
K + M2

N

2
√

s
,

ωK = s − M2
N + m2

K

2
√

s
,

with the mass of the antikaon mK . The spatial distribution
of the potential is governed by g(r), which is normalized
as

∫
d rg(r) = 1. The flux factor N (E) is determined by the

matching with the original amplitude at the K̄N threshold

TABLE I. Pole positions of the original scattering amplitudes
from chiral unitary approach F Ch

K̄N
and the amplitudes from the local

potentials FK̄N . All poles are found in the π$ unphysical and K̄N

physical Riemann sheet. The pole at 1440 − 76i in the BMN model
is above the K̄N threshold and hence is not in the most adjacent sheet
to the real axis.

Model Pole position (MeV)

F Ch
K̄N

FK̄N

ORB [68] 1427 − 17i, 1389 − 64i 1419 − 42i

HNJH [66,67] 1428 − 17i, 1400 − 76i 1421 − 35i

BNW [57,59] 1434 − 18i, 1388 − 49i 1404 − 46i

BMN [58] 1421 − 20i, 1440 − 76i 1416 − 27i

in the Born approximation [55]. In this work, we choose a
Gaussian for g(r),

g(r) = 1
π3/2b3

e−r2/b2
,

where the parameter b determines the range of the potential.
Using the local potential, we can calculate the wave function
from the Schrödinger equation,

− 1
2µ

d2u(r)
dr2

+U (r,E)u(r) = Eu(r), (6)

where µ = MNmK/(MN + mK ) is the reduced mass and u(r)
is the s-wave part of the two-body radial wave function. From
the behavior of the wave function at r → ∞, the scattering
amplitude FK̄N can be obtained. In Ref. [55], the parameter b
was determined to match the amplitude FK̄N with the original
amplitude in the !(1405) resonance region. In this work,
we determine the parameter b by the matching of the full
amplitude at the K̄N threshold. This prescription is along the
same line with the determination of the flux factor N (E).

The potential (4) well reproduces the original amplitude
near the K̄N threshold, while the deviation increases in
the energy region far below the threshold. To enlarge the
applicability of the potential, we add the correction %V (E)
to the strength of the potential,

U (r,E) = g(r)N (E)
[
V eff

11 (E + MN + mK ) + %V (E)
]
. (7)

For the analytic continuation of the amplitude in the complex
energy plane, it is useful to parametrize the strength of the

015201-3

potentialoriginal
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Kaonic nuclei
Few-body K ̅nuclear systems

S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara. T. Hyodo, 
arXiv:1701.07589 [nucl-th], PRC in press.

(Selected topics of) Kaonic nuclei

- Stochastic variational method with correlated gaussians
- KN̅ : Kyoto KN̅ potential, NN: AV4’ (hard core)

- bound below the lowest threshold
- decay width (without multi-N absorption) ~ binding energy

Few-body K ̅nuclear systems

KN̅N KN̅NN KN̅NNN KN̅NNNNN
B [MeV] 25-28 45-50 68-76 70-81
Γ [MeV] 31-59 26-70 28-74 24-76
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High density?
Nucleon density distribution in four-nucleon system

(Selected topics of) Kaonic nuclei

- central density increases (not substantially <— NN core)

Central density is not always proportional to B <— tail of w.f.
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Interplay between NN and KN̅ correlations 1
Two-nucleon system

(Selected topics of) Kaonic nuclei

NN correlation < KN̅ correlation (also in A=6)

N N

1S0 (INN=1) 3S1 (INN=0) 

N N

K ̅

N N

N N

K ̅

bound (d) unbound 

KN̅(I=0):KN̅(I=1) = 3:1 KN̅(I=0):KN̅(I=1) = 1:3
bound unbound

Λ(1405)
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Interplay between NN and KN̅ correlations 2
Four-nucleon system with Jπ=0-, I=1/2, I3=+1/2

(Selected topics of) Kaonic nuclei

NN correlation > KN̅ correlation

- KN̅ correlation

- NN correlation
ppnn forms α : C1 < C2

I=0 pair in K-p (3 pairs) or K0̅n (2 pairs) : C1 > C2

- Numerical result
|C1|2 = 0.08,  |C2|2 = 0.92

p p

n n

p p

p n
| K̄NNNN i = C1

0

BBBB@

1

CCCCA
+ C2

0

BBBB@

1

CCCCAK0̅K-
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KN̅ scattering is quantitatively described        
(χ2/d.o.f. ~ 1) by NLO chiral coupled-channel 
approach with accurate K-p scattering length.
Realistic KN̅ potential is now available. 
Few-body kaonic nuclei exist as quasi-bound 
states. Structure is determined by the interplay 
between NN and KN̅ correlations.

Summary: Λ(1405) 
Summary

Y. Ikeda et al. / Nuclear Physics A 881 (2012) 98–114 109

Fig. 4. Real part (left) and imaginary part (right) of the K−p → K−p forward scattering amplitude obtained from
the NLO calculation and extrapolated to the subthreshold region. The empirical real and imaginary parts of the K−p

scattering length deduced from the recent kaonic hydrogen measurement (SIDDHARTA [15]) are indicated by the dots
including statistical and systematic errors. The shaded uncertainty bands are explained in the text.

z1 = 1424 − i26 MeV, z2 = 1381 − i81 MeV.

The higher energy z1 pole is dominated by the K̄N channel and the lower energy z2 pole receives
stronger weight from the πΣ channel. This confirms the two-poles scenario of the Λ(1405) [7,
22,23]. Actually, the existence of two poles around the Λ(1405) resonance had been found in
previous NLO calculations [8,9], but the precise location of the poles, especially of the lower
one, could not be determined in these earlier studies, given the lack of precision in the empirical
constraints.

In the present analysis, the SIDDHARTA measurement provides much more severe con-
straints also on the pole positions. The real parts of z1 and z2 are remarkably stable in all three
TW, TWB and NLO schemes. The imaginary parts deviate within ! 20 MeV between these
schemes, as seen in Table 3. Using the error analysis from Eq. (23) together with the best-fit
NLO results, one finds:

z1 = 1424+7
−23 − i26+3

−14 MeV, z2 = 1381+18
−6 − i81+19

−8 MeV. (24)

The uncertainties of the pole locations are thus significantly reduced from previous work, and the
two-poles structure of the Λ(1405) is now consistently established with the constraints from the
precise kaonic hydrogen measurement. Because of isospin symmetry, the two poles are stable
against variations of the I = 1 subtraction constants (the ones in the πΛ and ηΣ channels). The
error assignments in the pole positions and half widths are mainly reflecting the uncertainties of
the K̄N and πΣ subtraction constants.

3.3.3. K−p and K−n scattering lengths
A discussion of low-energy K̄-nuclear interactions requires the knowledge of both the K−p

and K−n amplitudes near threshold. The complete K̄N threshold information involves both
isospin I = 0 and I = 1 channels. The K−p scattering length a(K−p) = [a0 +a1]/2 is given by
the average of the I = 0 and I = 1 components, whereas the K−n scattering length a(K−n) = a1
is purely in I = 1. Note that Coulomb corrections to a(K−p) and isospin breaking effects in
threshold energies may be significant [11] and must be taken into account in a detailed quantita-
tive analysis.
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