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Chapter 1

Introduction

Pairing correlations are characteristic phenomena in many-fermion systems. Especially, the nu-
clear pairing correlation has been a major subject of modern nuclear physics [1–6]. After the
establishment of the traditional mean-field theory for atomic nuclei, there have been enormous
theoretical, experimental and computational developments in this field. These developments have
led to a deeper insight beyond the pure mean-field picture.

Within the traditional mean-field theory, any nucleon inside a nucleus is assumed to be an in-
dependent particle moving in the mean-field generated by the interactions among all the nucleons.
The traditional mean-field theory was applied to atomic nuclei, e.g. by Mayer et.al. [7,8], leading
to conclusions about the shell structures and the magic numbers, which excellently agree with
empirical properties of atomic nuclei. A more sophisticated definition of the nuclear mean-field
is given by applying the Hartree-Fock (HF) theory [9–12] 1. Within the HF theory, the mean-
field for an arbitrary nucleon is defined self-consistently by considering effective nucleon-nucleon
interactions from all the other nucleons 2. However, this traditional mean-field theory takes into
account the interaction only on average, and thus misses some parts of the interaction, which is
called the “residual interaction”.

The “pairing interaction” is the most important part of the residual interaction. Taking the
pairing interaction into account, the traditional mean-field picture is modified to that including
a collection of two correlated nucleons. two nucleons, which are in unnegligible correlations. The
pairing interaction brings about a significant attraction between two nucleons when those are
coupled to be the spin-singlet state [4, 12]. Evidences for the pairing correlations can be found,
for instance, in the fact that there is a universal odd-even staggering rule in the binding energies.
That is, even-even nuclei are systematically more bound than the neighboring nuclei in the nuclear
chart. It is also known that the even-even nuclei take the spin-parity of 0+ in the ground state,
with no exceptions. Similar pairing correlations play important a role not only in nuclei, but also
in several other systems including condensed matters and cold fermionic atoms.

In recent years, the study of nuclear pairing interactions and correlations has gained a renewed
interest, due to the progress of physics of “unstable nuclei” 3 [5, 6, 13]. Unstable nuclei, which
have large neutron- or proton-excess and locate far from the β-stability line, have been a major

1The HF theory itself is a general theory for many-fermion systems. As a matter of fact, it was first applied to
the electrons in atoms.

2We should notice that this effective interaction differs from a nucleon-nucleon interaction in the vacuum, which
has a strong repulsive core at short distances. Except for the Coulomb repulsion, the repulsive core is smeared by
including the medium effect in the effective nucleon-nucleon interaction.

3Difference between “pairing interaction” and “correlation” is important. The pairing interaction means a
distinct source of the force between nucleons. On the other hand, even in the situation where the pairing interaction
does not exist, two nucleons can be kinetically correlated to each other. This correlation is mediated by other
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Chapter 1 Introduction

topic in recent nuclear physics. For these nuclei, there are considerably novel features which can
be connected to the pairing correlation [13]. Those include “dinucleon correlation”, which we
detail in the next section.

1.1 Dinucleon Correlation

The diproton and the dineutron correlations are intrinsic structural properties of atomic nuclei,
caused by the pairing interaction. As is well known, a diproton or a dineutron is not bound in
the vacuum, where the only possible bound state of two nucleons is a deuteron. However, inside
nuclei, the situation may be different from that in the vacuum. Because of the many-body effect
on pairing correlations, a possibility of the existence of diproton and dineutron-like configurations
has been discussed for more than 40 years, since the first proposal by Migdal in 1973 [14]. These
phenomena are called “dinucleon correlations”. The study of dinucleon correlations is expected
to provide a novel and universal insight into other strongly-correlated many-fermion systems.

Based on the microscopic theory for the pairing correlations, e.g. HF-Bardeen-Cooper-Schrieffer
(HF-BCS) or HF-Bogoliubov (HFB) theory [5,6,12], it has been known that the pairing correlation
depends on the surrounding density, ρ [15–20]. For instance, the pairing gap in infinite nuclear
matter takes the maximum at a density smaller than the normal density. This density-dependence
is naively due to the many-fermion effects. However, the exact origin of this density-dependence
has remained unclarified, though some candidates have been discussed. Those include (i) the
momentum-dependence of bare nucleon-nucleon forces, (ii) the Pauli principle and (iii) effects of
nuclear three-body forces. It should be emphasized that this density-dependence causes a variety
of pairing correlations. In the deeper region of nuclei with normal nuclear matter-density, a pair
of nucleons is found to be a Cooper pair in the HF-BCS theory [4]. This pair is in the regime of
weak pairing correlations, and its spatial distribution is much expanded compared to the typical
radii of nuclei. On the other hand, in the low density region, the situation can be altered due
to the density-dependence of the pairing correlation. The effective pairing correlation can be
enhanced in that region, resulting in the spatial localization of two neutrons and protons, and
also the increase of the probability of the spin-singlet configuration. Namely, in this situation, a
pair of nucleons plays as a dineutron- or diproton-like cluster. The existence of this strong corre-
lation can be considered within a wide range of the surrounding density, ρ/ρ0 ∼ 0.1−0.01, where
ρ0 ∼ 0.15 fm−3 is the nuclear saturation density [17]. Finally, if the density becomes infinitesi-
mally small, the pairing correlation vanishes and two neutrons or protons become unbound. This
limit is identical to two nucleons in the vacuum.

From a phenomenological point of view, the dinucleon correlation is a kind of phase-crossover
in many-nucleon systems with dilute densities 4. Such a dilute density-situation has been expected
to occur especially in the valence orbits of weakly-bound neutron-rich nuclei. For the past about
two decades, neutron-rich nuclei with large neutron-excess and shorter lifetimes for the beta-
decay have been extensively studied. This is grealy thanks to the experimental achievements
which have provided the access to these nuclei [22, 23]. In the ground state of these nuclei, the
valence neutrons should be in the outer orbit far from the core, where the surrounding density
is not so large that the pairing correlation is expected to increase [15, 16]. This is especially the
case for weakly bound nucleons [24–27]. Various theoretical and experimental studies have been

particles in the system. Namely, the paring correlation originates both from the pairing interaction and the
many-body dynamics.

4Another famous example of similar phenomena is the alpha-clustering inside nuclei [21]. In this thesis, however,
we do not discuss it.
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Chapter 1 Introduction

performed to investigate the dineutron-correlation in such nuclei, in connection to its influence on
the nuclear structures and reactions. These studies have shown that the correlation may invoke
sizable effects on some phenomena, including the electro-magnetic excitations [26, 28, 29], the
Coulomb break-up reactions [30–35] and the pair-transfer reactions [36–38]. On the other hand,
for proton-rich nuclei, even though a similar diproton correlation can be considered [39], it has
so far been less studied compared to the dineutron correlation. Whether the Coulomb repulsion
disrupts the diproton-like configuration or not in proton-rich nuclei is still an remaining question,
though its effect has been found to be weak compared to the nuclear attraction [39–43]. For both
dineutron and diproton correlations, further quantitative and qualitative investigations are still
in progress today.

The prediction of the dinucleon correlation is an important conclusion from the recent nuclear
theory, and its detection will give us a strong constraint on the basic properties of our nuclear
models. However, as we will discuss in Chapter 2, even with various efforts, there have been
no direct experimental evidences for the dinucleon correlation, mainly because it is an intrinsic
structure which is hard to be detected.

1.2 Two-Proton Decay and Emission

Given these difficulties mentioned in the previous section, “two-proton emission” and “two-proton
radioactive decay” have been expected to provide a novel way to access the diproton correlation.
Those are the quantum tunneling phenomena that two protons are emitted from the proton-rich
nuclei beyond the proton-dripline [44–46]. In this process, the decay products can be strongly as-
sociated with the pairing correlation between two protons. The importance of pairing correlations
are suggested from, for instance, that observed 2p-emitters have the even number of protons with
no exceptions. Thus, emitted two protons are expected to carry information about the pairing
correlations, probably including the diproton correlations in nuclei [47, 48]. We focus on these
phenomena in the next section.

The oldest example of the two-proton (2p-) emitter is the 6Be nucleus, where its “alpha+p+p”
resonance has been experimentally observed for several decades [49–56]. Following 6Be, similar
three-body resonances have been observed in the ground state of a few light proton-rich nuclei,
such as 12O [57,58] and 16Ne [57,59]. A typical Q-value and decay-width of these resonances are
on the order of 100 keV. For these nuclei, the potential barrier between the core and a proton
is mainly due to the centrifugal force, whereas the Coulomb force is relatively small. Because of
the low potential barrier, the decay width is comparably broad compared to the Q-value of these
nuclei.

On the other hand, the 2p-radioactive decay is a novel decay-mode of medium-heavy and heavy
nuclei outside the proton-dripline 5. A typical lifetime for the 2p-decays of these nuclei is 1-10 ms,
corresponding to a typical decay width of 10−18-10−19 MeV. A typical Q-value is around 1 MeV,
similarly to light 2p-emitters. The significantly narrow width, compared with light 2p-emitters,
is due to the higher Coulomb barriers, which considerably reduce the tunneling probabilities of
two protons. In this category, 45Fe is the most famous example for the 2p-radioactivity. At the
beginning of 2000s, the first observation of 2p-radioactivity was made for the 45Fe nucleus [61,62].
After this first discovery, the 2p-radioactivity has been confirmed also for 54Zn and possibly for
48Ni.

5In this thesis, as a criterion of “radioactivity”, we adopt a typical lifetime of 10−7 s [60]. If the considering
system or process has a shorter lifetime than this criterion, we refer to it simply as the 2p-emitter or emission.
The corresponding decay width to this criterion is about 10−14 MeV.
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Chapter 1 Introduction

It is also predicted that the 2p-decays and emissions are not limited particularly in these
nuclides but universally exist along the proton-dripline until Z ≤ 82 [46, 60]. Suggested nuclides
to have this decay-mode include 26

16S [44], 30
18Ar [44,46], 34

20Ca [46], 38
22Ti [46], 41,42

24 Cr [46], 58
32Ge [46,60],

62,63
34 Se [46,60], 66

36Kr [46,60], 102,103
52 Te [60], 109,110

56 Ba [60], 155
78 Pt [60], 159

80 Hg [60], and so on. Recently,
the similar processes but emitting two neutrons, namely “two-neutron emissions or decays” are
reported for 13

3 Li [63], 16
4 Be [64] and 26

8 O [65]. Together with the 2p-emitters, studies of two-neutron
emitters can lead to the universal understanding of the two-nucleon radioactivity on both proton
and neutron-rich sides.

On the theoretical side, the first prediction of 2p-radioactivity was done by Goldansky in
1960 [66, 67]. He argued that a “true 2p-decay” is allowed only for nuclei where the emission of
single proton is energetically forbidden. The pairing interaction plays an important role to realize
this situation, by lowering in energy the ground state of even-even parent and daughter nuclei
with respect of the even-odd intermediate nucleus. In this situation, two protons must penetrate
the potential barriers simultaneously. At the earlier stage of study, two simple models for the
true 2p-radioactivity were proposed, namely “the diproton” [66–68] and “the direct decays” [69].
In these old models, two protons are assumed to decay without passing the intermediate core-
nucleon resonance. The diproton and direct decays correspond to the limits with relatively a
strong and weak pairing correlations. On the other hand, another simple decay-model was also
considered in different situations. It is the “sequential”, or sometimes called “cascade 2p-decay”,
which can exist in nuclei where the one-proton emission is energetically available [69]. In this
situation, the core-nucleon binary channel becomes dominant, whereas the pairing correlations
may be not significant.

However, with various theoretical and experimental developments, it has been shown that
the actual 2p-decays and emissions are more complicated than these simple modes. For some
2p-emitters, including 45Fe and 6Be for instance, their decaying mechanism cannot be described
neither with any of these models [55, 70–73]. It means that the actual 2p-decays and emissions
involve several dynamical processes in a complicated way. From recent studies, the structures of
material nuclei and the production mechanism of the 2p-emitters are also shown to be responsible,
as well as all the final-state interactions among particles [54,56,74]. The question whether emitted
two protons have the diproton-like character or not still remains unsolved, that critically relates
to the diproton correlation.

As another interest in 2p-emissions, we here briefly mention the quantum entanglement [48,
75]. Since 2p-emissions and decays involve a propagation of two fermions, analyzing their wave
functions may provide another route to approach, e.g. the Bell’s inequality [76] or the Einstein-
Podolski-Rosen paradox [77]. Observation of two protons in spin-entanglements would become an
examination of the basic quantum mechanics, that is complementary to other studies performed
in quantum optics and atomic physics.

Obviously, gaining useful information from 2p-emissions depends on our ability to describe
the multi-fermion property and the quantum meta-stability simultaneously [78–80]. For these
quantum resonances and tunneling phenomena, there are mainly two theoretical frameworks;
namely within the time-independent framework [81–84] and the time-dependent framework [84–
86]. The time-independent one is based on non-Hermite quantum mechanics. In this framework,
one solves, e.g. a Gamow state [81, 82], which is assumed to be a purely outgoing wave outside
the potential barrier. Generally such state must have a complex eigen-energy, in order to satisfy
the outgoing boundary condition. The imaginary part of the complex energy of the Gamow state
is related to the decay width, while the real part corresponds to the resonance energy or the Q-
value. An advantage of the time-independent approach is that the decay width can be calculated
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Chapter 1 Introduction

with a high accuracy even when it is extremely small [46,87,88]. On the other hand, in the time-
dependent framework which we will adopt in this thesis, resonances or tunnelings are treated as
time-developments of quantum meta-stable states. An advantage of the time-dependent approach,
compared with the time-independent one, is that it provides an intuitive way to understand the
tunneling mechanism, even though it is difficult to be applied to the situation with an extremely
small decay width, where it needs very long time-evolutions for the meta-stable state to decay out.
Especially, for light 2p-emitters with relatively the broad widths, the time-dependent method is
expected to provide a complementary studies to the time-independent method.

1.3 Aim of This Thesis

The aim of this thesis is to investigate theoretically the relation between the observables in 2p-
emissions and the diproton correlation. As we wrote, although there have been various predictions,
direct experimental evidence of diproton and dineutron correlations has not been obtained. Re-
cently, on the other hand, two-proton decays and emissions have attached much attention in order
to provide the direct probe into the diproton correlation. Nevertheless, the relation between the
observed data and the nuclear intrinsic structures, including the diproton correlation, has been
little discussed [48, 56]. Thus, our present study is expected to provide a novel insight into these
important problems.

In this thesis, we will employ the three-body model consisting of the core (daughter) nucleus
and two valence nucleons. This model can treat the pairing correlations between the valence
nucleons based on the semi-microscopic picture. In order to take the meta-stability into account
for the 2p-emissions, we will adopt the time-dependent framework. Though the time-dependent
approach has so far been applied only to two-body decaying systems, such as α-decays or one-
proton decays, this framework can bring about an useful mean to explore the mechanism of many-
particle tunnelings, covering the whole stages of the time-evolution. We would like to emphasize
that this time-dependent model has an advantage to distinguish the effect of pairing correlations
from other results. Especially, it is worthwhile to investigate the evolution of 2p-wave function
inside and outside the potential barriers, which can reflect the effect of the diproton correlation
on 2p-emissions.

The thesis is organized as follows. In Chapter 2, the history of studies about the dinucleon
correlation is reviewed, with some connections to unstable nuclei. We will mention other exotic
features of unstable nuclei, closely relating to the dinucleon correlation. In Chapter 3, in order to
describe the dinucleon correlation, we formulate the theoretical three-body model. In Chapter 4,
we will apply this model to 17,18Ne and 18O nuclei, and discuss the dinucleon correlations in these
nuclei. Apart from the beta-decays, these nuclei are stable against the neutron-, proton-, and
alpha-emissions and thus provide good testing grounds for the dinucleon correlations in bound
many-nucleon systems. We also discuss the effect of Coulomb repulsions on the nuclear pairing
correlations, and whether the diproton correlation exists similarly to the dineutron correlation.

In Chapter 5-8, we then discuss the diproton correlations in two-proton emissions. In Chapter
5, the historical overview of two-proton emissions and radioactive decays are summarized. Chapter
6 is devoted to a formulation of the time-dependent method for the quantum meta-stable systems,
including two-proton emitters. In Chapter 7 and 8, the time-dependent three-body model is
applied to analyze 2p-emissions of 6Be and 16Ne nuclei, for which the three-body treatment is
expected to be valid. These light proton-rich nuclei have relatively large values of the 2p-decay
width, which are expected to be well described within the time-dependent framework. We will
discuss whether the diproton correlation can be identified in the two-proton emissions.
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Chapter 1 Introduction

Finally, the summary of this thesis is present in Chapter 9. Future works towards the further
improvements are also proposed.
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Chapter 2

Review of Dinucleon Correlation

In this Chapter, we briefly summarize the history of studies on the dinucleon correlation, and
also of some related topics. We do not include the two-nucleon emissions and radioactive decays
here, which will be detailed in Chapter 5.

2.1 Dinucleon Correlation in Stable Nuclei

The first proposal of the dinucleon correlation was made by A.B. Migdal for two neutrons inside
nuclei [14]. He argued that, even a dineutron is not bound in the vacuum, there can be a bound
state of two neutrons near the surface of atomic nuclei, due to the nuclear meanfield confining
those. After his proposal, several theoretical studies have been performed regarding the dineutron
correlations. The dineutron correlation can be characterized as the special localization of two
neutrons with, a compact distance compared to the total radius of the whole nucleus, and a large
component of the spin-singlet configuration. For the spin-singlet character, it has been known
from, e.g. the characteristic odd-even staggering of binding energies, that two nucleons in the
same orbit tend to couple into the spin-singlet state due to the pairing correlation.

Various efforts have been devoted to investigating the spatial correlation between two nucleons
associated with the pairing interaction. The paper by Catara et.al. is worthwhile to be mentioned
[89]. In this paper, the authors discussed the two-neutron spatial correlation caused by the pairing
interaction in the ground and excited 0+ states of 206Pb, based on shell model with a schematic
pairing interaction. It was shown that the parity-mixing in the partial core-neutron system is
indispensable to occur the spatial localization of the two neutrons in the ground state (see Figure
2.1). This parity-mixing is due to the scattering effect due to the pairing interaction inside nuclei.
It was also suggested that the pairing interaction is responsible not only for localization of two
neutrons, but also for an increase of the spin-singlet configuration, which cannot be explained
within the pure shell (mean-field) model. At the same time, the authors raised the alarm that
contributions of the pairing interaction (∼ 1 MeV) to the relative distribution of two neutrons are
not sufficiently large to overcome the dominant shell structure. They argued that a two-neutron
cluster cannot have a δ-function-like distribution, even if an enormously large model-space is
employed.

Similar calculations but based on different theoretical models have also been performed, where
their conclusions agree with each other [16,25,26,90–92]: the pairing interaction causes the spatial
localization with the enhanced spin-singlet configuration, which is absent in the pure mean-field
model. We also touch on the paper [16] by Matsuo and his collaborators. In this paper, based on
the Hartree-Fock-Bogoliubov theory, the authors discussed the pairing and dineutron correlations
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Figure 2.1: The figure quoted from Ref. [89]. In panels (a) and (b), authors show the density
distributions of two neutrons without configuration mixing of different parities. In panel (c), on
the other hand, they show the result with configuration mixing, where the localization of two
neutrons can be seen.

in medium-heavy neutron-rich nuclei. It was shown that the mixing of, not only the core-nucleon
parities, but also higher core-nucleon angular momenta, l, are indispensable to invoke the spatial
localization of two neutrons.

We also refer to the connection between the dineutron correlations and the pair-transfer reac-
tions. It has been actively discussed that the dinucleon correlation may enhance the cross sections
for the simultaneous two-nucleon transfer reactions. The simplest probe is given with (t, p) and
(p, t) reactions. The pair-transfer strength of nuclides differing by two units have been studied
extensively in the experiments using these reactions [36,38,93,94]. As a result, the significant in-
crease of transfer cross sections for nuclei with even-number nucleons has been found. A detailed
theoretical studies was also performed in [37] by Igarashi et.al. for Pb isotopes. They showed
that the cross sections of (p, t) reactions are increased due to the configuration mixing caused
by the pairing interaction, that is consistent with the experimental data. Following these simple
cases, a similar enhancement in collisions of two heavy-ions (HIs) has also been predicted and
observed [95–101]. The enhanced pair-transfer cross sections can be naively understood as arising
from the transferred dineutron-like cluster, which can be associated with collective features, e.g.
the pair-vibrational or/and the pair-rotational excitations. However, the pair-transfer reaction
itself is not only from the one-step transfer of spatially localized two nucleons, but also from the
sequential two-step transfers.

Thus, in discussing the dinucleon correlations, the second mechanism has to be handled with
good care. Even with many experimental data, whether one can extract useful information on
the dinucleon correlations depends on the theoretical ability to describe its collective effect on the
pair-transfer reactions in heavy-ion collisions [38]. In theoretical calculations, one should treat
a change of coordinates associated with transferred two nucleons to evaluate the reaction cross
sections.

It considerably complicates a theoretical formulation of two-neutron transfer reactions, if one
treats it rigorously. At the same time, the results sensitively depend on the wave functions of
two colliding nuclei, which should be computed by taking the pairing correlations into account.
In order to get a sufficient accuracy, there still remain several problems for nuclear structure
calculations, including the nuclear tensor forces, the core excitations and so on, in addition to
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a theoretical modeling of a complicated pair-transfer reaction. It is expected that theoretical
improvements overcoming these difficulties will provide an evidence for the dinucleon correlations.

2.2 Unstable Nuclei

The dineutron correlation has been attracted a renewed interest due to the establishment of the
unstable nuclear physics. For neutron-rich unstable nuclei, the idea of the dinucleon correlations
has been frequently discussed as one of the exotic features associated with the pairing correlation
in weakly bound systems.

The frontier of nuclei in the nuclear chart has been expanded enormously for the recent
decades. This is mainly thanks to the experimental developments enabling one to access “unsta-
ble” nuclei. These nuclei have a large proton- or neutron-excess, locate far from the β-stability
valley, and are significantly short-lived compared with traditional radioactive nuclei close to the
beta-stability line. For any unstable nuclide, one should be careful of “what makes it to be un-
stable”. Most unstable nuclei known today are, in fact, stable against the nucleon emission. The
main source of this instability is thus the weak interactions, not the strong interactions. On the
other hand, by increasing the proton or neutron-excess, one can find many nuclides which are
unstable against the nucleon emission. These nuclides define the proton- and neutron- driplines.
Nuclei near and beyond these driplines can be considered as novel and exotic regions in nuclear
physics. For the past decades, studies of these exotic nuclei have brought about deeper insights
into nuclear physics, even though those scarcely exist on earth.

2.2.1 Neutron-Rich Nuclei

Historically, the earlier interests were focused on the neutron-rich side. Especially, since the
seminal experiments with radioactive isotope (RI) beams performed in 1980’s [22,24,102], several
exotic features in neutron-rich unstable nuclei have been discovered. These exotic features mainly
due to the weakly binding of valence neutron(s). We list them below.

1. Dineutron correlation: As mentioned in Chapter 1, for neutron-rich nuclei, the strong
pairwise correlation between two neutrons has been predicted. Its source is the density-
dependence of the pairing correlation, and it may lead to the dineutron-like clustering
inside nuclei. We introduce this topic more in detail later.

2. Halo and skin structures: A Large extension of the density distribution has been found for
several neutron-rich nuclei, which are referred to as “halo” or “skin” nuclei [22, 24, 102].
Famous examples include 6He and 11Li. For these nuclei, significantly large reaction cross
sections were observed. By analyzing these experimental data with the Glauber model [103],
their neutron radii were shown to be significantly larger than other isotopes (see Figure
2.2(a)). The neutron density was shown to have a long tail from the core nucleus. The
weakly bound neutron(s) in the valence (s1/2)- or (p3/2,1/2)-orbit can generate this tail, like
the halo or the skin around the core. With neutron-removal reactions, the corresponding
narrow momentum distributions have been observed in such nuclei [30, 104, 105]. Studying
these structures can lead to the understanding of the loosely bound or the dilute density
region of nuclear systems.

3. Soft multi-pole excitations: A significant increase of the probability for the electro-magnetic
excitations at the lower energies has been observed for several nuclei [28, 31, 105–107]. Es-
pecially, as shown in Figure 2.2(b), the E1-transition strength of 11Li has a remarkable
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increase at excitation energies around 1 MeV only. This is in marked contrast against
normal nuclei, which show the E1-response at E = 10−20 MeV due to the giant dipole res-
onance [108–110]. Theoretically, It has been considered that the soft multi-pole excitations
are due to the relative motion between the core and the loosely bound neutron(s) [111].
Especially, for nuclei with two or more loosely bound neutrons, it is expected that the exci-
tation spectra reflect not only the core-neutron motion but also the relative motion of two
neutrons [16, 26, 28, 29, 33–35,40, 105, 112–119]. Geometry of the ingredient particles inside
nuclei may be also revealed by analyzing these excitations. Especially, the opening angle
between the valence neutrons is an important quantity, which is intimately related to the
dineutron correlation [26, 28, 29].

4. Borromean character: For several nuclides, so called “Borromean character” has also been
discussed [25, 26, 114, 120]. A Borromean nucleus is defined as a three-body bound system
in which any two-body subsystem does not bound alone. Famous two-neutron Borromean
nuclei are 6He ∼= α + n + n and 11Li ∼= 9Li +n + n, where 5He, 10Li and a dineutron have
no bound states. The pairing interaction between the valence nucleons plays an essential
role in stabilizing these nuclei [25]. A similar character exists in proton-rich nuclei, namely
a two-proton Borromean nucleus, 17Ne [118, 121–125]. The Borromean character deeply
associates with the halo structure and the soft multi-pole excitations. For 6He or 11Li,
as mentioned above, there have been enormous experiments which suggest the extended
density-distribution or the enhancement of low-lying excitations.

5. Two-neutron emission: Recently, as we touched on Chapter 1, two-neutron emissions from
the ground states have been observed in several neutron-rich nuclei [63, 64, 126]. Because
there are no Coulomb barriers for neutrons, the main source of these resonances is the
centrifugal barriers between the core (daughter) nucleus and valence neutrons. Similarly to
2p-emissions, two-neutron emissions are promising phenomena which can provide the useful
means to investigate the dineutron correlations. In this thesis, however, we do not discuss
the two-neutron emissions in detail.

Of course, these listed properties are entangled to each other. Our main interest in this thesis
is the dineutron and, as mentioned later, the diproton correlation. However, except for nuclei
with only one weakly bound nucleon, we can overlook all of the above properties from a common
point of view: “pairing correlation”. Therefore, a deep understanding of the dinucleon correlation
is expected to reveal not only a novel aspect of the pairing correlations, but also an universal
property covering all the subjects listed above. Furthermore, these research achievements may be
exported to other multi-fermion systems.

2.2.2 Proton-Rich Nuclei

We also summarize supplementary information unique to the proton-rich side. In fact, the exotic
features listed in the previous subsection can be considered almost equally for the proton-rich
unstable nuclei. For example, the 17Ne nucleus is a 2p-Borromean nucleus [118, 121–125], and
also is a famous candidate to have the 2p-halo [118,121,122,125,127] and the diproton correlation
[39, 40, 124]. Nevertheless, compared to the neutron-rich side, the proton-rich unstable nuclei
have been less studied so far. The characteristic problem in proton-rich nuclei is, of course,
the Coulomb repulsion between the valence protons. As a natural consequence of the Coulomb
repulsion, proton-rich nuclei have less binding energies than those of their mirror neutron-rich
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(a) (b)

Figure 2.2: Taken from Ref. [22] (in the left panel) and Ref. [28] (in the right panel). The
left panel: The root-mean-square matter-radii determined from experimental data of reaction
cross sections. Large radii of 6He, 8He and 11Li can be seen. The right panel: The E1-strength
distribution observed with the Coulomb break-up of 11Li. An enhancement of the strength in
lower energy region is present.

nuclei. Furthermore, even if its mirror partner can be bound, a proton-rich nucleus may become
unstable against proton(s)-emissions. Thus, if we restrict our interests in nuclei which are stable
against nucleon emissions, proton-rich side may be, in a sense, “barren land”. This is a symbolic
property of the breaking of the mirror-symmetry. However, abandoning this restriction, breaking
of the mirror-symmetry can be interpreted as an useful property which produces a variety of
phenomena of atomic nuclei, some of which can be observed only on the proton-rich side [3, 128,
129].

Concerning the pairing properties, it has been frequently discussed whether the Coulomb
repulsion strongly affects the nuclear pairing attraction or not. Recent studies suggest that
the effect of the Coulomb repulsion on binding energies of nuclei is minor, and the effect is
roughly estimated as an about 10% reduction over the nuclear attractions. This conclusion can
be deduced from several theoretical and experimental analysis [41–43, 130]. Moreover, in our
previous studies [39, 40], it was also suggested that the diproton correlation can exist in proton-
rich nuclei similarly to the dineutron correlation in neutron-rich nuclei, due to the minor role of
the Coulomb repulsion. If the diproton correlation really exists, breaking of the mirror-symmetry
can provide another route to probe it, namely “two-proton (2p-) radioactivity”. This idea is the
basis of this thesis, and we will detail it in Chapter 5.

2.3 Dinucleon Correlation in Unstable Nuclei

Because of the recent theoretical and computational developments, it has become possible to
perform much reliable calculations for nuclear pairing correlations. This development brought us
a point of view to discuss the dinucleon correlations in connection to the density-dependence of
pairing correlations.
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Figure 2.3: Taken from Ref. [17]. The pairing gap in the symmetric and the pure-neutron nuclear
matters as functions of the density, ρ. Those are calculated based on the HF-BCS theory with
some different models of the nuclear interaction.

For this purpose, it is useful to discuss nuclear matter at first. There have been considerable
studies which reports the significant density-dependence of nuclear pairing correlations in the
nuclear matter [17,18,131,132]. We especially refer to the Ref. [17], where the author applied the
HF-BCS approach to the symmetric and pure-neutron nuclear matters. According to their results,
as shown in Figure 2.3, the pairing gap in both symmetric and pure-neutron matters significantly
depends on the density, ρ. It takes the maximum value within the densities of ρ/ρ0 ≃ 0.1− 0.01,
where ρ0 ∼ 0.15 fm−3 is the nuclear saturation density. Furthermore, as shown in Figure 2.4, it is
found that the spatial distribution of the spin-singlet Cooper pair of nucleons within a wide range
of ρ/ρ0 ≃ 0.5 − 10−4 is well localized with a typical distance of rN−N ≤ 5 fm. They also found
a compact root-mean-square (rms) radii, ξrms ≤ 5 fm of two nucleons, suggesting the dinucleon
correlations in nuclear matters. On the other hand, in the saturated or the infinitesimal density-
region, a Cooper pair loses the dinucleon correlations. This result is, of course, the coincidence to
the weakening of the pairing correlations in the saturated and the infinitesimally dilute densities.
We also note that this variety of the pairing correlations as a function of the density can be
connected to the BCS-BEC crossover in nuclear matters. In the paper [17], it was suggested
that the region of ρ/ρ0 ≃ 0.1− 10−4 corresponds to the domain of the BCS-BEC crossover. The
similar conclusions have been obtained from other studies, although there are some quantitative
differences in the appropriate value of ρ at which the dinucleon correlation and the BCS-BEC
crossover appear [18, 131, 132].

The similar studies have been performed for finite nuclei, where some of those were already
introduced in Sec. 2.1. Furthermore, for unstable nuclei with weakly-bound nucleons, the dinu-
cleon correlations have been discussed in connection to other exotic features listed in the previous
section. Especially, 6He, 11Li and 17Ne nuclei have attracted much attentions. Theoretical studies
in Refs. [25–27, 29, 39, 91, 92, 113, 118–120, 122–125, 133–137], were dedicated for these problems.
A popular model, on which almost all of these theoretical studies were based, is the nuclear
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Figure 2.4: Taken from Ref. [17]. The wave function of a Cooper neutron-pair in the symmetric
and pure-neutron matters, calculated with the HF-BSC theory.

three-body model, where one can describe a pair of nucleons in the mean-field generated by the
core nucleus. The density-dependence of pairing correlations is usually taken into account in a
phenomenological way, such as modifying the pairing interaction from that in vacuum. According
to these mean-field plus pairing model calculations, a strong localization of the valence nucleons
inside the ground states of these nuclei has been predicted [25–27,29,39,120,123,124,133,134,136].
As an example, Figure 2.5 taken from Ref. [27] shows this localization. This localization often
occurs together with an enhancement of the spin-singlet configuration, identically to the dinu-
cleon correlations. We also note that nuclei with weakly bound nucleons are expected to be good
testing grounds for the BCS-BEC crossover in finite nuclei [27] and the anti-halo effect of pairing
correlations [138–140]. These topics are, however, beyond the scope of this thesis.

2.4 Possible Means to Probe Dinucleon Correlation

Although there have been various theoretical predictions, there have been so far no direct evi-
dences for the dinucleon correlation. The most serious difficulty is that the diproton and dineutron
correlations are intrinsic phenomena, and are hard to be probed by popular means of experiments.
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Figure 2.5: Taken from Ref. [27]. The density distribution of the valence two neutrons in 11Li,
obtained with 9Li+n + n model calculations. A localization with r ∼= 2 fm and R ∼= 3 fm can be
seen.

Especially, for the dinucleon correlations in the bound state, it is in principle impossible to probe
those without disruptions by an external field. Thus, we have to change our view to “how well
do we extract the information on the dinucleon correlations”.

For the purpose towards this direction, a lot of possibilities have been discussed. The first
one is analyzing the pair-transfer reaction in heavy-ion collisions. Its basic idea, history and the
present difficulties have already been introduced in Sec.2.1. We should also note that, for unstable
nuclei, a theoretical analysis for the pair-transfer reactions may become even more complicated
due to their exotic structures. If these problems can be resolved, the pair-transfer reaction will
be one of the most powerful tools to investigate the dinucleon correlations in both stable and
unstable nuclei.

The second candidate is using excitations by electro-magnetic interactions. The soft multi-
pole excitations and the Coulomb break-up reactions belong to this category. For instance, the
momentum distributions observed in Coulomb break-up reactions have been discussed frequently
associated with the dinucleon correlations [28,29,34,35,105,119]. However, these experiments are
performed by perturbing the ground state properties [32,34,117]. Consequently, the experimental
results depend not only on the ground state, but also on the excited states. From recent theoretical
studies, it is concerned that this inclusion of excited states suppress the sensitivity to the dinucleon
correlation, bringing a serious drawback to the direct access to it [34]. Furthermore, even if there
will be a significant signal of the dinucleon correlations in the experimental data, one must
distinguish whether it reflects the dinucleon correlations in the ground or in the excited states.

Another possibility to probe the dinucleon correlation is to observe two-nucleon decays and
emissions. These attempts have been performed intensively since the beginning of 2000s, mainly
due to the remarkable developments in the experimental techniques [44, 45, 141]. However, the
connection between the two-nucleon emissions and the dinucleon correlations has not yet been
clarified [48, 142–144]. In Chapter 5, we will summarize the history and backgrounds of these
topics.
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2.5 Summary of this Chapter

We have introduced the historical background of dinucleon correlations and its relevant topics
in this Chapter. Although it is still a theoretical prediction, the dinucleon correlation is one
of the important characters of multi-nucleon systems, and is essentially connected to the nu-
clear pairing correlations. If the dinucleon correlations will be directly detected, it will provide
strong constraints on the nuclear interactions and on the framework for multi-nucleon problems.
Furthermore, we may extract an universal knowledge in other multi-fermion systems from these
observations.

In Chapters 3 and 4, we discuss how the dinucleon correlations are theoretically predicted. For
this purpose, we will employ the three-body model, similarly to Refs. [25–27,29, 39, 91, 113, 118–
120, 122–125, 133, 134, 136]. The next Chapter will be dedicated to the formalism of this model.
Applying this model to several nuclei, we will discuss the dinucleon correlations in finite nuclei.
Those will be summarized in Chapter 4.
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Chapter 3

Quantum Three-Body Model

In this Chapter, we introduce in detail the three-body model of the core nucleus + nucleon +
nucleon, which we use to describe the dinucleon correlations. This model is identical to the
three-body version of the Core-Orbital Shell Model (COSM) [145]. With COSM, one starts from
considering the core nucleus as a source of the mean-field. Then one adds one or more valence
nucleon(s) around the core. In this thesis, we do not care about the core-excitations and thus the
core plays simply as an inert particle. The pairing correlations between the valence nucleons can
be explicitly included in this model. The deviations from the pure mean-field approximation can
also be discussed, providing the semi-microscopic point of view of the pairing correlations.

In our formalism, the coordinates and the spin variables of each nucleon are indicated as ri

and si (i = 1, 2), respectively. We also use ξi ≡ {ri, si} for a shortened notation. 1 The angular
variable, that is equivalent to the radial unit vector, are indicated by r̄. The orbital and the
spin-coupled angular momenta are indicated by l = r × p/~ and j = l + s, respectively.

3.1 Three-Body Hamiltonian

We define the V-coordinates for three-body systems, similarly to other papers [25, 91, 133]. The
vector ri indicates the relative coordinates between the core nucleus and the i-th valence nucleon
(see Fig.3.1). We subtract the center of mass motion of the whole system. Thus, apart from the
spin variables, we need two vectors, r1 and r2, to fully describe the system. The total Hamiltonian
reads

H3b = h1 + h2 +
p1 · p2

Acm
+ vN−N(ξ1, ξ2), (3.1)

hi =
p2

i

2µ
+ Vc−N(ξi), (3.2)

where hi is the single particle (s.p.) Hamiltonian for the relative motion between the core and
the i-th nucleon. µ ≡ mAc/(Ac + 1) is the reduced mass, where m and Ac indicate the one-
nucleon mass and the number of nucleons in the core, respectively. The diagonal component of
the kinetic energy of the core is included in the s.p. Hamiltonians, h1 + h2. On the other hand,
the off-diagonal component, referred to as “recoil term” in the following, is taken into account as
the third term in Eq.(3.1) [26, 91]. See Appendix B for a derivation of this Hamiltonian.

1Because we only treat systems with the core plus two nucleons of the same kind in this thesis, the isospin
variables are not necessary.
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In the Hamiltonian, Vc−N is the interaction for the core-nucleon subsystem. On the other hand,
vN−N indicates the pairing interaction for the two valence nucleons 2 3. It should be mentioned
that, even if the pairing interaction is zero, the pairing correlation does not vanish because of the
recoil term, p1 · p2/Acm

4. We give explicit forms of these interactions in the next section.

Figure 3.1: A schematic figure for the three-body model defined in the V-coordinates.

3.2 Interactions

In this thesis, we assume that the core-nucleon potential, Vc−N, is spherical and does not depend
on the spin variables. Apart from the Coulomb interaction for a valence proton, we employ the
Woods-Saxon potential including the spin-orbit coupling term.

Vc−N,Nucl.(r) =

[

V0 + Vlsr
2
0(ℓ · s)

1

r

d

dr

]

f(r), (3.3)

=

[

V0 + Vlsr
2
0

(

j(j + 1)− l(l + 1)− 3/4

2

)

1

r

d

dr

]

f(r) (3.4)

with

f(r) =
1

1 + exp
(

r−Rcore

acore

) , (3.5)

where Rcore = r0A
1/3
c is the radius of the core nucleus. In the core-proton case, in addition,

the Coulomb potential of a uniform-charged sphere, whose radii and charge are Rcore and Zce,

2In this thesis, we use the subscript N to indicate “nucleon” generally, whereas p and n mean “proton” and
“neutron”, respectively.

3In this thesis, we do not treat a phenomenological three-body force.
4Phenomenologically, this correlation can be interpreted as that mediated by the core nucleus.
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respectively, is also employed.

Vc−p,Coul.(r) =

{

Zce2

4πǫ0
1
r

(r > Rcore)
Zce2

4πǫ0
1

2Rcore

(

3− r2

R2
core

)

(r ≤ Rcore)
(3.6)

Thus, the total core-proton potential is given as

Vc−p,lj = Vc−p,Nucl.(r) + Vc−p,Coul.(r). (3.7)

There are four parameters in the core-nucleon potential, namely V0, Vls, r0 and acore. We determine
the values of these parameters for each system, as we will explain in Chapter 4 and 7.

On the other hand, for the nucleon-nucleon pairing interaction, we adopt the phenomenological
“density-dependent contact (DDC)” interaction. It is formulated as

vN−N,Nucl.(r1, r2) = δ(r1 − r2)



v0 +
vρ

1 + exp
(

|(r1+r2)/2|−Rρ

aρ

)



 . (3.8)

The first term, v0δ(r1−r2), indicates the nucleon-nucleon interaction in vacuum, which is approx-
imated to have the zero range. The second term is a phenomenological density-dependent part
which is assumed as the Woods-Saxon form. This type of pairing interaction has been employed in
several nuclear structural calculations, with a great advantage that it can dramatically reduce the
computational cost. These calculations have provided reasonable results [25–27, 89, 91], despite
the simple form of the pairing interaction. Especially, within the three-body model with DDC
pairing, the binding energies and the Borromean properties explained in the previous Chapter
have been well reproduced for 6He and 11Li [25,26,91]. In the case with two protons, we also take
the Coulomb potential into account.

vp−p,Coul.(r1, r2) =
e2

4πǫ0

1

|r1 − r2|
. (3.9)

For the nuclear part of the pairing interaction, there are four parameters in Eq.(3.8), namely
v0, vρ, Rρ, aρ. The strength of the bare nucleon-nucleon potential, v0, can be defined by solving the
nucleon-nucleon scattering problem with the bare contact interaction, v0δ(r1−r2). As well known,
this contact interaction must be treated in a truncated space defined with the energy cutoff, ǫcut,
or it loses physical meanings. The strength of the bare interaction, v0, can be determined so as
to reproduce the empirical scattering length aN−N in the nucleon-nucleon scattering [91]. For a
given cutoff ǫcut, this is formulated as

v0 =
2π2

~
2

m

2aN−N

π − 2aN−Nkcut
, (3.10)

where the relative maximum momentum of two nucleons, kcut, is defined as

kcut =
√

mǫcut/~2. (3.11)

A discussion and derivation of Eq.(3.10) are summarized as Appendix C. The empirical scattering
length for a neutron-neutron scattering is an−n = −18.5 fm [146], while that for a proton-proton
scattering is ap−p = −7.81 fm [147]. The difference between an−n and ap−p is mainly due to the
Coulomb repulsion in a two-proton system. Since we explicitly include the Coulomb interaction
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in our calculations, we use the neutron-neutron scattering length an−n to determine the strength
of the bare interaction, Eq.(3.10), assuming the charge independence of nuclear force.

Once v0 is determined in this way, the remaining parameters in the density-dependent term,
vρ, Rρ, and aρ are adjusted to reproduce the three-body binding energy of the considering system.
The concrete values of these parameters used in the actual calculations are given in Chapter 4
and 7.

3.3 Single-Particle States

In order to describe an arbitrary wave function, the basis expansion is a popular method. We
use this method in our three-body problems. As the first step, we solve the partial core-nucleon
wave functions. Because we assumed that the core-nucleon potential, Vc−N, is spherical and does
not depend on the spin variables, the corresponding Schrödinger equation reads

hiφnljm(ξi) = ǫnljφnljm(ξi). (3.12)

Here we indicate the radial quantum numbers, quantum numbers of orbital angular momenta and
of coupled angular momenta as n, l and j, respectively. We also need m to indicate the magnetic
quantum number. The wave function of the single nucleon can be separated into the radial and
the angular parts as

φnljm(ξ) = Rnlj(r)Yljm(r̄, s) =
Unlj(r)

r
Yljm(r̄, s). (3.13)

where r̄ ≡ (θ, φ). The function Yljm indicates the composite angular part of j = l + s coupled to
(j,m), that is

ĵ2Yljm = j(j + 1)Yljm, ĵzYljm = mYljm. (3.14)

Using the Clebsch-Gordan coefficients, its explicit form is given as

Yljm(r̄, s) ≡ 〈r̄, s | (l ⊕ 1/2) j,m〉 (3.15)

=
∑

h

∑

v

Cj,m
l,h;1/2,vYlh(r̄)χv(s), (3.16)

where Ylh and χv satisfy

l̂2Ylh(r̄) = l(l + 1)Ylh(r̄), l̂zYlh(r̄) = hYlh(r̄), (3.17)

ŝ2χv(s) =
3

4
χv(s), ŝzχv(s) = vχv(s), (3.18)

with h = −l ∼ l and v = ±1/2. Then Eq.(3.12) can be reduced to the equation only for the
radial part Rnlj. That is

[

− ~
2

2µ

(

1

r

d2

dr2
r − l(l + 1)

r2

)

+ Vc−N,lj(r)

]

Rnlj(r) = ǫnljRnlj(r), (3.19)

or equivalently for Unlj(r) = rRnlj,

[

d2

dr2
− l(l + 1)

r2
− 2µ

~2
(Vc−N,lj(r)− ǫnlj)

]

Unlj(r) = 0. (3.20)
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In this thesis, we solve the radial part Unlj numerically within a discrete variable-domain. As-
suming a radial box with its size Rbox, sampling points are distributed in the interval 0 ∼ Rbox

where the distance between two consecutive points is dr = rn−1 − rn. For the continuum s.p.
states with ǫnlj > Vc−N,lj(r →∞) ≡ 0, we assume the boundary condition with a vanishing wave
function at r = Rbox. That is

Unlj(r = Rbox) = 0. (3.21)

Because of this boundary condition, the continuum energy spectrum is discretized. Either for
the bound and the discretized continuum s.p. states, their radial wave functions can be calcu-
lated numerically. The numerical method we employ in this thesis is “Numerov method”, which
was developed by B. V. Numerov [148]. A detailed introduction of this method is separately
summarized as Appendix A.

3.4 Uncorrelated Basis for Two Nucleons

Using s.p. wave functions {φnljm} obtained in the previous section, the “uncorrelated basis”
for two-nucleon states can be constructed. If two nucleons are coupled to the spin (J,M), the
uncorrelated states are formulated as

Ψ
(J,M)
ab (ξ1, ξ2) = Ψ

(J,M)
(nlj)a(nlj)b

(ξ1, ξ2) ≡
[

φ(nlj)a(ξ1)⊗ φ(nlj)b
(ξ2)

](J,M)
(3.22)

= R(nlj)a(r1)R(nlj)b
(r2) ·W (J,M)

ab (r̄1s1, r̄2s2), (3.23)

where we define the shortened subscripts (nlj)a ≡ (na, la, ja). The coupled angular part, W
(J,M)
ab ,

is defined as

W
(J,M)
ab (r̄1s1, r̄2s2) ≡ 〈r̄1s1, r̄2s2 | (ja ⊕ jb) J,M〉 (3.24)

=
∑

ma,mb

CJ,M
ja,ma;jb,mb

Y(ljm)a(r̄1, s1)Y(ljm)b
(r̄2, s2). (3.25)

This function means that the first and the second valence nucleons are in the core-nucleon orbits
labeled by (na, la, ja) and (nb, lb, jb), respectively. In actual calculations, we also add another
constraint of the total parity, by including only those configurations with the same value of
π = (−)la+lb in defining basis. For two nucleons of the same kind, we have to take the anti-
symmetrization into account. That is

Ψ̃
(J,M)
ab (ξ1, ξ2) ≡ Aab

[

Ψ
(J,M)
ab (ξ1, ξ2)−Ψ

(J,M)
ab (ξ2, ξ1)

]

, (3.26)

where Aab is the normalization factor. This is given as

Aab =

{

1/2 (na = nb ∩ la = lb ∩ ja = jb)

1/
√

2 (otherwise)
(3.27)

If we write it explicitly, Eq.(3.26) is given as

Ψ̃
(J,M)
ab (ξ1, ξ2) = Aab

[

R(nlj)a(r1)R(nlj)b
(r2) ·W (J,M)

ab (r̄1s1, r̄2s2)

− R(nlj)a(r2)R(nlj)b
(r1) ·W (J,M)

ab (r̄2s2, r̄1s1)
]

. (3.28)
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Using the formula of the Clebsch-Gordan coefficients;

CJ,M
ja,ma;jb,mb

= (−)ja+jb−JCJ,M
jb,mb;ja,ma

, (3.29)

the coupled angular part of the second term in Eq.(3.28) can be transformed to

W
(J,M)
ab (r̄2s2, r̄1s1)

=
∑

ma,mb

CJ,M
ja,ma;jb,mb

Y(ljm)a(r̄2, s2)Y(ljm)b
(r̄1, s1)

= (−)ja+jb−J
∑

ma,mb

CJ,M
jb,mb;ja,ma

Y(ljm)a(r̄2, s2)Y(ljm)b
(r̄1, s1)

= (−)ja+jb−JW
(J,M)
ba (r̄1s1, r̄2s2). (3.30)

Thus we obtain another formula for Ψ̃
(J,M)
ab .

Ψ̃
(J,M)
ab (ξ1, ξ2) = Aab

[

Ψ
(J,M)
nlj(a),nlj(b)(ξ1, ξ2)− BabΨ

(J,M)
nlj(b),nlj(a)(ξ1, ξ2)

]

(3.31)

with Bab ≡ (−)ja+jb−J . Notice that Ψ̃
(J,M)
ab is an eigenstate of the uncorrelated Hamiltonian,

h1 + h2. Its eigen-equation reads

(h1 + h2)Ψ̃
(J,M)
ab = (ǫa + ǫb)Ψ̃

(J,M)
ab , (3.32)

where ǫa and ǫb are the eigen-energies of the first and the second orbits, respectively.
We can now expand an arbitrary two-nucleon state with (J,M) on the uncorrelated basis.

That is,

Φ(J,M)(ξ1, ξ2) =
∑

a≤b

αabΨ̃
(J,M)
ab (ξ1, ξ2). (3.33)

where our model-space is truncated by the cutoff energy for the uncorrelated basis, defined as
Ecut = ǫcut(Ac + 1)/Ac [91]. In practice, we have to introduce also the cutoff angular momentum,
lcut, in addition to Ecut. Notice that Matsuo et.al. have shown that the spatial localization
cannot be reproduced theoretically unless one includes a sufficient number of angular momenta.
Referring to their results, we would have to employ the model-space with, at least, up to lmax = 5
in order to take the dinucleon correlations into account.

In the following, for simplicity, we omit the subscripts (J,M) unless it is needed. For the
eigenstates of H3b, namely H3b |ΦN 〉 = EN |ΦN〉, the expansion coefficients {αab} can be obtained
by diagonalizing the Hamiltonian matrix. In the next section, we detail how to calculate these
matrix elements.

3.5 Matrix Elements with Uncorrelated Basis

First, for the uncorrelated Hamiltonian, h1 + h2, the matrix elements are trivially given as
〈

Ψ̃cd | (h1 + h2) | Ψ̃ab

〉

= (ǫa + ǫb)δcd,ab, (3.34)

where ǫa ≡ ǫnalaja . For the other parts of the Hamiltonian, we need much complicated calculations

in general. A matrix element (ME) of an arbitrary operator, Ô, is decomposed into four terms,
〈

Ψ̃cd | Ô | Ψ̃ab

〉

= AcdAab

[〈

Ψcd | Ô | Ψab

〉

+BcdBab

〈

Ψdc | Ô | Ψba

〉

−Bab

〈

Ψcd | Ô | Ψba

〉

− Bcd

〈

Ψdc | Ô | Ψab

〉]

(3.35)
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where we have applied Eq.(3.31). In the following subsections, we explain how to calculate MEs
of several important operators.

3.5.1 Single Particle Operators

This kind of operators is characterized as Ô = O(ξ1) + O(ξ2). These include the core-nucleon
interaction Vc−N(ξi), the s.p. kinetic energy p2

i /2µ = hi − Vc−N(ξi), the radial distance |ri|2, and
so on. For the operator Ô(1) = O(ξ1) which acts only on the first particle, the first term in
Eq.(3.35) has the form of

〈

Ψcd | Ô(1) | Ψab

〉

=

∫

dξ1

∫

dξ2Ψ
∗
cd(ξ1, ξ2)O(ξ1)Ψab(ξ1, ξ2) (3.36)

= δd,b

∑

mc,ma

CJ,M∗
jd,M−mc;jc,mc

CJ,M
jb,M−ma;ja,ma

×
∫

dξ1φ
∗
(nljm)c

(ξ1)O(ξ1)φ(nljm)a(ξ1), (3.37)

which vanishes if nb 6= nd ∪ lb 6= ld ∪ jb 6= jd. Thus, the only quantity we have to calculate is
the integration in the last sentence. The other terms in Eq.(3.35) can be calculated similarly.
Defining the following symbol;

O(1)
ca ≡

∑

mc,ma

CJ,M∗
jd,M−mc;jc,mc

CJ,M
jb,M−ma;ja,ma

×
∫

dξ1φ
∗
(nljm)c

(ξ1)O(ξ1)φ(nljm)a(ξ1), (3.38)

we can represent the matrix element of Ô(1) = O(ξ1) after the anti-symmetrization as follows.

〈

Ψ̃cd | Ô(1) | Ψ̃ab

〉

= AcdAab

[

δdbO
(1)
ca +BcdBabδcaO

(1)
bd

−BabδcbO
(1)
da −BcdδdaO

(1)
cb

]

. (3.39)

We also derive the similar formula for the summation of Ô(1) and Ô(2). The result reads

〈

Ψ̃cd | Ô(1) + Ô(2) | Ψ̃ab

〉

= AcdAab

[

δdb(O
(1)
ca +BcdBabO

(2)
ca ) + δca(BcdBabO

(1)
db +O

(2)
db )

−δcb(BcdO
(1)
da +BabO

(2)
da )− δda(BabO

(1)
cb +BcdO

(2)
cb )
]

. (3.40)

We will use this formula to calculate, e.g. those of h1 + h2 or Vc−N(ξ1) + Vc−N(ξ2).
If the operator is spherical; O(ξ1) = O(r1), Eq.(3.38) can be reduced as the integration only

for the radial distance.

O(1),spherical
ca = δjcjaδlcla

∫

dr1r
2
1R(nlj)c(r1)O(r1)R(nlj)a(r1),

= δjcjaδlcla

∫

dr1U(nlj)c(r1)O(r1)U(nlj)a(r1), (3.41)

where the product of coupled angular parts is given as δjc,jaδlc,la .
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3.5.2 Two-Particle Operators

The Operators in this category are given as Ô = O(ξ1, ξ2). These include, for instance, the pairing
interaction, vN−N, the recoil term, p1 · p2/Acm, and the opening angle between two nucleons,
cos θ12. In order to calculate Eq.(3.35), it is often necessary to know the following quantity.

〈

Y(ljm)c | Ylh | Y(ljm)a

〉

=

∫

dr̄

∫

dsY∗
(ljm)c

(r̄, s)Ylh(r̄)Y(ljm)a(r̄, s) (3.42)

For this purpose, one can use the Wigner-Eckart theorem found in, e.g. the textbook by Edmonds
[149],

〈

Y(ljm)c | Ylh | Y(ljm)a

〉

= (−)ja−ma−2h
Cl,h

jc,mc;ja,ma√
2l + 1

〈jc(lc, 1/2)‖Yl‖ja(la, 1/2)〉 , (3.43)

where the reduced matrix element is written with the 6j-symbols as

〈jc(lc, 1/2)‖Yl‖ja(la, 1/2)〉 = (−)lc+la+ja+l
√

(2jc + 1)(2ja + 1)

×
{

lc jc 1/2
ja 1/2 l

}

〈lc‖Yl‖la〉 ,

〈lc‖Yl‖la〉 = (−)lc+l

√

(2lc + 1)(2la + 1)

4π
Cl,0

lc,0;la;0.

When the operator is scalar and does not include spin variables, it can be generally represented
by the multi-pole expansion. Namely,

O(r1, r2) =

∞
∑

l=0

Ol(r1, r2)

l
∑

h=−l

Yl,h(r̄1) · (−)hYl,−h(r̄2). (3.44)

Then, we can formulate each component in Eq.(3.35). For the l-th term in Eq.(3.44), the radial
part becomes

rad.part(l)

[〈

Ψcd | Ô(1, 2) | Ψab

〉]

=

∫∫

dr1dr2R
∗
(nlj)c

(r1)R
∗
(nlj)d

(r2)Ol(r1, r2)R(nlj)a(r1)R(nlj)b
(r2), (3.45)

whereas the angular part is given as

ang.part(l)

[〈

Ψcd | Ô(1, 2) | Ψab

〉]

=

〈

(jc ⊕ jd)J,M |
∑

h

Ylh(1)(−)hYl,−h(2) | (ja ⊕ jb)J,M
〉

=
∑

all m

C∗J,M
jc,mc;jd,md

CJ,M
ja,ma;jb,mb

∑

h

〈

Y(ljm)c | Yl,h | Y(ljm)a

〉

(−)h
〈

Y(ljm)d
| Yl,−h | Y(ljm)b

〉

. (3.46)
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By performing a few calculations for the angular momenta, Eq.(3.46) can be simplified as

ang.part(l)

[〈

Ψcd | Ô(1, 2) | Ψab

〉]

= (−)ja+jd−J

{

ja l jc
jd J jb

}

× 〈jc(lc, 1/2)‖Yl‖ja(la, 1/2)〉 · 〈jd(ld, 1/2)‖Yl‖jb(lb, 1/2)〉 , (3.47)

where the summations over the magnetic quantum numbers do not appear [149]. Consequently,
we can write down the general formula for the ME of a two-particle operator as

〈

Ψcd | Ô(1, 2) | Ψab

〉

=
∑

l

∫∫

dr1dr2R
∗
(nlj)c

(r1)R
∗
(nlj)d

(r2)Ol(r1, r2)R(nlj)a(r1)R(nlj)b
(r2)

× (−)ja+jd−J

{

ja l jc
jd J jb

}

〈jc(lc, 1/2)‖Yl‖ja(la, 1/2)〉 · 〈jd(ld, 1/2)‖Yl‖jb(lb, 1/2)〉 . (3.48)

We mention that the orbital angular momenta, l, must be truncated in actual calculations. Thus,
the summation over l is also truncated as

∑∞
l=0 →

∑lmax

l=0 .
We also mention how to derive the Ol(r1, r2). For the pairing interaction, the two-particle

operator depends only on the relative distance,

r12 = |r1 − r2| =
√

r2
1 + r2

2 − 2r1r2 cos θ12. (3.49)

The multi-pole expansion for an arbitrary function of r12 satisfies

f(r12) =
lmax
∑

l=0

(2l + 1)gl(r1, r2)Pl(cos θ12) (3.50)

=
lmax
∑

l=0

gl(r1, r2)4π
l
∑

h=−l

Yl,h(r̄1)(−)hYl,−h(r̄2), (3.51)

with

gl(r1, r2) =
1

2

∫ π

0

f(r12)Pl(cos θ12) sin θ12dθ12, (3.52)

where Pl is the Legendre polynomial. We list below concrete forms of the functions used for the
pairing interaction.

1. a delta function;

f(r12) = δ(|r1 − r2|) =
δ(r1 − r2)
r1r2

∑

l

l
∑

h=−l

Yl,h(r̄1)(−)hYl,−h(r̄2). (3.53)

2. an inverse function;

f(r12) =
1

|r1 − r2|
=
∑

l

rl
<

rl+1
>

4π

2l + 1

l
∑

h=−l

Yl,h(r̄1)(−)hYl,−h(r̄2), (3.54)

where r> (r<) indicates the larger (smaller) one between r1 and r2.
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On the other hand, for the recoil term; p1 · p2/Acm, we first use the formula of the spatial
differentiation, that is

1

2

[

∇2, r
]

= ∇⇐⇒ ∇ = r̄

(

d

dr
+

1

r

)

− 1

2r

[

l̂2, r̄
]

. (3.55)

Thus, for the product ∇1 · ∇2, its ME before the anti-symmetrization takes the form of

〈Ψcd |∇1 · ∇2 |Ψab〉

=

〈

RcRd |
{

(
d

dr1
+

1

r1
)− 1

2r1
(lc(lc + 1)− la(la + 1))

}

{

(
d

dr2
+

1

r2
)− 1

2r2
(ld(ld + 1)− lb(lb + 1))

}

| RaRb

〉

× 〈Wcd | r̄1 · r̄2 |Wab〉 , (3.56)

where the radial part can be calculated with the first derivatives. In the angular part, we expand
the function, r̄1 · r̄2, as follows.

r̄1 · r̄2 = cos θ12 = Pl=1(cos θ12) =
4π

3

1
∑

h=−1

Y1,h(r̄1)(−)hY1,−h(r̄2). (3.57)

Consequently, the MEs of this operator can be calculated by means of the dipole expansion.

〈Wcd | r̄1 · r̄2 | Wab〉

=
4π

3
(−)ja+jd−J

{

ja 1 jc
jd J jb

}

× 〈jc(lc, 1/2)‖Y1‖ja(la, 1/2)〉 · 〈jd(ld, 1/2)‖Y1‖jb(lb, 1/2)〉 . (3.58)

Obviously, the recoil term mixes the uncorrelated basis which satisfy |lc − la| = 1. If we limit the
model space with (−)la = odd or even only, the recoil term does not contribute.

3.6 Density Distribution

We also derive the formulas for the density distributions of two nucleons. With our uncorrelated
basis, the two-nucleon state can be expanded as Eq.(3.33). Its density distribution is obviously
given by

ρ(ξ1, ξ2) = |Φ(ξ1, ξ2)|2 =
∑

34

∑

12

α∗
34α12Ψ̃∗

34 · Ψ̃12(ξ1, ξ2) (3.59)

=
∑

34

∑

12

α∗
34α12A34A12

× [π34,12(ξ1, ξ2) +B34B12π43,21 −B34π43,12 −B12π34,21] , (3.60)
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with Bab ≡ (−)ja+jb−J . Each component πcd,ab(ξ1, ξ2) can be written as

π34,12(ξ1, ξ2) ≡ Ψ∗
34 ·Ψ12(ξ1, ξ2) (3.61)

=

[

∑

m3

CJ,M
j3,m3;j4,M−m3

φ(nljm)3(ξ1)φ(nljm)4(ξ2)

]∗

×
[

∑

m1

CJ,M
j1,m1;j2,M−m1

φ(nljm)1(ξ1)φ(nljm)2(ξ2)

]

= R∗
(nlj)3

(r1)R
∗
(nlj)4

(r2) · R(nlj)1(r1)R(nlj)2(r2)

× W
∗(J,M)
34 (r̄1s1, r̄2s2) ·W (J,M)

12 (r̄1s1, r̄2s2). (3.62)

where we used the Eqs(3.23) and (3.24).

3.7 Spin-Orbit Decomposition

It will be also helpful to formulate the decomposition of two-nucleon states into those of the spin-
singlet and triplet configurations. For this purpose, at first, we have to discuss some mathematics
of angular momenta. In Eq.(3.24), to fix the final angular momentum, (J,M), we first couple la
and s1 to ja, and then couple ja and jb to J . That is,

la ⊕ s1 = ja

lb ⊕ s2 = jb

}

−→ ja ⊕ jb = J , (3.63)

where si = |si| = 1/2. Within this coupling scheme, we got the coupled angular part, W
(J,M)
ab =

W
(J,M)
lalbjajb

(r̄1s1, r̄2s2). On the other hand, another coupling scheme can be considered as

la ⊕ lb = L

s1 ⊕ s2 = S

}

−→ L⊕ S = J . (3.64)

Those two coupling schemes can be related to each other by the unitary transformation. Namely,
we can write down

W
(J,M)
lalbjajb

(r̄1s1, r̄2s2)

=

la+lb
∑

L=|la−lb|

∑

S=0,1

DJ(jajb; lalbs1s2;LS) · Ξ(J,M)
lalbLS(r̄1s1, r̄2s2), (3.65)

with the LS-coupled angular part;

Ξ
(J,M)
lalbLS(r̄1s1, r̄2s2) =

∑

MS=±1

CJ,M
L,M−V ;S,MS

× [Yla(r̄1)⊗ Ylb(r̄2)]
(L,M−V ) [χ(s1)⊗ χ(s2)]

(S,V ) , (3.66)

and the expansion coefficients including the 9j-symbol;

DJ(jajb; lalbs1s2;LS)

≡
√

(2L+ 1)(2S + 1)(2ja + 1)(2jb + 1)







la lb L
s1 s2 S
ja jb J







. (3.67)
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Using these formulas, the anti-symmetrized uncorrelated basis can be decomposed into the spin-
singlet and triplet configurations as follows.

Ψ̃ab(ξ1, ξ2) = Ψ̃ab,S=0(ξ1, ξ2) + Ψ̃ab,S=1(ξ1, ξ2), (3.68)

Ψ̃ab,S(ξ1, ξ2) = Aab [Ψab,S(ξ1, ξ2)− BabΨba,S(ξ1, ξ2)] , (3.69)

with

Ψab,S(ξ1, ξ2) = R(nlj)a(r1)R(nlj)b
(r2)

×
la+lb
∑

L=|la−ln|
DJ(jajb; lalbs1s2;LS) · Ξ(J,M)

lalbLS(r̄1s1, r̄2s2). (3.70)

Notice that the normalization of each basis function reads

1 =

∫

dξ1

∫

dξ2

∣

∣

∣
Ψ̃ab(ξ1, ξ2)

∣

∣

∣

2

(3.71)

=

∫

dr1

∫

dr2

{

∣

∣

∣
Ψ̃ab,S=0(r1, r2)

∣

∣

∣

2

+
∣

∣

∣
Ψ̃ab,S=1(r1, r2)

∣

∣

∣

2
}

= |Aab|2
∑

S

∑

L

{

|DJ(jajb; lalbs1s2;LS)|2 + |DJ(jajb; lalbs1s2;LS)|2

−BabD
∗
J(jbja; lblas2s1;LS)DJ(jajb; lalbs1s2;LS)δnb,na

−BabD
∗
J(jajb; lalbs1s2;LS)DJ(jbja; lblas2s1;LS)δnb,na} , (3.72)

where the radial integrations in the cross terms become δnb,na. We also introduce a similar
decomposition for the density distribution. Namely, Eq.(3.61) can be decomposed as

π34,12(ξ1, ξ2) ≡ Ψ∗
34 ·Ψ12(ξ1, ξ2)

= R∗
(nlj)3(r1)R∗

(nlj)4(r2) · R(nlj)1(r1)R(nlj)2(r2)

×
∑

L′,S′

[

DJ(j3j4; l3l4s3s4;L
′S ′) · Ξ(J,M)

l3l4L′S′(r̄1s1, r̄2s2)
]∗

×
∑

L,S

[

DJ(j1j2; l1l2s1s2;LS) · Ξ(J,M)
l1l2LS(r̄1s1, r̄2s2)

]

, (3.73)

where s1 ∼ s4 = 1/2. Substituting this equation into Eq.(3.60), we can also decompose the total
density into the spin-singlet and triplet terms. The cross terms of the spin-singlet and triplet
components are, indeed, irrelevant because those can be vanished by integrating over the spin
variables. We use this technique in order to derive the spin-integrated density as we show in the
next subsection.

3.7.1 Spin-Integrated Density

In practice, we often need to integrate the density over the spin variables. From the orthogonality
between the spin-singlet and triplet configurations,

〈S ′,M ′
S |S,MS〉 =

∫

ds1

∫

ds2 [χ(s1)⊗ χ(s2)](S
′,M ′

S)† [χ(s1)⊗ χ(s2)]
(S,MS)

= δS′SδM ′

SMS
, (3.74)
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a component of the spin-integrated density, d34,12(r1, r2), can be represented as

d34,12(r1, r2) ≡
∫

ds1

∫

ds2π34,12(ξ1, ξ2), (3.75)

= R∗
(nlj)3

(r1)R
∗
(nlj)4

(r2) · R(nlj)1(r1)R(nlj)2(r2)
∑

S=0,1

S
∑

MS=−S

×
∑

L′

[

DJ(j3j4; l3l4s3s4;L
′S)CJ,M

L′,M−MS ;S,MS
[Yl3(r̄1)⊗ Yl4(r̄2)]

(L′,M−MS)
]∗

×
∑

L

[

DJ(j1j2; l1l2s1s2;LS)CJ,M
L,M−MS ;S,MS

[Yl1(r̄1)⊗ Yl2(r̄2)]
(L,M−MS)

]

.

(3.76)

= d34,12,S=0(r1, r2) + d34,12,S=1(r1, r2). (3.77)

Therefore, we can finally formulate the spin-integrated density, ρ(r1, r2), as below.

ρ(r1, r2) ≡
∫

ds1

∫

ds2ρ(ξ1, ξ2) (3.78)

=

∫

ds1

∫

ds2

∑

cd

∑

ab

α∗
cdαabΨ̃

∗
cd · Ψ̃ab(ξ1, ξ2)

=
∑

cd

∑

ab

α∗
cdαabAcdAab

∑

S=0,1

[dcd,ab,S(r1, r2) +BcdBabddc,ba,S(r1, r2)

−Bcdddc,ab,S(r1, r2)−Babdcd,ba,S(r1, r2)] , (3.79)

= ρS=0(r1, r2) + ρS=1(r1, r2). (3.80)

Note that the normalization is given as
∫

dr1

∫

r2ρ(r1, r2) =
∑

ab

|αab|2 = 1, (3.81)

since
∫

dr1

∫

r2dcd,ab(r1, r2) = δcaδdb.

3.8 Matrix Diagonalization

In this Chapter, we have derived the basic formulas for the three-body model. With the uncor-
related basis, one can represent the eigen-states of the Hamiltonian with a spin (J,M), namely

H3b |E(J,M)
N 〉 = EN |E(J,M)

N 〉, as follows.

|E(J,M)
N 〉 =

∑

K

UNK |Ψ̃(J,M)
K 〉 , (3.82)

where K ≡ {(nlj)a(nlj)b}. In this expansion, there are also continuum basis with ǫa+ǫb > 0. One
should notice that, even for a bound three-body state with EN ≤ 0, the wave function includes
continuum s.p. states. The expansion coefficients {UNK} can be obtained by diagonalizing the

Hamiltonian matrix,
〈

Ψ̃K ′

∣

∣

∣
H3b

∣

∣

∣
Ψ̃K

〉

. Since we consider the pure Hermite space, all the MEs
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are real numbers. Thus, in order to diagonalize the Hamiltonian matrix, we employ “Jacobi
method” for real, symmetric matrices [150]. A typical dimension of our Hamiltonian is about
from 100× 100 to 1000× 1000. The dimension actually depends on the cutoff parameters which
we will explain later.

In the next Chapter, we will apply the formalism presented in this Chapter to the pairing
and dinucleon correlations in particle-bound nuclei, whereas an application to 2p-emitters will be
discussed in Chapter 7 and 8.
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Chapter 4

Diproton Correlation in Light Nuclei

Before we discuss the two-proton (2p-) emission, we first discuss in this Chapter the pairing and
dinucleon correlation in particle-bound systems. To this end, we apply the three-body model to
several light nuclei. Similar theoretical studies have been carried out especially for 6He and 11Li,
which are well known as 2n-halo as well as 2n-Borromean nuclei. In these light and weakly bound
neutron-rich nuclei, it has been shown that the pairing correlation plays an important role in
generating the dineutron correlation, including a spatial concentration of two neutrons and the
enhancement of the spin-singlet configuration [24–26,91, 120, 133].

It is important to notice that the dineutron correlation itself can be considered even in deeper
bound valence neutrons. Based on this idea, in this Chapter, we consider the 18O nucleus, in
which the three-body picture should be reasonable. Additionally, in connection to the two-proton
radioactivity, we will also discuss light proton-rich nuclei, 18Ne and 17Ne [123–125, 151]. We
particularly discuss the following two points; (i) whether the diproton correlation exists similarly
to the dineutron correlation, and (ii) whether the dinucleon correlations are limited only for
weakly bound nucleons or not. For the point (i), the main attention will be paid to the effect of
the Coulomb repulsion between two protons, which may break the diproton-like configurations
to some extent. For the point (ii), the universality between strongly and weakly bound nucleons
will be a key issue.

4.1 Dinucleon Correlation in 16O+N+N Systems: 18Ne

and 18O

We start our discussions with applying our three-body model to the ground states of 16O+N+N
nuclei, which are expected to give a good testing ground for the dinucleon correlations. In the
following, we only treat pairs of identical nucleons in valence orbits. Thus, the corresponding sys-
tems are 18O and 18Ne, with N=n and N=p, respectively. In their ground states, these nuclei have
the spin-parity of 0+. The core nucleus, 16O, consists of eight protons and eight neutrons, building
the doubly-closed nuclear shell-structure (a double-magic nucleus). Because of the double-magic
nature, the assumption of a rigid core is expected to be reasonable for 16O, and thus the behav-
iors of the two valence nucleons should be well described within the three-body model. Indeed,
the first excited state of 16O locates at 6.05 MeV, which is higher enough than the single-nucleon
energies of valence orbits in 17O=16O+n and 17F=16O+p, namely 0.87 MeV (2s1/2) and 5.08 MeV
(1d3/2) in 17O, and 0.49 MeV (2s1/2) and 5.00 MeV (1d3/2) in 17F, measured from their ground
states with a (1d5/2)-valence neutron and proton, respectively [152]. We assume that the core is
always in its ground state and has the spin-parity of 0+.
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17F 17O

calc. Exp. [152] calc. Exp. [152]

ǫ(1d5/2) (MeV) −0.601 −0.600 −4.199 −4.143

ǫ(2s1/2) (MeV) −0.106 −0.105 −3.235 −3.273

Table 1: The energies of the (2s1/2) and (1d5/2) orbits in 17F and 17O, calculated with the core-
nucleon two body model. For the comparison, the experimental values are also shown [152]. All
the values are measured from the one-proton or one-neutron separation thresholds. Note that the
experimental errors are only the order of 1 keV or smaller.
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Figure 4.1: The core-nucleon potentials in the (s1/2), (p3/2) and (d5/2) channels in 17F≡16O+p
and 17O≡16O+n.

4.1.1 Core-Nucleon Subsystems

We first solve the core-nucleon two-body states. For the core-nucleon interaction, we use r0 = 1.22
fm and acore = 0.65 fm for the Woods-Saxon potential (Eq.(3.3)). The parameters of the potential
depth are defined as V0 = −55.06 MeV and Vls = 16.71 MeV · fm2, both for 17F and 17O. These
parameters well reproduce the measured energies of the (2s1/2) and (1d5/2) orbits, as shown in
Table 1. In Figure 4.1, the core-nucleon potentials in (s1/2), (p3/2) and (d5/2) channels are plotted.

4.1.2 Uncorrelated Basis

The spin-parity of the ground states of 18Ne and 18O is 0+. On the other hand, as we noted, the
core 16O is assumed to have 0+. Thus, for the uncorrelated two-nucleon basis, we only need the
(J,M)π = (0, 0)+ subspace,

∑

K

|Ψ̃(J,M)π

K 〉 −→
∑

K

|Ψ̃(0,0)+

K 〉 , (4.1)

where K ≡ {(nlj)a, (nlj)b} and π = (−)la+lb . From the basic properties of the angular momenta,
the condition of J = 0 and π = + leads to ja = jb and la = lb. In other words, apart from
the radial quantum numbers, two nucleons must have the same angular momenta. We represent
these bases as |Ψ̃nanblj〉 in the following, omitting the superscripts (0, 0)+ for simplicity. Using
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Eqs.(3.27) and (3.31), the explicit form of uncorrelated wave functions can be written as

Ψ̃nanblj(r1, r2) =
1

√

2(1 + δna,nb
)

[

∑

m

C0,0
j,m:j,−mφnalj,m(r1)φnblj,−m(r2)

−
∑

m′

C0,0
j,m′:j,−m′φnalj,m′(r2)φnblj,−m′(r1)

]

(4.2)

= Π̃nanblj(r1, r2)
∑

m

C0,0
j,m:j,−m

Ylj,m(r̄1s1)Ylj,−m(r̄2s2), (4.3)

where we defined

Π̃nanblj(r1, r2) ≡
1

√

2(1 + δna,nb
)

[Rnalj(r1)Rnblj(r2) +Rnblj(r1)Rnalj(r2)] . (4.4)

In the calculations shown in this Chapter, the single particle (s.p.) states are solved within
the radial box of Rbox = 30 fm, with the radial mesh of dr = 0.1 fm. We take all the s.p.
states up to lmax = 5 into account. Namely, we include the uncorrelated partial waves from
(laja)⊗ (lbjb) = (s1/2)2 to (h11/2)2. In order to truncate the model space, the energy cutoff is also
introduced. We use ǫa + ǫb ≤ Ecut = 30 MeV, where ǫa means the energy of the a-th s.p. state.
According to these constraints, we adopt about 360 uncorrelated states in our model space. This
means that the dimension of the total Hamiltonian matrix is about 360× 360 for 18Ne and 18O.

4.1.3 Parameters for Pairing Interaction

As introduced in the previous Chapter, we employ the density-dependent contact (DDC) inter-
action for the nuclear part of the pairing interaction,

vN−N,Nucl.(r1, r2) = δ(r1 − r2)



v0 +
vρ

1 + exp
(

|(r1+r2)/2|−Rρ

aρ

)



 . (4.5)

Since Ecut = 30 MeV and ann = −18.5 fm, the parameter v0 is fixed as −875.34 MeV from
Eq.(3.10). For the remaining parameters, we use aρ = 0.65 fm and Rρ = 1.22 · 161/3 ∼= 3.07 fm,
which are equal to those in the Woods-Saxon function of Vc−N (see Sec.4.1.2). The strength of
the phenomenological density-dependent part, vρ, is adjusted so that the calculated two-nucleon
binding energies are consistent to the experimental values, S2p = 4.52 and S2n = 12.19 MeV, for
18Ne and 18O, respectively. This condition yields vρ = −1.104v0 and −1.159v0 for 18Ne and 18O,
respectively.

Notice that the density-dependent term decreases the pairing attraction inside the core (|r1 + r2| /2 .

Rρ), compared with the bare pairing attraction (|r1 + r2| /2 −→ ∞). It corresponds to taking
into account the medium effect on the pairing interaction.

4.1.4 Energy Expectational Values

We now calculate and diagonalize the matrix elements of the total Hamiltonian (Eq.(3.1)), in the
way which was explained in the previous Chapter. The obtained wave function for the ground
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18Ne 18O

〈H3b〉 = −S2N (MeV) −4.52 −12.19

〈vN−N〉 (MeV) −4.25 −4.89

〈vN−N,Nucl.〉 (MeV) −4.80 −4.89

〈vN−N,Coul.〉 (MeV) 0.55 0.

〈recoil〉 (MeV) −0.45 −0.56

〈h1 + h2〉 (MeV) 0.18 −6.74

〈Vc−N1 + Vc−N2〉 (MeV) −14.25 −22.03

〈hN−N〉 (MeV) 6.17 6.78

〈hc−NN〉 (MeV) −10.69 −18.97

Table 2: The energy-expectation values for 18Ne ≡16O+p+p and 18O ≡16O+n+n, calculated
with the three-body model. The label “recoil” means p1 ·p2/mAc. The experimental two-nucleon
separation energies are S2p = 4.52 and S2n = 12.19 MeV for 18Ne and 18O, respectively [152].
Notice that H3b = h1 + h2 + vN−N + (recoil) and = hN−N + hc−NN.

state is given as a superposition of the 0+ uncorrelated basis,

Φg.s.(r1, r2) =
∑

ab

αabΨ̃nanblj(r1, r2). (4.6)

The two nucleon binding, or equivalently, separation energies of 18Ne and 18O are given as the
expectation value of the total Hamiltonian,

−S2N = 〈H3b〉 ≡ 〈Φg.s. |H3b |Φg.s.〉 . (4.7)

These values calculated by our parameters are shown in the first row of Table 2.
In Table 2, we summarize several energy-expectation values for the these three-body systems.

According to Eq.(3.1), the total energies can be decomposed into the expectation values of the
uncorrelated Hamiltonian, the pairing interaction and the recoil term. That is,

〈H3b〉 = 〈h1 + h2〉+ 〈vN−N〉+

〈

p1 · p2

Acm

〉

. (4.8)

Note that the uncorrelated Hamiltonian can further be decomposed as

〈h1 + h2〉 = 〈Vc−N1 + Vc−N2〉+

〈

p2
1

2µ
+

p2
2

2µ

〉

, (4.9)

where we show only the potential term in Table 2. It is also useful to decompose the total
Hamiltonian into two relative components. One is the Hamiltonian between the core and a pair
of nucleons, hc−NN, whereas the other is that between the two nucleons, hN−N. That is,

H3b = hc−NN + hN−N (4.10)

=

[

p2
c−NN

2µc−NN
+ Vc−N1(r1) + Vc−N2(r2)

]

+

[

p2
N−N

2µN−N
+ vN−N(|r1 − r2|)

]

, (4.11)
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with µc−NN = mAc/(Ac + 2) and µN−N = m/2. Notice that, indeed, there is still a coupling
between the core-2N and N-N subsystems in hc−NN, due to the core-nucleon potentials. The
relative momenta, {pc−NN,pN−N}, can be related to the original momenta in the V-coordinates,
{p1,p2}, by the transformation below.

pc−NN = p1 + p2, (4.12)

pN−N = (p1 − p2)/2. (4.13)

The expectational values of hN−N and hc−NN are also shown in Table 2.
As one see in Table 2, the total binding energies are quite different between 18Ne and 18O.

This difference is mainly due to the Coulomb interactions in vN−N and Vc−N. These Coulomb
repulsions are also affected the 〈hN−N〉 and 〈hc−NN〉 values in 18Ne. However, apart from the
Coulomb repulsions, 〈vN−N,Nucl.〉 and 〈recoil〉 have similar values both in 18Ne and 18O. It means
that the pairing correlations caused by the nuclear force and the recoil effect are not sensitive to
the total binding energy, as long as we consider the same valence orbits (In these two nuclei, the
major valence orbit is (d5/2)2, as we will discuss in the next subsection). It is also notable that the
ratio of 〈vp−p,Coul.〉 and 〈vp−p,Nucl.〉 is about −0.11. It shows that the Coulomb repulsion reduces
the pairing energy by about 10%. This result is consistent to what has been found with, a non-
empirical pairing energy-density functional for proton pairing gaps [42], HFB calculations [43,130]
and the three-body model calculations [39, 136]. Accordingly, we can conclude that the degrees
of pairing correlations, indicated by 〈vN−N〉 + 〈recoil〉, significantly depend neither on the total
binding energy, nor the existence of the Coulomb repulsions.

We can estimate the relative momentum between the two nucleons by using

〈hN−N〉 =

〈

p2
N−N

2µN−N

〉

+ 〈vN−N〉 . (4.14)

From Table 2, this equation yields
√

〈

p2
N−N

〉

= 98.9 and
√

〈

p2
N−N

〉

= 104.6 MeV/c for 18Ne and

18O, respectively. Because of these similar values of
√

〈

p2
N−N

〉

, it is expected that the spatial

distance between the two nucleons are also similar in 18Ne and 18O. We will confirm this point
in the next subsection. One should notice, however, even if the diproton or dineutron correlation
is confirmed in these nuclei, it does not mean the existence of the bound subsystem of the two
nucleons, since the expectational value of hN−N is positive in both systems.

4.1.5 Density Distributions

We next study the structural properties of the ground states of these three-body systems. We
summarize the results in Table 3. In this Table, 〈ri〉 ≡

√

〈r2
i 〉 is the expectation value of the

averaged distance between the core and the i-th nucleon. Likewise,
√

〈

r2
N−N

〉

=
√

〈r2
1 + r2

2 − 2r1r2 cos θ12〉, (4.15)
√

〈

r2
c−NN

〉

=
√

〈r2
1 + r2

2 + 2r1r2 cos θ12〉/2, (4.16)

mean the mean relative distances between the two nucleons and between the core and the center
of two nucleons, respectively. We also show θ12 ≡ cos−1 (〈cos θ12〉) in the 4th row. The probability
of each angular channel,

∑

na,nb

|αnanblj|2 , (4.17)
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18Ne 18O

〈r1〉 = 〈r2〉 (fm) 3.62 3.48
√

〈

r2
N−N

〉

(fm) 4.62 4.37
√

〈

r2
c−NN

〉

(fm) 2.79 2.70

〈θ12〉 (deg) 81.1 79.7

(s1/2)2 (%) 6.88 5.75

(d5/2)
2 (%) 86.30 86.90

(p3/2)
2 (%) 0.55 0.54

(p1/2)
2 (%) 0.14 0.14

others,(l = even)2 (%) 3.36 3.41

others,(l = odd)2 (%) 2.77 3.26

P (S12 = 0) (%) 79.08 78.84

Table 3: The structural properties of 18Ne and 18O, calculated with the two-nucleon wave func-
tions. The radius of the core nucleus is assumed to beR0 = 1.22·161/3 ∼= 3.074 in the Woods-Saxon
potential.

where αnanblj are the expansion coefficients given by Eq.(4.6), is also computed. Those of (s1/2)2,
(d5/2)2, (p3/2)2 and (p1/2)2 channels are listed in the 5-8th rows of Table 3, whereas those of the
other channels are summarized as “others”. In the last row, we show the ratio of the spin-singlet
configuration of the two valence nucleons, which can be calculated as

P (S12 = 0) =

∫∫

dr1dr2ρS12=0(r1, r2), (4.18)

where ρS12=0 is the spin-singlet density given by Eq.(3.80). Of course, the ratio of the spin-triplet
configuration is given by P (S12 = 1) = 1− P (S12 = 0).

In Figures 4.2 and 4.3, we exhibit the density distributions, ρ(r1, r2) = |Φg.s.(r1, r2)|, ob-
tained from the wave functions for the three-body systems. We integrate the density for the spin
variables, as explained with Eqs.(3.75) and (3.78). Because of the symmetry in these systems,
the angular part of the density depends only on the opening angle between the valence nucleons,
θ12 = |r̄2 − r̄1|. Therefore, for the plotting purpose, we can fix r̄1 = z̄ without lacking the general
information. The integrations for the angular variables are replaced as

∫∫

dr̄1dr̄2 −→ 8π2

∫ π

0

sin θ12dθ12. (4.19)

Thus, the density distribution is normalized as

1 =

∫∫

dr1dr2ρ(r1, r2) (4.20)

=

∫ Rbox

0

dr1

∫ Rbox

0

dr2

∫ π

0

dθ12ρ̄(r1, r2, θ12), (4.21)
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with

ρ̄(r1, r2, θ12) = 8π2r2
1r

2
2 sin θ12ρ(r1, r2, θ12), (4.22)

ρ(r1, r2, θ12) = |Φg.s.(r1, r2, θ12)|2 . (4.23)

The density distribution, |Φg.s.(r1, r2, θ12)|2, can be decomposed into the spin-singlet and the
spin-triplet components. After some calculations, we get

|Φg.s.(r1, r2, θ12)|2S=0 =
1

4π

∑

l′,j′

∑

l,j

Q∗
l′j′ ·Qlj(r1, r2)

(−)l′+l

4

√

2j′ + 1

2l′ + 1

√

2j + 1

2l + 1

×2Y ∗
l′,0(r̄2)Yl,0(r̄2) (4.24)

for the spin-singlet, and

|Φg.s.(r1, r2, θ12)|2S=1 =
1

4π

∑

l′,j′

∑

l,j

Q∗
l′j′ ·Qlj(r1, r2)

(−)j′+j

4

√

2− 2j′ + 1

2l′ + 1

√

2− 2j + 1

2l + 1

×
[

Y ∗
l′,1(r̄2)Yl,1(r̄2) + Y ∗

l′,−1(r̄2)Yl,−1(r̄2)
]

(4.25)

for the spin-triplet1 [25, 91]. Here, we have defined the radial density for each angular channel,
Qlj(r1, r2), as

Qlj(r1, r2) ≡
∑

na>nb

αnanbljΠ̃(r1, r2). (4.26)

For the angular part, we can use the following formula.

Y ∗
l′,m(r̄2)Yl,m(r̄2) = (−)m

l′+l
∑

L=|l′−l|

√

(2l′ + 1)(2l + 1)(2L+ 1)

4π

×
(

l′ l L
0 0 0

)(

l′ l L
−m m 0

)

YL,0(θ12), (4.27)

where it depends only on the opening angle θ12.
In Figure 4.2, we show the density distribution of 18Ne, plotted within several sets of coordi-

nates. In panel (a), ρ(r1, r2, θ12) is plotted as a function of the relative distances, rN−N and rc−NN

given by Eqs.(4.15) and (4.16). In panel (b), this function is integrated for rc−NN, and plotted
only with rN−N. Conversely, in panel (c), we integrate ρ for r1 and r2, and plot it as a function
of the opening angle, θ12. We also plot the spin-singlet and triplet components separately in this
panel. Finally, in panel (d), we integrate ρ for the opening angle, and plot it as a function of
r1 and r2. In this plotting, in order to clarify the peak(s), we omit the radial weight, r2

1r
2
2 in

Eq.(4.23). We show similar plots for 18O in Figure 4.3.
As general aspects, from Figures 4.2, 4.3 and Table 3, we can see the similarity of the two-

nucleon configurations in 18Ne and 18O, consistently to the similarity shown in Table 2. It means
that the reduction of pairing energies caused by the Coulomb repulsion, which is evaluated as
about −10% reduction, does not affect significantly the two-nucleon densities. Because of the
weakly binding due to Coulomb repulsions, the density of 18Ne is slightly extended compared
with 18O. This tendency is intuitively understood by comparing Figs. 4.2(b),(d) and 4.3(b),(d).
Correspondingly, the expectation values of distances in the 1st-4th rows of Table 3 show larger

1Notice that these formulas are valid only for a state with Jπ = 0+.
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Figure 4.2: The two-nucleon density distribution of 18Ne, ρ, calculated for the ground state within
the three-body model. Those are plotted for several sets of coordinates as follows. (a) with rN−N

and rc−NN. (b) with rN−N, integrated for rc−NN. (c) with the opening angle θ12 between the
valence nucleons, integrated for r1 and r2. (d) with r1 and r2, integrated for θ12. In panel (d),
the radial weight r2

1r
2
2 is omitted to emphasize the peak(s).

values in the case of 18Ne. It is also shown from the probabilities of the angular channels that
the (d5/2)2 wave is dominant in both two cases, whereas the (s1/2)2 wave has also considerable
contributions. The distinct three peaks in panels (a) and (c) are mainly due to the (d5/2)2

component, although the mixing of the other waves occurs with the pairing correlations, where
the Coulomb repulsion plays a minor role.

We note that the mean distance between the two nucleons, rN−N, shows a considerably smaller
value, compared with the total diameter of the whole nucleus, estimated as ≃ 2rc−NN ≃ 5.5 fm.

4.1.6 Diproton and Dineutron Correlations

In the ground states of both 18Ne and 18O, the dinucleon correlation, or at least, its tendency can
be seen. The spatial localization is apparent at (rN−N, rc−NN) ≃ (2fm, 3fm) in Figs. 4.2(a) and
4.3(a). It corresponds to the two nucleons confined in rN−N ≤ 2 fm, which corresponds to the
first peak of ρ12(rN−N) shown in Figs. 4.2(b) and 4.3(b). We also find that ρ12(rN−N) has almost
all the components inside rN−N ≤ 8 fm. According to the Ref. [17], this result may be connected
to the pairing densities in the nuclear matter at ρ/ρ0 = 0.1− 0.01 (see Fig.2.4), even though the
assumption of nuclear matters cannot be translated directly to the conditions in finite nuclei.

In Figs. 4.2(c) and 4.3(c), the corresponding angular distributions take the asymmetric forms,
and have the highest peak at the small opening angle, θ12 ≃ π/6. Indeed, this asymmetry is an
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Figure 4.3: The same to Figure 4.2 but of 18O.

important character of the dinucleon correlations: it is caused by the mixing of different parities
of the core-nucleon partial system [89]. If we exclude this parity-mixing, the angular distributions
have the perfect symmetric forms. We will check this point in the next section.

We also note that in the asymmetric angular distributions, the most localized peak is mainly
from the spin-singlet configuration, consistently to the definition of the dinucleon correlations.
In both two nuclei, the spin-singlet has a probability of about 80%. On the other hand, if we
take the naive mean-field approximation, the two nucleons have the pure (d5/2)2 wave, where the
contribution from the spin-singlet is determined exactly as 60% from the properties of the CG and
the 9j-coefficients. Thus, the pairing correlation works to enhance the spin-singlet configuration
compared to the pure (d5/2)2 wave.

As interim conclusions, we have confirmed that the diproton correlation, which is characterized
as the spatial localization of two-proton density mainly carried out by the spin-singlet configura-
tion, is able to occur similarly to the dineutron correlation in the mirror nucleus. This result is
consistent to the minor effect of the Coulomb repulsion, estimated by about -10% reduction of
the pairing energy.

4.2 Diproton Correlation in 17Ne

In the previous section, it has been suggested that the structural properties of the two nucleons
are insensitive to the total binding energy. In order to investigate the dependence of the dinucleon
correlations on the binding energy, we next study the 17Ne nucleus, which has been famous as
a 2p-Borromean nucleus. This nucleus is also a candidate to have the 2p-halo structure, due to
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the loosely bound two protons [121, 125]. In this system, two valence protons are bound with
significantly small binding energies, S2p = 0.93 MeV [152]. Therefore, it provides another testing
ground to investigate the diproton correlation in a weakly bound system, in comparison with
the diproton correlation in a deeply bound nucleus, 18Ne. In this section, we will also perform
case-studies with different theoretical conditions, in order to gain a deeper understanding of
the diproton correlation. Although these theoretical conditions may not correspond to realistic
situations, those will be helpful to know what is the essential point in the diproton and dineutron
correlations.

4.2.1 Set up for Calculations

It is known that there is no bound state in 16F ∼=15O+p, but four resonances in the low-lying
region. These low-lying levels are shown in Figure 4.4. The ground state of 15O has 1/2−, whereas
its first excited state is located at 5.18 MeV above the ground state. Because this excited energy
is sufficiently high, the first and the second low-lying resonances in 16F at 0.536 and 0.729 MeV
can be interpreted as the coupled states of 15Og.s.(1/2

−)+p(s1/2). Likewise, the 3rd and the 4th
resonances at 0.960 and 1.257 MeV can be interpreted as those of 15Og.s.(1/2

−)+p(d5/2).
In this case, we neglect the internal spin of the core, and fit the parameters in the core-proton

potential to the spin-averaged s.p. energies of (s1/2) and (d5/2) states. These averaged levels are
shown in Figure 4.4 by the red and blue letters. To this end, we calculate the phase shift, δlj(E),
and its derivative for the energy E. The calculated result is fitted with a function, which consists
of a pure Breit-Wigner distribution and a smooth background. That is,

dδlj(E)

dE
=

Γ0/2

Γ2
0/4 + (E0 − E)2

+
dClj(E)

dE
, (4.28)

where the right-hand side is the empirical formula. How to derive Eq.(4.28) and calculate δlj(E)
in the left-hand side is summarized as Appendix D.

The calculated results and fitted functions are shown in Figure 4.5. At this moment, the
smooth background is neglected. By fitting the right-hand side in Eq.(4.28) to the calculated
left-hand side, we can extract the resonant energy, E0 and the decay width, Γ0 of considering
resonances. With r0 = 1.22 fm, acore = 0.65 fm, V0 = −53.68 MeV and Vls = 15.06 MeV · fm2

for the 15O-proton potential, we obtained E0 = 0.679 MeV with Γ0 = 63 keV for the (s1/2)-
resonance, and E0 = 1.131 MeV with Γ0 = 8.2 keV for the (d5/2)-resonance. Obtained values of
E0 are consistent with the empirical resonant energies shown in Fig. 4.4. Notice that the values
of r0 and a0 are similar to those used for 18Ne and 18O. The other s.p. states are also solved
within this potential.

In order to solve the ground state of 17Ne, we employed the similar setting to that for 18Ne
and 18O. Namely, we take all the s.p. states up to lmax = 5 into account. Since the ground state of
17Ne has the same spin-parity to 15O, which is (1/2−), the two-proton uncorrelated basis can be
reduced only to the 0+ subspace. Consequently, we adopt from (s1/2)2 to (h11/2)2 partial waves.
We use ǫa + ǫb ≤ Ecut = 30 MeV as the energy cutoff for the uncorrelated basis, providing about
360 bases. For the pairing interaction, except for vρ in the density-dependent part, we adopt the
same parameters as those for 18Ne and 18O. In order to reproduce the empirical binding energy
of the two protons, S2p = 0.93 MeV [152], we use vρ = −1.131v0.

In the setting of the calculations introduced above, we treat the pairing correlations as fully
as possible, by mixing all the uncorrelated bases up to (h11/2)2. We often refer to this condition
as “full-mixing” or just “full” in the following. In addition to this “full-mixing” case, we perform
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Figure 4.4: The level-scheme for 17Ne and its isotones. All the experimental values, printed by
black letters, are quoted from the database [152], except for the first excited state of 17Ne [118].
For the decay widths of 16F, the experimental data are Γ(0−) = 40 ± 20 keV and Γ(1−) < 40
keV for the lower two levels, whereas Γ(2−) = 40 ± 30 keV and Γ(3−) < 15 keV for the upper
two levels [152]. Note that all these levels decay via one-proton emission, where the branching
ratios to other decay-modes are negligible. The values printed by the red and blue letters for
16F indicate the spin-averaged s.p. energies. The decay widths of these levels are theoretically
computed as Γ0(s1/2) = 63 keV and Γ0(d5/2) = 8.2 keV, respectively.
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Figure 4.5: The derivative of the phase shift, δlj(E) for the energy E in the scattering of 15O-
proton. The calculated results are shown with symbols, whereas the fitted functions given by
Eq.(4.28) are plotted with lines.

two other sets of calculations with different conditions explained below, which reveal the essential
aspect of the dinucleon correlations.

• Limitation of Core-proton Parity:
As shown in Table 3, the contributions from the partial waves with (l = odd)2 are quite
small in 18Ne and 18O. This situation is expected to occur also in 17Ne, where the two
protons may mainly have the (d5/2)

2 and (s1/2)2 configurations. Thus, we examine the
case by excluding the (l = odd)2 partial waves from the calculation, for comparison with
the full-mixing case. It corresponds to a situation where the parity-mixing in the partial
core-proton system is prohibited. In order to reproduce the 2p-binding energy, we tune
the parameter vρ as vρ = −0.9981v0. It meas that, without the parity mixing, we need a
stronger pairing attraction than that in the full case. Notice also that the recoil term, which
couples two bases satisfying |l′ − l| = 1, do not contribute in this case (see Eq.(3.58) also).
In the following, we call this setting as “(l = even)2” case.

• No Pairing:
In this case, we completely omit the pairing correlations. It means that we ignore all the
nuclear attraction, the Coulomb repulsion and the recoil term between the two protons in
Eq.(3.1). Thus, the total Hamiltonian is only the uncorrelated Hamiltonian, h1 + h2, and
the two-proton wave functions becomes identical to one of the uncorrelated bases with single
angular channel. We take the (d5/2)2 state, which is expected to be the major channel in
the full-mixing case. Because of the lack of the pairing correlations, we cannot reproduce
the empirical binding energy, S2p = 0.93 MeV, with the original core-proton interaction
used in the “full” and “(l = even)2 only” cases. Therefore, we inevitably modify Vc−N.
We use V0 = −57.663 MeV, which yields the bound s.p. state in the (d5/2) channel with
ǫ(d5/2) ≃ −0.93/2 MeV. Notice that it is no longer possible to reproduce the Borromean
character in this case. In the following, we call this setting as “no pairing”.

By comparing among these three cases, we will make an attempt to extract the essential
character of the dinucleon correlation. The results and discussions are summarized below.

48



Chapter 4 Diproton Correlation in Light Nuclei

17Ne

full (l = even)2 only no pairing, deeper Vc−p

〈H3b〉 = −S2N (MeV) −0.93 −0.93 −0.93

〈vN−N〉 (MeV) −4.00 −3.86 0.

〈vN−N,Nucl.〉 (MeV) −4.53 −4.34 0.

〈vN−N,Coul.〉 (MeV) 0.53 0.48 0.

〈recoil〉 (MeV) −0.40 0. 0.

〈h1 + h2〉 (MeV) 3.47 2.93 −0.93

〈Vc−N1 + Vc−N2〉 (MeV) −10.64 −11.75 −12.82

〈hN−N〉 (MeV) 5.61 3.02 5.57

〈hc−NN〉 (MeV) −6.54 −3.95 −6.50

Table 4: The energy expectation values for the ground state of 17Ne, calculated with the three-
body model of 15O+p+p. See the text for the details of each calculational setting. The experi-
mental two-proton separation energy is S2p = 0.93 MeV [152]. All quantities are evaluated in the
same manner as in Table 2.

4.2.2 Energy Expectation Values

We first discuss the energetic properties tabulated in Table 4. In the full-mixing case, these
expectation values show similar results to those for 18Ne shown in Table 2, except for 〈h1 + h2〉
and 〈hc−NN〉. This difference can be interpreted as an effect of the weak attractive potential in the
core-proton subsystem. On the other hand, it is implied that the effects of the pairing correlations,
as well as the relative energy between the two protons, are not significantly dependent on the total
binding energy. The effect of the Coulomb repulsion in the pairing correlation is estimated again
as a 10% reduction over the nuclear attraction. These conclusions are similar to those obtained
in Sec. 4.1.

In the (l = even)2 case, the situation is significantly different. Even though we employ
a stronger pairing attraction than in the full case, the pairing energy, 〈vN−N〉 has a higher
value. On the other hand, the expectation value of the energy of the proton-proton subsystem,
〈hN−N〉 becomes lower. Consequently, the relative proton-proton kinetic energy,

〈

p2
N−N/2µN−N

〉

=
〈hN−N〉 − 〈vN−N〉 > 0, has the lower value than that in the full-mixing case. The lower value of
〈

p2
N−N/2µN−N

〉

suggests that the spatial distribution between the two protons is further expanded,
and possibly deviated from a diproton-like configuration.

Finally, in the no pairing case, it is worthwhile to point out that 〈hN−N〉 and 〈hc−NN〉 have
similar values to those in the full case. From this result, one may infer that the pairing correlations
are well mocked up in the mean-field, Vc−N. However, compared with the full-mixing case, a
discussion on the 2p-configuration is not straight forward, because the modification of Vc−N makes
the proton-proton subsystem considerably different in the two cases. Thus, we will check directly
the difference in the spatial 2p-distributions in the next subsection.
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17Ne

full (l = even)2 only no pairing, deeper Vc−p
√

〈r2
1〉 =

√

〈r2
2〉 (fm) 3.92 3.70 3.67

√

〈

r2
N−N

〉

(fm) 4.98 5.24 5.20
√

〈

r2
c−NN

〉

(fm) 3.03 2.62 2.60

〈θ12〉 (deg) 81.2 90.0 90.0

(s1/2)2 (%) 14.63 13.24 0.

(d5/2)2 (%) 77.97 82.64 100.

(p3/2)2 (%) 0.79 0. 0.

(p1/2)2 (%) 0.23 0. 0.

others,(l = evev)2 (%) 3.87 4.12 0.

others,(l = odd)2 (%) 2.51 0. 0.

P (S12 = 0) (%) 82.62 82.39 60.00

Table 5: The structural properties in the ground state of 17Ne, calculated with the three-body
model of 15O+p+p. See the text for the details of each calculational setting. The radius of the
core nucleus is estimated as R0 = r0A

1/3
c = 1.22 · 151/3 ∼= 3.009 fm.

4.2.3 Structural Properties

The results for the structural properties of 17Ne are shown in Table 5 and Figs. 4.6, 4.7 and 4.8.
All the quantities are evaluated and plotted in the same manner as those in Table 3 and Figure
4.2.

In the full-mixing case, we first find that the general features of 17Ne are similar to those of
18Ne, although the binding energy is remarkably smaller. This smaller energy yields the sizable
extension of the 2p-density distribution, shown in Figs. 4.6(a), (b) and (d). Consequently,
the expectation values of the radial parameters become larger as one can see in Table 5. This
extension of the 2p-wave function is consistent to an increment of the (s1/2)2 wave, which has
a long tail outside the core-nucleon potential. We also stress that the major components in the
2p-wave function are (s1/2)2 and (d5/2)2, reflecting the existence of the (s1/2)- and (d5/2)-resonant
states in the core-proton subsystem. The dominance of the (d5/2)2 wave in the ground state can
be understood from Eq.(3.48), which indicates that the matrix element of a coupled operator,
O(ξ1, ξ2), has a larger value for the uncorrelated basis with larger j. Therefore, to gain a deeper
binding energy, the two protons tend to occupy the (d5/2)2.

In order to discuss the diproton correlation, it is useful to compare the results obtained with
the three settings for calculations. First, in panels (a), (b) and (c) of Fig. 4.6 for the full-mixing
case, the localization of the density at small values of rp−p and of θ12 can be seen, whereas the
localization cannot be observed in both Fig. 4.7 for the (l = even)2 only case and Fig. 4.8 for
the no-pairing case. Notice that this localization in the full-mixing case is mainly due to the
spin-singlet configuration, as shown in Fig. 4.6(c). This implies the existence of the diproton
correlation, or at least, its tendency in the ground state of weakly bound 17Ne.

50



Chapter 4 Diproton Correlation in Light Nuclei

“17Ne (g.s.), vN−N =DDC+Coul., full-mixing”
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Figure 4.6: The density distribution of the valence two protons in 17Ne, computed with the three-
body model of 15O+p+p. In this case, all the uncorrelated bases up to (h11/2)2 are fully taken
into account (the full-mixing case). The coordinates for all the panels are defined in a similar
way as Figure 4.2.

We also point out that the spatial localization of the two protons in 17Ne is less significant
than that in 18Ne. For example, by comparing panels (b) and (d) in Figs. 4.2 and 4.6, one can
find that the 2p-density distribution shows a larger extent in 17Ne. The expectational values,
〈rN−N〉 and 〈θ12〉, also have larger values in 17Ne. This result can be interpreted as the effect of
the density-dependence of the pairing correlation. If the density is too low, the pairing correlation
decreases, and eventually vanishes in the zero-density limit [17]. In 17Ne, the valence two protons
possibly feel the surrounding density, which is rather low due to the weakly bound system, and
causes the diproton correlation to be weaker. Whether this tendency leads to the reduction of
the diproton correlation from unbound systems or not will be a critical point when we analyze
2p-emissions. We will discuss this point in Chapter 7.

In the (l = even)2 case, the density ρ12(rN−N) shown in Fig. 4.7(b) shows a larger extent than

that in the full case. This is consistent with the larger value of
√

〈

r2
N−N

〉

in Table 5. The angular

distribution in Fig. 4.7(c) has a completely symmetric form, yielding 〈θ12〉 = 90 (deg). From these
results, we can conclude that the parity-mixing in the core-nucleon subsystem is indispensable to
induce the spatial localization of two nucleons. In other words, if this parity-mixing is forbidden
or excessively suppressed, two nucleons cannot be localized even with a strong pairing interaction.

One should remember that, even though the two protons are not localized, the (l = even)2

case does not mean the complete lack of the pairing correlations. In Table 5, the enhancement
of the spin-singlet configuration can be seen, as well as in the full-mixing case. Comparing Fig.
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“17Ne (g.s.), vN−N =DDC+Coul., (l = even)2 only”
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Figure 4.7: The same as Figure 4.6 but for the (l = even)2 case.

4.7(c) with Fig. 4.8(c), one can find that the peaks at θ12 ≃ π/6 and 5π/6 become more significant
in the (l = even)2 case than those in the no pairing case. These show that a part of the pairing
correlations is taken into account, even though the diproton correlation is missing.

4.3 Interaction-Dependence of Diproton Correlation

It is also useful to check a model-dependence of the results in the previous section, which showed
the possibility of the dinucleon correlations in weakly bound systems. In order to clarify this
point, in this section, we repeat the same calculations for 17Ne, but employing a different pairing
interaction.

4.3.1 Minnesota Potential

To this end, we adopt the “Minnesota potential” for the pairing interaction instead of the DDC
potential. This potential was originally proposed by Thompson et.al., in order to solve nucleon-
nucleus scattering problems within the microscopic “resonating group method” [153]. For the
proton-proton and the neutron-neutron systems, the potential is given as

vN−N(r12) = v0e
−b0r2

12 − v1e
−b1r2

12 + α~c
e2

r12

(1 + t̂
(3)
1 )(1 + t̂

(3)
2 )

4
, (4.29)

with r12 ≡ |r1 − r2| and α is the fine structure constant. The Coulomb part is necessary only in
the proton-proton case. For this interaction, the nuclear part has finite rages, in contrast to the
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Figure 4.8: The same as Figure 4.6 but without the pairing correlations, for which a modified
core-proton potential is employed. Notice that the two protons have a pure (d5/2)2 configuration.

zero-range DDC pairing. The first term is a phenomenological repulsive part, whereas the second
term describes the pairing attractions. The original parameters in Eq.(4.29) were given as

v0 = 200. MeV, b0 = 1.487 fm2, (4.30)

for the repulsive part, whereas

−v1 =

{

−178. MeV, (S12 = 0)
−91.85 MeV, (S12 = 1)

b1 =

{

0.639 fm2, (S12 = 0)
0.465 fm2, (S12 = 1)

(4.31)

for the attraction, which depends on the total spin of the two nucleons. In Eq.(4.31), the pa-
rameters for the spin-singlet configuration were determined so as to reproduce the proton-proton,
spin-singlet, s-wave scattering properties. On the other hand, for the spin-triplet configuration,
those parameters were determined consistently to the neutron-proton, spin-triplet, s-wave scat-
tering properties 2. In several theoretical studies based on few-body models for finite nuclei, the
Minnesota potential has been employed with reasonable successes [32, 134, 153–155]. In Figure
4.9, the potentials for the proton-proton and the neutron-neutron channels are shown.

In our calculations for 17Ne, however, the original set of parameters underestimates the em-
pirical 2p-separation energy. We thus weaken v0 to 178.1 MeV, which effectively enhances the
pairing attraction. One should be conscious of that, in this case, a stronger pairing attraction
is adopted inside nuclei, compared with the bare pairing attraction in the vacuum. It is quite

2In the neutron-proton, spin-triplet case, Thompson et al. modified the potential from Eq.(4.29) by using an
additional parameter [153]. We do not use this n-p potential in this thesis.
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Figure 4.9: The original Minnesota potentials in the S12 = 0 (the left panel) and the S12 = 1 (the
right panel) channels. In the proton-proton case, the Coulomb term is also included. The dashed
curves are for the proton-proton, while the solid lines are for the neutron-neutron.

contrary to the previous case with the DDC pairing interaction, where we needed to reduce the
pairing attraction inside nuclei to reproduce the 2p-binding energy. We do not know exactly the
origin for the difference, but one possibility is due to the range of the pairing attraction.

To calculate the matrix elements of the Minnesota potential based on Eq.(3.48), we have to
know the multi-pole expansion formula of the Gaussian function. This was given by Swiatecki
[156], and thus we do not show it here. We stress that, except using the Minnesota pairing, our
calculations were performed within the same assumption to that in the full mixing case with DDC
pairing.

4.3.2 Results and Comparison

The results obtained with the Minnesota pairing are summarized in Table 6 and Figure 4.10,
in the same manner as in the previous section. Qualitatively, energy expectational values are
independent of the choice of the pairing interaction. Indeed, 〈vN−N,Nucl.〉 is similar to one another,
even it is evaluated slightly lower than that in the DDC+Coul. case, which maybe due to a
character of the finite-range potential.

Even though the relative proton-proton energy is less evaluated with the Minnesota potential,
the tendency of the diproton correlation can be apparent again in this case. The structural
properties shown in Table 6 and the 2p-density distribution shown in Figure 4.10 exhibit the
similar behaviors to those in the DDC+Coul. case. The spatial localizations at rp−p ≃ 2 fm in
Fig. 4.10(a), and at θ12 ≃ π/6 in Fig. 4.10(c) are clearly seen by taking the core-proton parity-
mixing into account. The spin-singlet configuration carries the main part of this localization as
one can see in Fig. 4.10(c). One may concern the spin-singlet ratio which is slightly smaller than
that in the DDC+Coul. case. However, it is significantly larger than P (S12 = 0) = 60 % in the
no pairing case, and the enhancement of the spin-singlet configuration remains qualitatively also
with the Minnesota potential.
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17Ne (g.s.), vN−N =Minne.+Coul., full-mixing

〈H3b〉 = −S2N (MeV) −0.93

〈vN−N〉 (MeV) −3.52

〈vN−N,Nucl.〉 (MeV) −4.03

〈vN−N,Coul.〉 (MeV) 0.51

〈recoil〉 (MeV) −0.31

〈h1 + h2〉 (MeV) 2.90

〈Vc−N1 + Vc−N2〉 (MeV) −11.1

〈hN−N〉 (MeV) 5.41

〈hc−NN〉 (MeV) −6.34

√

〈r2
1〉 =

√

〈r2
2〉 (fm) 3.81

√

〈

r2
N−N

〉

(fm) 4.95
√

〈

r2
c−NN

〉

(fm) 2.89

〈θ12〉 (deg) 83.37

(s1/2)2 (%) 12.12

(d5/2)
2 (%) 84.99

(p3/2)2 (%) 0.42

(p1/2)2 (%) 0.10

others,(l = evev)2 (%) 0.82

others,(l = odd)2 (%) 1.55

P (S12 = 0) (%) 72.73

Table 6: The properties of the ground state of 17Ne, obtained with the Minnesota interaction.
All the uncorrelated bases up to (h11/2)2 are taken into account. All the quantities are evaluated
in a similar way as in Table 4 and 5.

4.4 Summary of this Chapter

We demonstrated the appearance of the dinucleon correlations in the ground states of several
light nuclei based on the core plus two-nucleon model. It is found that the Coulomb repulsive
force plays a minor role in the pairing correlation, and the diproton correlation can be realized in
proton-rich nuclei, in a similar way as the dineutron correlation in neutron-rich nuclei. That is,
our evaluation of the Coulomb effect, which is about a 10% reduction against the nuclear pairing
attraction, is not sufficient to affect the spatial localization of the two protons. We also confirmed
that these correlations are not significantly dependent on the total binding energy of nuclei. In
other words, the dinucleon correlations are present not only in weakly bound but also in stable
nuclei, as long as the pairing correlation is sufficiently large.

As mentioned in Chapter 2, the dinucleon correlations in the bound, ground states are not
easy to be directly probed. The sensitivity of observables to these intrinsic structures is still not
evident, although various possibilities have been explored. Facing on this situation, we propose a
possibility to verify the diproton correlation with the two-proton emissions and radioactive decays.
Because the valence two protons are spontaneously emitted without no disturbance from the
external fields, observing their wave functions may be a direct probe into the diproton correlation
in a resonant state. Based on this idea, we will extend our analysis to a meta-stable three-body
system after this Chapter. In the next Chapter, we will summarize the historical back-ground
of the two-proton emissions and radioactive decays. We will introduce the time-dependence into
our three-body model in order to describe the two-proton emissions in Chapter 6. Employing this
model, we will the diproton correlation associated with the two-proton emissions, whose results
will be present in Chapters 7 and 8.
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Figure 4.10: The same as Figure 4.6, but obtained with the Minnesota interaction.
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Chapter 5

Review of Two-Proton Decay and
Emission

The two-proton decay and emission are characteristic decay-modes of nuclei beyond the proton-
dripline. We review in this Chapter the theoretical and experimental studies of these phenomena,
with their relevant topics.

In nuclear physics, there have been five major radioactive processes in which one or several
nucleons are emitted from the parent nuclei 1. Those are (i) alpha decay, (ii) one-proton and
one-neutron decays, (iii) two-proton and two-neutron decays, (iv) heavier cluster decay, and (v)
nuclear fission. All these processes belong to the quantum meta-stable phenomena by the nuclear
interaction.

Needless to say, the alpha-decay is one of the most famous nuclear radioactive processes. In
many standard textbooks of nuclear physics, this problems is discussed as an tunneling problem
of a point-like alpha-particle. However, it is also known that the emitted alpha-particle is a
composite system of four nucleons. Therefore, to describe the alpha-decay properly, one would
need a microscopic framework including many-body effects. There have been several theoretical
studies based this consideration [157–160]. However, mainly because of a difficulty to handle
with many-body correlations, there have been no quantitatively successful works yet. We also
note that the physics of meta-stable states with intrinsic degrees of freedom, or of many particles
are one of the major subjects in modern physics. They occupy the essential positions not only
in nuclear physics, but also in molecular, condensed matter and astro-nuclear physics. Famous
examples include, e.g. nuclear fissions and fusions, resonances of cold atoms and Jossefson effects.
A unified study of multi-fermion meta-stable systems in different scales might be useful in gaining
a deeper understanding of our world.

In the following, we mainly focus on the 2p-decay and emission, whereas other processes will
be briefly or never mentioned. In these processes, two protons are emitted simultaneously or
sequentially from the parent nucleus with an even-number of protons. Because of the remarkable
developments in the experimental techniques [44–46, 141], for recent about 10 years, two-proton
(2p-) emitters have been one of the main topics in radioactive nuclear physics, and knowledge
about 2p-emissions and radioactive decays have been accumulated. Recently, furthermore, the
two-proton (2p-) emission has attracted much attention as an useful tool to probe the diproton
correlation. We detail this history in the following.

1There are also known radioactive processes by the weak or the electro-magnetic interactions. In this thesis,
however, we push aside these topics.
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Figure 5.1: Schematic figures for the energy conditions of the true 2p-emitters (the left panel) and
the sequential 2p-emitters (the right panel). The parent nucleus is indicated as AZ. Each level
is measured from the ground state of the daughter nucleus, A−2(Z − 2). It is assumed that there
are no bound 1p- and 2p-states in the A−1(Z − 1) and AZ nuclei, respectively. The symbol ∆pair

means the pairing energy gap due to the pairing attraction. The decay widths are not considered
in these schematic figures.

5.1 History of Two-Proton Decay and Emission

Comparing with alpha-decays and fissions, the two-proton emissions and decays are much simpler.
Moreover, those are the dynamical phenomena, including the pairing correlations which are unique
in multi-fermion systems. By studying 2p-decays, it has been expected to provide the benchmark
for the quantum meta-stability of many fermions.

5.1.1 Early Studies: before the 21th Century

The first prediction of 2p-decays was done by V. I. Goldansky [66,67]. In his theoretical study, he
considered two different, simple situations for 2p-emissions: “true” and “sequential” 2p-emitters.
In Fig. 5.1, we schematically describe these two situations, as the energy conditions for a parent
nucleus with respect to the nuclei after 1p- and 2p-emissions.

In the true 2p-emitter, the energy pf the 2p-resonance of a parent nucleus is lower than the
1p-resonance of its isotone after the 1p-emission. In this situation indicated in Fig. 5.1(a), only
the simultaneous 2p-emission is allowed, whereas the emission of single proton is forbidden. In
the pure mean-field approximation, this situation is never realized as long as the intermediate
nucleus, A−1(Z − 1), has no bound single-proton states: the 2p-resonance has the energy of 2ǫr,
where the ǫr > 0 is the single-proton resonance energy in the intermediate nucleus. Thus, in
order to realize the true 2p-emission, the pairing energy gap must be large enough to pull down
the 2p-resonance under the single-proton resonance. This energy gap is, of course, caused by the
pairing interaction. Based on the quasi-classical formulas, Goldansky showed that, in the true
2p-emission, the decay width is sharply reduced from that of common binary decays [66, 67].

In Goldansky’s pioneer works, he proposed two types of the true 2p-emissions. The first one
is “diproton” emission: if the pairing attraction is much stronger than the Coulomb repulsion,
two protons are emitted almost as a diproton. He showed that, in the case of two protons
restricted to the relative (s1/2)-orbit from the core, the penetrability is identical to that of a
diproton with the total spin S = 0. This observation has been a basic idea of the diproton
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emission. On the other hand, he also proposed “direct” emission, where the pairing correlation is
rather weak. In the direct 2p-emission, the observables are mainly governed by the core-proton
interactions, where the disruption by the pairing interaction can be negligible (Notice that even
if the pairing energy gap is large enough, the effect of pairing correlations may be minor for the
emitted particles). Consequently, the diproton and direct decays or emissions correspond to the
extreme conditions with relatively strong and weak pairing correlations, respectively. The binary
channel of the proton-proton and the core-proton plays a dominant role in the diproton and the
direct emissions, respectively.

However, it is important to notice that the actual true 2p-emissions are not so simple that they
usually show an intermediate character between the diproton and direct emissions. It is often
necessary to deal with three particles without any discrimination. This process is referred to as
“democratic” emission [46,54,56], where there are no autocrat binary channels. Namely, the actual
true 2p-emissions are essentially the three-body problems, and they cannot be approximated as
the product of partial two-body problems.

In the sequential 2p-emitter indicated in Fig. 5.1(b), on the other hand, the 1p-emission
becomes dominant in a parent nucleus. This situation can be understood by the mean-field plus
a small pairing gap, which is insufficient to realize the true 2p-emission. Thus, the decay process
to the final daughter nucleus occurs as a sequence of two 1p-emissions. According to this picture,
sometimes the process is also called “cascade” decay. In the sequential 2p-emissions, of course,
the pairing correlations should be minor. Observables are almost explained only with the core-
proton interactions. The total penetrability should be well approximated as the bi-product of the
penetrabilities for the first and second protons. However, one should also notice that the direct
2p-emission can takes place also in this situation, if the first and second 1p-emissions occur at the
same time.

After Goldanski’s works, these three types of 2p-emissions have been the major assumptions
in almost all the theoretical works [161–164]. We also note that there were less theoretical works
before 2000. The reason for this poor crop may be a shortage of observed examples of 2p-emitters,
which can be analyzed within the theoretical models in those days.

In the experiments, two categories of 2p-emissions, namely the 2p-emissions from the ground
state nuclei and the beta-delayed 2p-emissions, have been known. The first one includes the
6Be nucleus, which is the simplest 2p-emitter interpreted as the α-particle with two valence
protons [49–54, 165–167]. Its decay width, Γ2p

∼= 92 keV, was measured more than 30 years
ago. Especially, the works performed by Bochkarev et.al. have presented the benchmark results
[52–54, 165–167]. In their results, it was already suggested that the assumption of the diproton
emission is not valid: it leads to an unrealistic property that the relative proton-proton kinetic
energy is extremely small. Thus, the necessity of considering the democratic emission has been
extensively discussed. It is worthwhile to note that the α+N+N three-body decay from the 2+

excited states of 6He and 6Li has been also observed as well as the 6Be [165,168,169]. For these
2N-emissions, the isobaric symmetry in the meta-stable states has been discussed. This is still an
open problem even at present.

We also mention that similar three-body resonances have been known in 12O [57, 58] and
16Ne nuclei [59]. Compared with 6Be, these nuclei have comparable or larger decay widths of
the order of 100 keV. Phenomenologically, investigations of these nuclei is important for the
universal understanding of 2p-emissions along the proton-dripline. Nevertheless, they have been
less studied in the past. Recently, several improvements have been done both in the theoretical
and experimental studies of these nuclei [46, 72, 73, 170, 171]. However, at the same time, a new
and serious problem has been realized that the decay widths of these nuclides are too broad to be
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Figure 5.2: The figure taken from Ref. [172]. The decay scheme of 22Al, which is one of the
beta-delayed 2p-emitters.

reproduced within the simple three-body model [170]. This is still an open problem at present.
We will mention again this discrepancy in Chapter 8, where the 16Ne nucleus will be treated
within our model.

The second category of the 2p-emissions is that after the β-decay of a parent nuclei (the beta-
delayed 2p-emission) [172–177]. The most famous example may be the 22Al [172]. In Figure 5.2
taken from the Ref. [172], the decay scheme of 22Al is shown. The ground state of this nuclide
undergoes the β+-decay to the 4+ state of the 22Mg, which has 12 protons. Note that the branching
ratio for this decay is very small, being about a few percent [172]. Apart from the de-excitations
and α-decays, the generated 4+ state is unstable against the 1p- and the associated sequential
2p-emissions. We must pay attention to that, in this decay scheme, there are several intermediate
resonances in the 20Ne-proton binary channel for the 1p-emission. Furthermore, the 21Na nucleus
has the bound single-proton states. Thus, there are two destinations of the proton(s)-emissions
from the 22Mg: one is the bound 1p-states of the 21Na reached by the 1p-emission, whereas the
other is the bound 2p-states of 20Ne through the sequential 2p-emission. Similar complexities in
the decay scheme are also in other β-delayed 2p-emitters, such as 26P [172, 173], 31Ar [175, 176]
and 39Ti [174]. Therefore, the theoretical treatments are not simple for these nuclides. The effect
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nuclide decay E∗ (keV) Q2N (keV) Γ2N (keV) other refs.
6
4Be(0+) α+2p g.s. 1371(5) 92(6) [51, 178] [54], [55, 71]c

12
8 O(0+) 10C+2p g.s. 1790(40) 578(205) [58] [57, 171]
16
10Ne(0+) 14O+2p g.s. 1400(20) 110(40) [59] [57], [72, 73]c

17
10Ne(3/2−) 15O+2p 1288(8) 344(8) 7.6+4.9

−3.7 × 10−6 [179] [180]
19
12Mg(1/2−) 17Ne+2p g.s. 750(50) 1.1+1.4

−0.25 × 10−7 [181] [72]c

45
26Fe(3/2+) 43Cr+2p g.s. 1154(16) [2.8+1.0

−0.7 ms] [182] [61, 62], [70]c

48
28Ni(0+) 46Fe+2p g.s. 1350(20) [8.4+12.8

−7.0 ms] [182] [183]
54
30Zn(0+) 52Ni+2p g.s. 1480(20) [3.7+2.2

−1.0 ms] [184] [185]

6
2He(2+) α+2n 1797(25) 825 113(20) [169] [165]
16
4 Be(0+) 14Be+2n g.s. 1350(100) 800+100

−200 [64] [186]
26
8 O(0+) 24C+2n g.s. 150+50

−150 ? [65] [126, 187]

Table 1: Table of nuclides in which two-nucleon emissions or radioactive decays have been exper-
imentally observed. Similar tables can be found in the Refs. [45, 46]. The 1st column is for the
parent nucleus and its spin-parity in the reference state. The 2nd column indicates decay-modes.
The 3th column is for the excited energy of the corresponding state, measured from the ground
state. The 4th and 5th columns are for the Q-value and the decay width, respectively. Q-values
are respect to the ground states of the daughter nuclides. For some long-lived nuclides, their
lifetimes are shown instead of the decay widths. The 6th column lists the references other than
that listed in the 5th column. Those which report the 2p-correlation measurements are indicated
by the superscript c.

of pairing correlations may not be significant, due to the dominant core-proton binary channels.
Because of these complexities, we do not treat the beta-delayed 2p-emissions in this thesis.

Even with several examples introduced above, however, there had not any observed nuclides,
which have a long lifetimes enough to characterize the 2p-radioactivity. The breakthrough was
made at the beginning of the 21th century in the experimental side, as we will review in the next
subsection.

5.1.2 Modern Studies: after the 21th Century

At the beginning of 21th century, a great development was made in the study of 2p-radioactivity.
In 2002, the first observation of the true 2p-radioactivity in the 45Fe nucleus was made inde-
pendently by two experimental groups, headed by M. Pfützner [61] and by B. Blank [62]. In
these experiments, the 45Fe nucleus was created by the projectile fragmentation with the primary
beam of 58Ne. The decay products, namely 43Cr and two protons, were implanted into silicon
detectors, where the total energy release in the decay can be determined experimentally. On the
other hand, the identification of 43Cr was done by means of the energy-loss and the time-of-flight
measurements. From the measured distributions of the energy release, the half-life of 45Fe was de-
termined as T1/2 = 3.2+2.6

−1.0 ms [61] and 4.7+3.4
−1.4 ms [62], which is long enough to be characterized as
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nuclide decay Jπ
core Q1N (keV) Γ1N (keV) other refs.

5
3Li(3/2−) α+p 0+ 1960(50) ≃ 1500 [51] [178, 190]
11
7 N(1/2−) 10C+p 0+ 2200(100) 740(100) [58] [57]
15
9 F(1/2+) 14O+p 0+ 1370(180) 530(300) [57] [191, 192]

16
9 F(0−) 15O+p 1/2− 535(8) 40(20) [180]

18
11Na(1−) 17Ne+p 1/2− 1250(110) ≃ 700 [152]
44
25Mn(2−) 43Cr+p 3/2− 1700(600) [< 151 ns] [152]
47
27Co(?) 46Fe+p 0+ 2000(9000) ? [152]

53
29Cu(3/2−) 52Ni+p 0+ > 350 [< 188 ns] [193]

5
2He(3/2−) α+n 0+ 735(20) 600(20) [51] [178]
15
4 Be(3/2+) 14Be+n 2+(?) > 1540 ? [194] [186]
25
8 O(3/2+) 24O+n 0+ 770+10

−10 172(30) [195] [187]

Table 2: The core-nucleon subsystems of the two-nucleon emitters listed in the Table 1 are
summarized. All the listed states are the ground states as 1N-resonances. The 1st column is
for the core-nucleon system and its spin-parity in the reference state. The 2nd column indicates
decay-modes. The 3th column indicates the spin-parity of the core nucleus. The 4th and 5th
columns are for the Q-value and the decay width. Q-values are respect to the ground states of
the daughter nuclides. For some long-lived nuclides, their lifetimes are shown instead of the decay
widths. The 6th column is for the references other than that listed in the 5th column.

the 2p-radioactivity. We also note that, for these experiments, theoretical works [129,162,188,189]
played an helpful roles to infer the candidates of the true 2p-radioactive nuclides.

Since the memorable works for 45Fe, experimental efforts have been continued, in order to
detect other 2p-radioactive nuclides and also to increase the accuracy of data. The novel 2p-
emitters observed in this period include 19Mg, 48Ni, 54Zn and so on. In Table. 1, we summarize
the up-to-date properties of the observed 2p-emitters, and also of 2n-emitters. As the additional
information of the parent nuclei shown in Table 1, we tabulate the properties of their core-
nucleon subsystems in Table 2. By comparing the corresponding 2N- and 1N-resonance energies,
one can infer whether the interested nucleus is a true 2N-emitter or not (the resonance energies
are indicated as Q2N and Q1N in these Tables). For instance, in the case of 6Be, the data show
that the 2p-resonance energy of 6Be is lower than the 1p-resonance energy of its core-proton
subsystem, 5Li. Thus, 6Be is expected to be a true 2p-emitter.

For the 2p-emitters listed in Table. 1, one can find that there is a broad gap between the
lifetimes of the lighter and the heavier nuclides. In the lighter 2p-emitters, such as 6Be, 12O
and 16Ne, the Coulomb barrier plays a minor role and the resonance is mainly stabilized by the
centrifugal barriers between the core and the valence protons. Consequently, their typical decay
widths are on the same order among those nuclei, namely about 100 keV. On the other hand,
in the heavier 2p-emitters, the Coulomb barrier is higher, which reduces the penetrability of two
protons, and the lifetimes become considerably longer. In recent studies, searching intermediate
long-lived 2p-emitters, which may locates between 14 ≤ Z ≤ 24, has been a challenging task.
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Figure 5.3: Taken from Ref. [70]. A photograph of the 2p-radioactive decay of 45Fe obtained with
the optical time-projection chamber. A track of a 45Fe ion entering the chamber from left is seen.
The two bright, short tracks are protons emitted after the implantation of 45Fe on the detector.

Also notice that there have been no heavier 2n-radioactive nuclides observed than those listed in
Table 2. Whether the 2n-radioactive nuclide with 20 or more neutrons exists or not is still an
open question.

It is worthwhile to mention that the kinematics of the emitted two protons has been measured
in the recent experiments, especially owing to the time-projection chamber. This device yields the
photographs of the 2p-decays in a real-time regime, and the complete kinematics in most cases
can be reconstructed [44, 70, 196, 197]. The photograph in Figure 5.3 displays this kinematics.

It should be noticed that, for the two-particle decay processes including the alpha-decays and
the 1p-emissions, the kinetic properties is completely determined with the total energy release.
On the other hand, for three or more particle decays, even if the total energy is identified, one
needs additional degrees of freedom to fully understand the process. In the studies of the 2p-
emissions, as a tradition, (i) the total energy release and (ii) the opening angle between two relative
momenta, corresponding to the two relative coordinates in the three-body system, have been often
employed for this purpose [55,56,71,198,199]. Owing to the recent developments of experimental
techniques, for several nuclides, their energy-angular distributions have been measured [55,70–73].
The observed distributions usually show the characteristic correlation pattern of the two protons,
which can be interpreted as the dynamical character of each nuclide. In Figures 5.4 and 5.5
taken from the Ref. [55], for instance, the correlations in the decay of 6Be and 45Fe in the energy-
angle plane are shown. In the 6th column of Table 1, we list the references which report these
measurements. It has also been expected that the qualitative information during the decay process
can be extracted from these correlation patters. To investigate them could clarify, for instance,
the density-dependence of the nuclear force, the pairing correlations in loosely or quasi-bound
systems, and possibly the diproton correlation [48].
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Figure 5.4: Taken from Ref. [55]. The energy-angular correlation pattern of the 2p-emission from
the 6Be nucleus. The upper two panels show the theoretical results in two different coordinates,
whereas the lower two panels show the experimental results. See the original paper [55] for the
definition of the variables.

As shown in Fig. 5.5, in the 2p-radioactivity of 45Fe, the measured correlation pattern sug-
gests that there are considerable probabilities for the diproton-decay, characterized by the strong
correlation between the emitted two protons. On the other hand, in 6Be shown in Fig. 5.4,
the diproton decay is less significant, and the correlation pattern shows a more extended and
complicated distributions. It means that all the interactions in the final state take comparable
contributions in this system to each other. Consequently, in light 2p-emitters, the observed quan-
tities may be strongly affected by the final state interactions. It remains an open question how
to extract the information on the diproton correlation from the experimental observables of the
2p-decays, which should be addressed by theoretical approaches.

On the theoretical side, making synergy with the experiments, there have been remarkable
developments established. The theoretical works by L. V. Grigorenko et. al. should be especially
introduced [46, 55, 56, 71, 74, 120, 170, 198–204]. Their works until 2009 are well summarized in
the Ref. [46]. They have investigated 2p-decays based on the Three-body scattering equation,
which is the basic formalism of scattering problems in quantum three-body systems. To solve the
three-body Three-body scattering equation, they have developed the Hyper-spherical Harmonics
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Figure 5.5: Taken from Ref. [55]. The same as Figure 5.4, but for the 2p-radioactive decay from
the 45Fe nucleus.

(HH-) method within the non-Hermite framework. The HH-functions were originally proposed
as an efficient basis to solve the quantum few-body problems [120]. Additionally, they have
carefully treated the asymptotic properties of the Coulomb three-body problems. Notice that
even the asymptotic solutions cannot be analytically obtained for this problem. Thus, within
an approximate asymptotic conditions, they have employed an enormously large model space,
which guarantees the saturation of results. Up to date, their calculations have been remarkably
successful in reproducing the experimental results of both the decay widths (the lifetime) and the
2p-correlation patterns for several nuclides [46,55,71] (see Figs. 5.4 and 5.5). They have also shown
that the final-state interactions lead to a crucial effect on the democratic 2p-emission, especially
for 6Be [55,56,71]. Recently, they have also discussed the effect of the initial configurations of two
protons before the barrier penetration [56, 74]. However, the relations between the 2p-emission
and the diproton correlation is still not investigated.

Other theoretical efforts based on the microscopic picture of 2p-decays have also been devoted
[60,68,69,205]. As a notable progress, it was predicted that the 2p-radioactive nuclides can exist
widely along the proton-dripline, up to the proton number of Z ≤ 82 [60] (the upper limit of
Z is owing to the dominance of the α-decay). This prediction is an inspiring work towards the
further exploration of the 2p-emitters. Today, predicting and discovering the novel information
of 2p-emissions are hot interests in both theoretical and experimental sides. We also mention
that, if a full microscopic theory of 2p-radioactivity is established, it can be naturally extended
to other processes, such as 2n- and α-decays [160]. However, in these microscopic models, the
equal treatment of both the true and sequential processes is a challenging task. Furthermore,
there remains a serious problem, associated with the computational resources.
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5.2 Theoretical Frameworks for Quantum Meta-stability

Theoretically, there are two main frameworks for quantum meta-stability. One is the non-Hermite,
time-independent framework, whereas the other is the time-dependent framework. In this section,
we detail the advantages and shortcomings of these methods, regarding their applications to the
2p-emissions. From a theoretical point of view, the 2p-emissions are quantum-mechanical phenom-
ena, dominated critically by the tunneling effect coupled to the continuum region. Additionally,
in contrast to the two-body decay processes including the alpha-decays and 1p-emissions from
the spherical parent nuclei, the many-body properties with the nuclear and Coulomb interactions
must be treated on equal footing in the 2p-decays.

5.2.1 Time-Independent Framework

Up to present, almost all the theoretical works of 2p-emissions have been based on the time-
independent, or equivalently on the non-Hermite framework. The original idea of this method
was proposed by Gamow to understand the α-particle decays [81–84]. With the time-independent
method, a meta-stable state is solved as a time-independent eigen-state of the Hamiltonian with
a complex eigen-energy, corresponding to the boundary condition that the wave function should
be asymptotically connected to the out-going wave. In actual calculations, one solves this non-
Hermite eigen-state by, e.g. complex-scaling the coordinates in the wave function so as to yield
the complex eigen-energy in the continuum region [206]. The imaginary part of the eigen-energy
corresponds to the decay width, while the real part corresponds to the total energy release of the
decay (the Q-value). An advantage of this method is that one can solve the meta-stable states
in almost the same way as the stable states. The decay width can be calculated with a high
accuracy even if it is extremely small [87, 88].

As already introduced in the previous section, for 2p-emissions, the results by Grigorenko et.al.
within the time-independent method show the excellent agreement with the experiments for the
observed momentum and angular correlations. On the other hand, this method is somewhat
difficult to extract the essential cause of phenomena. The correspondence between the wave
functions with complex energies and the real phenomena is not completely recognized. Although
the obtained results have well reproduced the experimental data for the 2p-decay, the mechanism
to yield this agreement has not been sufficiently clarified. The connection between the diproton
correlation and the decay observables has yet to be revealed.

5.2.2 Time-Dependent Framework

In contrast to the time-independent method, the time-dependent method treats the quantum
resonances or tunnelings as the temporal developments of meta-stable states, maintaining the
Hermiticy in the framework [84–86]. These approaches have been applied to several quantum
tunneling phenomena [207–213], with an advantage that it can provide an intuitive way to under-
stand the tunneling mechanism. However, there have been no applications of this method to the
2p-decays, except for that for the dynamics in the classically allowed region after the tunneling
stage [48].

In applications of the time-dependent method to 2p-emissions, the initial 2p-state should be
defined as a quasi-bound state inside the Coulomb and centrifugal potential barriers. For instance,
one modifies the potential barrier at t = 0 so that the initial state can be prepared as a quasi-
bound state of the original Hamiltonian. The modified potential is then suddenly changed to
the original one, and the initial state evolves in time to the final state where all the particles
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are separated along the time-evolution with the original Hamiltonian. The decay width can be
determined from the survival probability of the initial state. Furthermore, the tunneling process
can be intuitively understood by monitoring the time-development of the wave function and thus
of the density distribution. The sensitivity of the 2p-emissions to, e.g. the diproton correlation,
can be translated to the dependence on the initial configuration of two protons inside a parent
nucleus. A drawback of this method is that it does not practically work when the decay width
is extremely small. It often needs a great amount of computational resources to obtain the final
results.

In this thesis, from a complementary point of view to the works in past based on the time-
independent method, we employ the time-dependent method. We only focus on the light 2p-
emitters with comparably short lifetimes, to which the time-dependent method practically works.
This method can be a powerful tool to reveal the relation between the diproton correlation and
the 2p-emission by making full use of its intuitive nature. We stress that these problems have
seldom been studied in literature in the past, and our present study is expected to provide a novel
insight into the multi-nucleon meta-stable systems and their decays.

67



Chapter 5 Review of Two-Proton Decay and Emission

68



Chapter 6

Time-Dependent Method

We extend our three-body model to the time-dependent (TD) one, in order to treat a meta-stable
state of the three-body system and its decay via the emission of the two valence particles. General
formalism of the time-dependent method for quantum meta-stable phenomena is summarized in
Appendix E. Therefore, in the following, we mainly describe how to apply the time-dependent
method to the two-proton (2p-) decays and emissions.

Within our TD three-body model, the two-proton decays and emissions can be described as
dynamical processes driven by the static Hamiltonian, H3b. Furthermore, in many cases, a proton
in the three-body system does not have a sufficient energy to get over the potential barriers from
other particle(s). Thus, the quantum tunneling effect plays an essential role in these processes.
We emphasize that this tunneling effect can be naturally taken into account by solving the time-
dependent Schrödinger equation. Our formalism will not assume whether the two protons are
either emitted sequentially or simultaneously. In other words, our method includes all the possible
configurations in the emission process on equal footing.

6.1 Discretized Continuum Space

Assuming the 2p-emission as a time-dependent process, we carry out the time-evolving calcu-
lations for the three-body system. First we have to prepare the initial state, |Φ(0)〉, defined
consistently to the realistic emissions in order for our calculations to be valid. Phenomenologi-
cally, the initial state, |Φ(0)〉, should reflect the configuration of two protons confined inside the
potential barrier. The 2p-density for such initial state should have almost no amplitudes outside
the potential barrier. For this purpose, we employ “confining potential method” in this thesis. A
concrete form of the confining potential will be given in the next Chapter, because the definition
of it is critical to our final results.

Before we do this definition, however, we would like to introduce some formulas which will be
used in the actual calculations of the 2p-emissions. In performing the time-dependent calculations,
we discretize the continuum energy space. Let us expand the initial state as a confined wave-
packet on the discretized continuum eigen-space of the Hamiltonian, namely

|Φ(0)〉 =
∑

N

FN (0) |EN〉 , (6.1)

where H3b |EN〉 = EN |EN〉. We note that the more general formalism of the time-dependent
calculation without the continuum-descretization is summarized in Appendix E. That formalism
is, however, not useful for the numerical calculations.
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In Eq.(6.1), one can obtain the discretized eigen-states |EN〉 by, e.g. solving the three-body
Hamiltonian within a large box. We stress that all the eigen-energies are real numbers: EN ∈
R. Namely, we consider within the pure Hermit framework, in contrast to other non-Hermite
frameworks frequently used for quantum meta-stable processes [46,71,80–82,206,214,215]. Each
eigenstate, |EN〉, is expanded on the anti-symmetrized uncorrelated basis given by Eq.(3.26).
Namely,

|EN〉 =
∑

K

UNK |Ψ̃K〉 , (6.2)

where we use simplified labels as K ≡ {na, la, ja, nb, lb, jb}. Note that the expansion coefficients,

{UNK}, are obtained by diagonalizing the Hamiltonian matrix,
{〈

Ψ̃K ′

∣

∣

∣
H3b

∣

∣

∣
Ψ̃K

〉}

, and are

independent of time, t.
The state at an arbitrary time, t, can be expanded on the uncorrelated basis, or equivalently,

on the eigen-states of the Hamiltonian, H3b. Those are represented as

|Φ(t)〉 = exp

[

−itH3b

~

]

|Φ(0)〉

=
∑

N

FN (t) |EN〉 , (6.3)

=
∑

K

CK(t) |Ψ̃K〉 , (6.4)

with the expansion coefficients given by

FN(t) = e−itEN /~FN(0), (6.5)

CK(t) =
∑

N

FN(t)UNK . (6.6)

The Q-value of the 2p-emission is given as the expectation value of the total Hamiltonian. From
Eq.(6.1) and (6.5), it is shown that the Q-value is conserved during the time-evolution, that is,

Q2p ≡ 〈Φ(t) |H3b |Φ(t)〉 =
∑

N

EN |FN(t)|2 =
∑

N

EN |FN(0)|2 . (6.7)

We also note that the norm of the 2p-state is normalized at any time:

〈Φ(0) |Φ(0)〉 = 〈Φ(t) |Φ(t)〉 =
∑

N

|FN(0)|2 = 1. (6.8)

6.2 Decay State and Width

In order to extract the information on the emission, it is useful to define the “decay state”, |Φd(t)〉,
by projecting out to the initial state [48]. That is,

|Φd(t)〉 ≡ |Φ(t)〉 − β(t) |Φ(0)〉 , (6.9)

where β(t) = 〈Φ(0) |Φ(t)〉 is the overlap coefficient. Because we prepare the initial state which
has almost no amplitude outside the potential barrier, the decay state is mostly an outgoing
wave, and its density has non-zero values almost only outside the potential barrier. The decay
probability is given by its norm,

Nd(t) = 〈Φd(t) |Φd(t)〉 = 1− |β(t)|2 . (6.10)
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Notice that Nd(0) = 0 since β(0) = 1. Noticing that the quantity |β(t)|2 is identical to the
survival probability for the initial state, the decay width can be defined from Nd(t) [207–210].
That is

Γ(t) ≡ −~
d

dt
ln [1−Nd(t)] (6.11)

=
~

1−Nd(t)

d

dt
Nd(t). (6.12)

If the time-evolution converges to the well-known exponential decay process, such that

[1−Nd(t)] = e−t/τ , (6.13)

then Γ(t) obviously corresponds to the lifetime, Γ = ~/τ . This is the situation in which the energy
spectrum, defined with {|FN (0)|2} in the discrete continuum space, is well approximated by the
Breit-Wigner distribution [84, 85, 216]. For the relation between the exponential decay-rule and
the Breit-Wigner distribution, see also Appendix E.

It is also helpful to define the “partial decay width” to discuss the tunneling properties. The
purpose is to decompose the total decay width into the widths for partial components labeled by
s, such as

Γ(t) =
∑

s

Γs(t). (6.14)

The corresponding expansion for the decay state on the partial components, {|s〉}, can be defined
as

|Φd(t)〉 =
∑

s

as(t) |s〉 , (6.15)

where all the partial components are orthogonal to each other: 〈s′ | s〉 = δs′s. Using Eq.(6.12), we
can write

Γs(t) ≡
~

1−Nd(t)

d

dt
Nd,s(t). (6.16)

where Nd,s = |as(t)|2.

We note that Eqs.(6.15) and (6.16) can be defined generally for any choice of the partial
components as long as they are orthogonal. For example, one can employ the components which
have different energies, angular momenta or spin-parities. In the next Chapter, we will apply these
formulas in order to calculate the spin-singlet and triplet widths in the 2p-emission of 6Be. We
also emphasize that our formulas themselves in this subsection are not limited to the three-body
framework, but can be extended to further complex systems.

6.3 Time-Dependent Density Distribution

By integrating over the spin-variables, similarly to Chapters 3 and 4, we can obtain the spatial
density distribution, parametrized by the radial distances {r1, r2} and the opening angle θ12 from
the symmetry. It is formulated as

ρ̄2p(t; r1, r2, θ12) = 8π2r2
1r

2
2 sin θ12ρ2p(t; r1, r2, θ12), (6.17)

ρ2p(t; r1, r2, θ12) = |Φ(t; r1, r2, θ12)|2 , (6.18)
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where ρ̄2p is normalized at any time as

∫ Rbox

0

dr1

∫ Rbox

0

dr2

∫ π

0

dθ12ρ̄2p(t) = 1. (6.19)

However, for the emission process, it is often more useful to discuss the density of the decay state
defined by Eq.(6.9). This is given by

ρ̄d(t; r1, r2, θ12) = 8π2r2
1r

2
2 sin θ12 |Φd(t; r1, r2, θ12)|2 . (6.20)

Because of the definition of the decay state, this quantity represents the components which have
penetrated the potential barrier. For a presentation purpose, we often renormalize the ρd(t) so
that its integration become unity at each time:

ρ̄d(t) −→ ρ̄d(t)

Nd(t)
, (6.21)

where Nd(t) is the decay probability given by Eq.(6.10).
In our discussions after this Chapter, we make full use of this decay density, in order to

investigate, e.g. the effect of diproton correlations, the competition between the true and the
sequential emissions, the spatial distributions of two protons and so on. It will provide a great
advantage to intuitively understand the 2p-emissions and its relation to the diproton correlation.

6.4 Test of Time-Dependent Method: One-Proton Emis-

sion

To check that the time-dependent method can correctly describe the decay of a quantum meta-
stable state, we apply it to a problem of the one-proton (1p-) emission. This is a two-body
problem of a core nucleus and a valence proton, with a spherical potential, Vlj(r). Thus, the
Hamiltonian is given by

h =
p2

2µ
+ Vlj(r). (6.22)

Taking the relative wave function as Ψljm(r, s) = Ulj(r)/r · Yljm(r̄, s), the Schrödinger equation
is given as

[

− ~
2

2µ

{

d2

dr2
− l(l + 1)

r2

}

+ Vlj(r)− E
]

Ulj(r) = 0, (6.23)

with the relative energy larger than the threshold of the 1p-emission in this system:

E > lim
r→∞

Vlj(r) ≡ 0. (6.24)

We adopt the Woods-Saxon plus the Coulomb potential of a uniform-charged sphere for Vlj(r).
That is,

Vlj(r) = Vlj,Nucl.(r) + VCoul.(r) (6.25)

=

[

V0 + Vljr
2
0(ℓ · s)

1

r

d

dr

]

f(r) + VCoul.(r), (6.26)
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Figure 6.1: The calculated energy-derivative of the phase-shift, δp3/2
(E). For the fitting purpose,

the pure Breit-Wigner distribution, L(E) = Γ0/2
Γ2

0/4+(E0−E)2
is assumed.

with

f(r) =
1

1 + exp
(

r−Rc

ac

) , (6.27)

and

VCoul.(r) =

{

Zce2

4πǫ0
1
r

(r > Rc),
Zce2

4πǫ0
1

2Rc

(

3− r2

R2
c

)

(r ≤ Rc).
(6.28)

The parameters are taken to be Ac = 4, Zc = 2, r0 = 1.12 fm, Rc = r0 · A1/3
c fm, ac = 0.755 fm,

V0 = −58.7 MeV, and Vljr
2
0 = 51.68 MeV·fm2. We will use the similar parameters to study the

6Be nucleus in the next Chapter. For the angular channel, we only discuss the (p3/2)-channel. As
we will show, this channel has a resonant state within the present core-proton potential.

By calculating and fitting the phase-shift according to the formalism in Appendix D, we obtain
the resonant energy and width as E0 = 308 keV and Γ0 = 41 keV, respectively. These values are
obtained using the fitting function as the pure Breit-Wigner distribution:

dδlj(E)

dE
≡ Γ0/2

Γ2
0/4 + (E0 −E)2

, (6.29)

for l = 1 and j = 3/2, based on the two-body scattering formalism. The calculated result and its
fit are presented in Fig. 6.1.

On the other hand, we can calculate the resonant energy and width by another method,
namely by the time-dependent method. With this method, we first have to prepare the initial
state for the 1p-emission. For this purpose, we adopt the “confining potential” method. That is,
we assume the modified Hamiltonian,

hconf
(p3/2) =

p2

2µ
+ V conf

(p3/2)
(r), (6.30)
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Figure 6.2: (Left panel) The calculated decay width within the confining potential, Eq.(6.31).
(Right panel) The original and confining core-proton potentials given by Eqs.(6.26) and (6.31).
The Q-value, E0 = 0.339 MeV, and the density distributions at ct = 0 and 1200 fm are also
shown.

with the confining potential for the (p3/2)-channel as

V conf
(p3/2)(r) =

{

V(p3/2)(r) (r ≤ Rb),

V(p3/2)(Rb) (r > Rb),
(6.31)

with Rb = 8.2 fm. The original and confining potentials are shown in Fig. 6.2(b). The initial
state, Φ(t = 0; r, s), is defined as an eigen-state of this modified Hamiltonian, namely,

hconf
(p3/2) |Φ(0)〉 = Econf |Φ(0)〉 . (6.32)

On the other hand, we also consider the eigen-states of the original Hamiltonian as

h(p3/2) |EN〉 = EN |EN〉 , (6.33)

with the discretized continuum energies, {EN}. In order to discretize the continuum, we assume
the radial box of Rbox = 120 fm in this case, and impose a boundary condition that the wave
function satisfies U(p3/2)(r = Rbox) = 0. The energy cutoff is employed as Ecut = 40 MeV. As a
result, we have Nmax = 47 bases.

By diagonalizing the 47×47 matrix, {
〈

EM

∣

∣

∣
hconf

(p3/2)

∣

∣

∣
EN

〉

}, the initial state can be represented

as the expansion on the original eigen-states. That is,

|Φ(0)〉 =
∑

N

FN (0) |EN〉 . (6.34)

This equation has an identical form to Eq.(6.1). Thus, by performing the calculations according
to Eqs.(6.3), (6.7) and (6.12), we can determine the Q-value, E0 =

∑

N EN |FN(0)|2 and the decay
width, Γ(t). We obtain E0 = 339 keV. The calculated decay width is shown in Figure 6.2(a). After
a sufficient time-evolution, the decay width well converges to a constant value, corresponding to
the exponential decay-rule. We have obtained Γ0 = 37 keV at ct = 1200 fm, when the decay
width is sufficiently converged. These results are consistent to those obtained by calculating the
two-body scattering phase-shift, justifying the time-dependent approach. Furthermore, in Figure
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6.2, we also show the density distribution,
∣

∣

∣U(p3/2)(r)
∣

∣

∣

2

at ct = 0 and 1200 fm. Although these

two functions have almost the same form, the later one shows a larger amplitude outside the
potential barrier. This indicates the penetration of the valence proton. Consequently, we can
observe the time-development of the emitted particle(s) based on this method. This will be a
great advantage providing an intuitive view of the decay process, when we will apply this method
to the two-proton emissions, in order to discuss the effect of the diproton correlation.
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Chapter 7

Two-Proton Emission of 6Be

We now apply the time-dependent method to the ground state of 6Be nucleus, assuming the
three-body structure of α+p+p. Because the α-particle can be well assumed as a rigid core,
this system provides a good testing ground for our method. We also note that, as shown in
Figure 7.1, this is one of the closest systems to a true 2p-emitter: the experimental Q-value of
the 2p-emission is 1.37 MeV [51, 54, 178], which is lower than the one-proton resonance energy
in 5Li, being about 2 MeV with a broad width [51, 178]. Thus, the sequential process via α + p
subsystem is considered to be suppressed, and the two protons should penetrate the potential
barrier simultaneously 1. In this simultaneous 2p-emission, the association between the dinucleon
correlations and the 2p-emissions, might be clarified.

E  (MeV) 

2.0  - 

1.0  - 

2p

E1p = 1.96(5), 

Γ1p ≈ 1.5 

E2p = 1.371(5), 

Γ2p = 0.092(6) 

0+ 

4He  (+2p) 5Li  (+p) 6Be 

0 

3/2− 

0+ 

Figure 7.1: The experimental level scheme of 6Be and its isotones. The values for 5Li are quoted
from refs. [51, 217], whereas those for 6Be are quoted from refs. [51, 178]. The color-box of each
level indicates its decay width.

1Actually, due to the broad width of the α-p subsystem, there can be a non-negligible possibility of the sequential
2p-emission.
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7.1 Set up for Calculations

Our three-body model consists of α-particle as a structureless core (daughter) nucleus and two
valence protons. We employ the V-coordinates similarly to Chapters 3 and 4. That is,

H3b = h1 + h2 +
p1 · p2

Acm
+ vp−p(r1, r2), (7.1)

hi =
p2

i

2µ
+ Vc−p(ri) (i = 1, 2), (7.2)

where hi is the single particle (s.p.) Hamiltonian for the relative motion between the core and the
i-th proton. We assume that the α-p potential is spherical, and independent of the spin variables.
We also assume that the α-particle always remains in the ground state with the spin-parity of
0+. Thus, similarly in Chapter 4, we need uncorrelated bases only for the 0+ configuration since
the ground state of 6Be also has the spin-parity of 0+. That is,

Ψ̃ab(ξ1, ξ2) −→ Ψ̃
(0+)
nanblj

(ξ1, ξ2)

=
1

√

2(1 + δna,nb
)

∑

m

C0,0
j,m;j,−m

[φnaljm(ξ1)φnblj−m(ξ2) + φnaljm(ξ2)φnblj−m(ξ1)] . (7.3)

In the following, for simplicity, we use simplified labels for the uncorrelated bases: |Ψ̃K〉 where
K = {na, nb, l, j}. Then, the time-dependent three-body state, except for the center of mass
motion of the whole system, can be expanded as

|Φ(t)〉 =
∑

K

CK(t) |Ψ̃K〉 , (7.4)

where the coefficients CK(t) are given by Eqs. 6.5 and 6.6. All our calculations presented below
are performed in the truncated space defined by the energy-cutoff: ǫa + ǫb ≤ Ecut = 40 MeV. We
have confirmed that our conclusions do not change even if we employ a larger value of Ecut.

For the angular momentum channels, we include from (s1/2)2 to (h11/2)2 partial waves, similarly
to Chapter 4. In order to take into account the effect of the Pauli principle, we exclude the bound
(s1/2 state from φnljm in Eq.(7.3), that is occupied by the protons in the core nucleus. The
continuum states are discretized within the radial box of Rbox = 80 fm. Even though this model
space might be not sufficient to fully describe the 2p-emission of 6Be, increasing lmax or Rbox causes
a serious rise of computational costs, which makes our calculations practically impossible. Also
note that Rbox limits the interval for time-evolution, because the wave functions are inevitably
reflected once it reaches at r = Rbox. This reflection as an calculational artifact causes the
deviation from reality at the late-time region. A typical maximum time in our time-dependent
calculations is ctmax ∼ 2000 fm, corresponding to the earlier stage of 2p-emissions.

7.1.1 Interactions

We describe the interaction between α and a valence proton using the nuclear Woods-Saxon
potential and the Coulomb potential, similarly in the previous Chapters. That is,

Vc−p(ri) = Vc−p,Nucl.(ri) + Vc−p,Coul.(ri), (7.5)
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Figure 7.2: The original and confining potentials for (s1/2), (p3/2) and (d5/2) channels in the α-p
subsystem. The border radius for modifying the potential is 5.7 fm for all the channels.

where the nuclear and Coulomb terms are

Vc−N,Nucl.(r) =

[

V0 + Vlsr
2
0(ℓ · s)

1

r

d

dr

]

f(r), (7.6)

f(r) =
1

1 + exp
(

r−Rcore

acore

) , (7.7)

and

Vc−p,Coul.(r) =

{

Zce2

4πǫ0
1
r

(r > Rcore),
Zce2

4πǫ0
1

2Rcore

(

3− r2

R2
core

)

(r ≤ Rcore).
(7.8)

For the Coulomb term, we adopt the one of a uniform-charged sphere with the charge radius
of the α-particle, Rcore = rc = 1.68 fm. For the Woods-Saxon part, we use Rcore = rc and
a0 = 0.615 fm, whereas strength parameters are fixed as V0 = −58.7 MeV and Vls = 46.3
MeV(fm)2. These parameters reproduce the measured resonance energy and width for the (p3/2)-
channel of α-p scattering [178]: it yields Er(p3/2) = 1.96 MeV and Γr(p3/2) = 1.56 MeV. We
calculate and fit the derivative of the phase-shift, according to Eq.(D.27), to get this result. We
note that this resonance is quite broad and there are large ambiguities in the observed decay
width [51, 178, 190,217], as summarized in Table 1.

For the proton-proton interaction, we use the Minnesota potential, in which the Coulomb
term is explicitly included.

vp−p(r12) = v0e
−b0r2

12 − v1e
−b1r2

12 + α~c
e2

r12
. (7.9)

For b0, b1 and v1 in Eq.(7.9), we use the same parameters introduced in the original paper [153].
On the other hand, the strength of the repulsive core, v0, is adjusted so as to reproduce the
empirical Q-value for two protons, Q2p = 1.37 MeV [51,178].
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7.2 Initial State

As mentioned in Chapter 6, the initial configuration of the two protons is characterized such
that the density distribution is localized around the core nucleus and has almost no amplitude
outside the core-proton potential barrier. In order to generate such state, we employ the confining
potential method [218–220]. The confining potential for the initial 2p-state is defined as follows.
Because the α-p subsystem has a resonance at E0 = 1.96 MeV in the (p3/2)-channel, the two
protons in 6Be are expected to have a large component for the (p3/2)2 configuration. Thus, we
first modify the core-proton potential for the (p3/2)-channel at t = 0 in order to generate a
quasi-bound state as follows:

V conf
c−p, (p3/2)(r) =

{

Vc−p, (p3/2)(r) (r ≤ Rb),

Vc−p, (p3/2)(Rb) (r > Rb),

with Rb = 5.7 fm. For the other s.p. channels, we define the confining potential as

V conf
c−p (r) =

{

Vc−p(r) (r ≤ Rb),
Vc−p(r) + Vb(r) (r > Rb),

where Vb(r) = Vc−p, (p3/2)(Rb)−Vc−p, (p3/2)(r). The original and confining potentials for the (s1/2),
(p3/2) and (d5/2) channels are shown in Fig. 7.2. We note that, for this system, the core-proton
barrier is mainly due to the centrifugal potential in the (p3/2) channel, rather than the Coulomb
potential. This situation is quite different from heavy 2p-emitters with a large proton-number,
such as 45Fe.

The initial state for the 2p-emission is solved by diagonalizing the modified Hamiltonian
including V conf

c−p (r). In Fig. 7.3, we display the density distribution of the initial state obtained
in this way.

ρ̄2p(t = 0; r1, r2, θ12) = 8π2r2
1r

2
2 sin θ12 |Φ(t = 0; r1, r2, θ12)| . (7.10)

In the left panel of Fig. 7.3, ρ̄2p is plotted as a function of the distance between the core and

the center of mass of two protons: rc−pp =
√

r2
1 + r2

2 + 2r1r2 cos θ12/2, and the relative distance

between two protons: rpp =
√

r2
1 + r2

2 − 2r1r2 cos θ12. In the right panel of Fig. 7.3, we also show
the angular distributions obtained by integrating ρ̄2p for r1 and r2.

It is clearly seen that the wave function is confined inside the potential barrier at r ∼= 4 fm
(see Fig. 7.2 again). Furthermore, the 2p-density is concentrated near rp−p = 2 fm, corresponding
to the diproton correlation in the bound nuclei. The corresponding angular distribution becomes
asymmetric and has the higher peak at the opening angle θ12 ∼= π/6. This peak is almost due to
the spin-singlet configuration, being analogous to the dinucleon correlation.

Er (MeV) Γr (MeV)

This work 1.96 1.56

Ref. [51, 217] 1.96(5) ≃ 1.5

Ref. [190] 2.90(20) 1.0(2)

Ref. [178] 1.69 1.06

Table 1: The resonant energy and width of the 5Li nucleus in the (p3/2)-channel.
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6Be (g.s.), t = 0, “full”
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Figure 7.3: The left panel: The 2p-density distribution at t = 0 for the ground state of 6Be.
It is obtained by including all the partial waves up to (h11/2)2, and is plotted as a function of
rc−pp = (r2

1 + r2
2 + 2r1r2 cos θ12)1/2/2 and rp−p = (r2

1 + r2
2 − 2r1r2 cos θ12)1/2. The right panel: The

corresponding angular distribution obtained by integrating ρ̄2p over r1 and r2.

6Be (g.s.), t = 0, “(l = odd)2 only”
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Figure 7.4: The same as Fig. 7.3 but for the case with only the partial waves of (l = odd)2.

As we discussed in Chapter 4, the parity-mixing in the subsystem of the core and a nucleon
plays an essential role in generating the dinucleon correlation. In order to confirm the similar effect
in the 2p-emission, we have performed the same calculations but only with (p, f, h)2 = (l = odd)2

partial waves. In this case, pairing correlations are partially taken into account only among the
s.p. states with the same parity, although the parity-mixing in the core-nucleon subsystem is
perfectly ignored. In Fig. 7.4, we show the initial configuration obtained only with (l = odd)2

partial waves. In the left panel of Fig. 7.4, there are two comparable peaks at rp−p = 2 and 5 fm
whereas, in the right panel, the corresponding angular distribution has a symmetric form. This
result is in contrast with that in the full mixing case (see Fig. 7.3), where the parity-mixing is
fully taken into account (“full mixing”).

The empirical Q-value for the 2p-emission is 1.37 MeV for 6Be [51,178]. However, the original
parameters of the Minnesota potential overestimates this value, for instance, by about 50% in the
full mixing case. We therefore modify the parameter v0 in Eq.(7.9) so as to yield Q = 1.37 MeV.
Note that we use the modified v0 not only at t = 0 but also during the time-evolutions.

In Table 2, properties of the initial state are summarized. In this Table, for comparison,
we also perform the same calculation but in the 3rd case, namely only with the (p3/2)2 partial
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6Be, t = 0 6He
full (l = odd)2 only (p3/2)2 only full

〈H3b〉 (MeV) 1.37 1.37 1.37 −0.975

〈rN−N〉 (fm) 4.92 5.29 5.16 4.67
〈rc−NN〉 (fm) 3.43 2.64 2.58 3.18
〈θ12〉 (deg) 75.9 90.0 90.0 78.0

(p3/2)
2 (%) 88.9 97.1 100. 92.7

(p1/2)
2 (%) 3.1 2.8 0. 1.6

(s1/2)2 (%) 2.2 0. 0. 1.3
others,(l = even)2 (%) 5.2 0. 0. 4.2
others,(l = odd)2 (%) 0.6 0.1 0. 0.2

P (S12 = 0) (%) 82.2 80.6 66.6 78.1

v0 (MeV) 156.0 88.98 66.69 212.2

Table 2: Calculated properties for the initial state of 6Be and 6He. The results with all the
uncorrelated basis from (s1/2)2 to (h11/2)2 are labeled by “full”. Those obtained only with the
(l = odd)2 and (p3/2)2 bases are also shown. The values of v0 (the strength of the repulsive part)
for the nucleon-nucleon interaction (Eq.(7.9)) are tabulated in the last row. The original value is
v0 = 200. MeV [153].

wave. The values of v0 in the Minnesota potential are tabulated in the last row in Table 2. It
is clearly seen that, in the full mixing case, the main component is (p3/2)2, reflecting that the
(p3/2) channel has a resonance in the α-p subsystem. The mixing of different partial waves are
due to the off-diagonal matrix elements of H3b, corresponding to the pairing correlations. The
spin-singlet configuration is remarkably enhanced for the full mixing case compared to that in
the (p3/2)2 case. On the other hand, in the case only with (l = odd)2, a comparable enhancement
of the S12 = 0 configuration exists, even though there is no localization of the two protons as
shown in Fig. 7.4. Notice also that in the (l = odd)2 case, we have to assume a stronger pairing
attraction in order to reproduce the empirical Q-value, as compared to the full-mixing case.

7.2.1 Comparison with 6He

From the point of view of the isobaric symmetry in nuclei, it is interesting to compare the initial
state of 6Be with the ground state of its mirror nucleus, 6He. Assuming the α+n+n structure,
we perform the similar calculation but for the ground state of 6He. For the α-n system, there is
an observed resonance of (p3/2) at Er = 0.735(20) MeV with its width, Γr = 0.600(20) [51, 152].
In order to reproduce this resonance, we exclude the Coulomb term from Eq.(7.5) and modify
the depth parameter to V0 = −61.25 MeV in Woods-Saxon potential. The pairing interaction is
adjusted to reproduce 〈H3b〉 = −S2n = −0.975 MeV [152], yielding v0 = 212.2 MeV in Eq.(4.29).
One may concern the difference of v0 between 6Be and 6He. This might be due to an ambiguity
in Vc−p for 6Be originated from a broad resonance in the core-proton subsystem. Improving Vc−p

in 6Be can lead to the more consistent set of parameters among Vc−N and vN−N. We note that
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this ambiguity does not affect our qualitative discussions.

6He (g.s.), “full”

    0.06
    0.05
    0.04
    0.03
    0.02
    0.01

 0  2  4  6  8  10
rp-p (fm)

 0

 2

 4

 6

 8
r c

-p
p 

(f
m

)

 0

 0.2

 0.4

 0.6

 0.8

 1

0 π/2 π

ρ 2
p(

θ 1
2)

θ12

total
S12=0
S12=1

Figure 7.5: The density distribution of the valence two neutrons, ρ̄2n, in the ground state of 6He.
Those are plotted in the same manner as in the left and right panels of Figure 7.3. The partial
waves up to (h11/2)2 are included.

In Fig. 7.5, the two-neutron density distribution is shown in the same manner as in Fig. 7.3.
The energetic and structural properties are tabulated in the last column of Table 2. Obviously,
the two-neutron wave function in 6He has a similar distribution to the 2p-wave function in 6Be.
Because the two neutrons are bound in this system, the spatial distribution is less expanded in
6He. This is why both 〈rN−N〉 and 〈rc−NN〉 have smaller values than those of 6Be. The dinucleon
correlation is present also in 6He, characterized as the spatial localization with the enhanced
spin-singlet component [26]. Consequently, the confining potential which we employ provides the
initial state of 6Be, which can be interpreted as the isobaric analogue state of 6He.

7.3 Decay Width

Starting from the initial state obtained in the previous section, we perform the time-evolving
calculations for the first 0+ resonance of 6Be. We show the results of the decay-component
Nd(t) and width Γ(t) (see the Eqs.(6.10) and (6.12) in the previous Chapter) obtained with the
time-evolution in Fig. 7.6.

In Fig. 7.6, the calculation is carried out up to ct = 0 − 1400 fm. We have confirmed that
the artifact due to the reflection at r = Rbox is negligible in this time-interval. One can clearly
see that, after a sufficient time-evolution, the decay width converges to a constant value for all
the cases, and the exponential decay-rule is realized. Furthermore, the result for the full case
yields the saturated value of Γ(t) ∼= 88.2keV, which reproduces the experimental decay width,
Γ = 92±6 keV [51,178]. On the other hand, the limitation of the partial waves only to (l = odd)2

or (p3/2)2 significantly underestimates the decay width. This is caused by an increase of the
pairing attraction: With the (l = odd)2 or (p3/2)2 waves only, to reproduce the empirical Q-value,
we needed a stronger pairing attraction (see Table 2). The two protons are then strongly bound
to each other and are difficult to go outside, even they have a similar energy release of that in
the full mixing case.

From these studies, we can conclude that the parity-mixing in the core-proton subsystem
is indispensable in order to reproduce simultaneously the Q-value and the decay width of the
2p-emission. This result supports the assumption of the diproton correlation at t = 0.
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Figure 7.6: The decay probabilities and the decay widths for the 2p-emissions from 6Be, obtained
with the time-dependent method. The result with all the partial waves in the model-space (full
mixing) is plotted by the solid line. For ct ≥ 1000 (fm), the decay width well converges to
a constant value of 88.2 keV in the full-mixing case. The experimental value, ΓExp = 92 ± 6
keV [178], is marked by the bold line. The results obtained only with (p3/2)2 (dotted line) and
(l = odd)2 (broken line) partial waves are also shown, where the calculated decay widths are
clearly underestimated.

For the cases of full mixing and only (l = odd)2 partial waves, we also calculate the partial de-
cay widths for the spin-singlet and triplet configurations. The corresponding formula to Eq.(6.16)
is given as

ΓS12(t) ≡ ~

1−Nd(t)

d

dt
Nd,S12(t), (7.11)

where

Nd,S12(t) ≡ 〈Φd,S12(t) |Φd,S12(t)〉

=

∫ Rbox

0

dr1

∫ Rbox

0

dr2

∫ π

0

dθ128π
2r2

1r
2
2 sin θ12 |Φd,S12(t; r1, r2, θ12)|2 , (7.12)

|Φd(t)〉 ≡ |Φ(t)〉 − β(t) |Φ(0)〉 , (7.13)

with β(t) = 〈Φ(0) |Φ(t)〉. The results are shown in Fig. 7.7. Clearly, the spin-singlet configuration
almost exhausts the decay width in the full mixing case shown in Fig. 7.7(a). This suggests that
the emitted two protons from the ground state of 6Be have mostly the configuration of S12 = 0, like
a diproton. On the other hand, from Fig. 7.7(b), one can see that the spin-triplet configuration
occupies a considerable amount of the total decay width when we exclude (s, d, g)2 partial waves.
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Figure 7.7: (a) The total and the partial decay widths for the spin-singlet and triplet configura-
tions of 6Be. The partial waves from (s1/2)2 to (h11/2)2 are fully included. (b) The same as panel
(a) but for the case with only (l = odd)2 partial waves.

full (l = odd)2 only (l = odd)2 ⊕ (s1/2)2 no pairing exp.data

(ct = 3000 fm) [51, 178]

Γtotal (keV) 88.2 12.5 35.8 348. 92(6)

ΓS12=0 (keV) 87.1 10.7 34.3 232. -

ΓS12=1 (keV) 1.1 1.8 1.5 116. -

Table 3: The contributions from the spin-singlet and triplet configurations to the decay width of
6Be. The values are evaluated at ct = 1200 fm, except for the “no pairing” case, whose values are
evaluated at ct = 3000 fm. Note that in the all cases, the Q-value of the 2p-emission is reproduced
consistently to the experimental value, 1.37 MeV [51,178].

In the 2nd and the 3rd columns of Table 3, we tabulate the total and partial widths in the full
and the (l = odd)2 cases, respectively. The values are estimated at ct = 1200 fm, where the total
widths sufficiently converge. Clearly, there is a significant increase of the spin-singlet width in the
full mixing case, by about one-order magnitude larger than that in the case of (l = odd)2. On the
other hand, we get similar values of the spin-triplet width in the full and (l = odd)2 cases. From
this result, we can conclude that the core-nucleon parity-mixing is responsible for the enhancement
of the spin-singlet emission, although the dominance of the spin-singlet configuration in the initial
state is apparent in both the two cases (see Table 2).

The dominance of the spin-singlet configuration is due to the (s1/2)2 channel. Considering the
coupled orbit, L12 ≡ l1 ⊕ l2, from the coupling rule to the spin-parity of 0+, the (s1/2)2 channel
leads to S12 = L12 = 0 with l1 = l2 = 0. Because there is no centrifugal barrier in this channel,
the spin-singlet emission can be dominant. On the other hand, for the spin-triplet configuration,
the only L12 = 1 are permitted in order to have the total angular momentum 0+. Thus, there is a
centrifugal barrier for all the channels in the spin-triplet configuration. Consequently, apart from
the reduction due to the stronger pairing attraction, the spin-triplet width has similar values to
each other in the full-mixing and (l = odd)2 cases.

85



Chapter 7 Two-Proton Emission of 6Be

(l = odd)2 ⊕ (s1/2)
2

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  200  400  600  800  1000 1200 1400
Γ(

t)
  (

M
eV

)
ct  (fm)

ΓExp.
(s,p,f,h)2

(s,p,f,h)2, S12 = 0
(s,p,f,h)2, S12 = 1

Figure 7.8: The same as Fig. 7.7 but for the (l = odd)2 plus (s1/2)
2 case.

In order to check this effect of the (s1/2)2 waves directly, we perform the same calculation
but including the uncorrelated bases with (l = odd)2 and (s1/2)2 configurations. Namely, we
add only the (s1/2)2 waves to the (l = odd)2 case. In this case, we use the same parameters for
the calculation as those for the full-mixing and the (l = odd)2 cases, except for the v0 in the
Minnesota potential: we use v0 = 99.14 MeV in order to reproduce the Q-value, Q2p = 1.37 MeV
for 6Be. The result is shown in Figure 7.8 and in the 4th column in Table 3 in the same manner
as the former two cases. One can see that the spin-singlet width is significantly increased due to
the existence of the (s1/2)2 channel, whereas the spin-triplet width has a similar value to those
in the full-mixing and (l = odd)2 cases. This result supports our former speculation about the
role of the (s1/2)2 channel in the 2p-emission. Notice also that, because of the stronger pairing
attraction, the total width in Figure 7.8 is still underestimated than the experimental data.

7.4 Time-Evolution of Decay State

In order to discuss the emission process, we show the density distribution of the decay state,

ρ̄d(t) = 8π2r2
1r

2
2 sin θ12ρd(t), (7.14)

ρd(t) = |Φd(t; r1, r2, θ12)|2 . (7.15)

The most of the amplitude of the decay state exists outside the potential barrier, because we
prepare the initial state, which is orthogonal to the decay state, so as to have no amplitude in
that region. For the presentation, we renormalize the ρ̄d(t) so that its integration become unity
at each time:

ρ̄d(t) −→ ρ̄d(t)

Nd(t)
, (7.16)

where Nd(t) is the decay probability given by Eq.(6.10). We adopt three sets of radial coordinates
in the following. (i) The first set includes rc−pp = (r2

1 + r2
2 + 2r1r2 cos θ12)1/2/2 and rp−p =

(r2
1 + r2

2 − 2r1r2 cos θ12)1/2, similarly to the left panel of Figure 7.3. (ii) In the second set, we
integrate ρ̄d with respect to the opening angle, θ12, and plot it as a function of r1 and r2. In order
to see the peak-structure clearly, we omit the radial weight r2

1r
2
2 in ρ̄d in the second setting. (iii)
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Figure 7.9: Schematic illustrations for the trajectories of different 2p-emission modes.
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Within the third set, on the other hand, we integrate ρ̄d(t) over radial distances, and plot it as a
function of θ12.

Before we show the results of the actual calculations, we schematically illustrate the dynamic
of the 2p-emissions in Fig. 7.9. From the geometry, one can distinguish two modes: “simultaneous
two-proton” and “one-proton (1p−)” emissions. The diproton emission is a special case in the
first category. The second category corresponds to the case where only one proton penetrate the
barrier. The trajectories of three simultaneous 2p- and a 1p-emissions are schematically shown in
Fig. 7.9(a), (b), (c) and (d).

In the simultaneous emissions, two protons are emitted simultaneously with their opening
angle remaining from θ12 = 0 to π, where θ12 = 0 corresponds to the diproton emission. Fig.
7.9(a), (b) and (c) correspond to θ12 = 0, π/2 and π. respectively. In these cases, the density in
the (r1, r2)-plane shows the same patterns in these figures, and is concentrated along r1 ∼= r2. The
simultaneous emissions with different opening angles can be distinguished only in the (rp−p, rc−pp)-
plane: for instance, in the diproton emission, the probability shows mainly along the line with
rc−pp ≫ rp−p, while it is along the line with rc−pp = 0 for θ12 = π. In the one-proton emission
shown in Fig.7.9(d), only one of the two protons goes through while the other proton remains
inside the core nucleus. This is seen as the increment along rc−pp

∼= rp−p/2 and r1 or r2 ∼= 0 lines.

In Fig. 7.9(e) and (f), we additionally illustrate the two hybrid processes. The first one is
a “correlated emission”, shown in Fig. 7.9(e). In the correlated emission, the two protons are
emitted simultaneously to almost the same direction, holding the diproton-like configuration. In
this mode, at the earlier stage of tunneling, the density distribution has a larger amplitude in
the region with r1 ∼= r2 and small θ12. In the (rp−p, rc−pp)-plane, It corresponds to the increment
of the probability in the region of rp−p ≪ rc−pp. After the barrier penetration, the two protons
separate from each other mainly due to the Coulomb repulsion, increasing rp−p.

The second hybrid process is a “sequential emission”, which is shown in Fig. 7.9(f). In this
mode, there is a large possibility of that one proton is emitted whereas the other proton remains
around the core. The density distribution shows high peaks along r1 ≫ r2 and r1 ≪ r2. In
the (rp−p, rc−pp)-plane, it corresponds to the increment along the line of rc−pp

∼= rp−p/2. Being
different from the pure one-proton emission, the remaining proton eventually goes through the
barrier also when the core-proton subsystem is unbound.

7.4.1 Full-Mixing Case

We now show the results of the time-dependent calculations for the 2p-emission of 6Be. We first
discuss the full-mixing case which is the closest assumption to reality. The density distribution
for the decay state along the time-evolution is shown in Fig. 7.10. The left, middle and right
columns correspond to the coordinate sets (i), (ii) and (iii), respectively. The 1st to 4th panels
in each column show the decay-density at ct = 100, 200, 600 and 1000 fm, respectively. For a
presentation purpose, we normalize ρ̄d at any step of time.

In the left and middle columns of Fig. 7.10, it can be seen that the process in this case is
likely the correlated emission shown in Fig. 7.9(e). Contributions from the other modes shown
in Fig. 7.9 are small. In the middle column of Fig. 7.10, during the time-evolution, there is a
significant increment of ρ̄d along the line with r1 ∼= r2. The corresponding peak in the left column
is at rp−p ≪ rc−pp

∼= 10 fm, which means a small value of θ12. It should also be noted that, after
the barrier penetration, the two protons lose their diproton-like configuration due to the Coulomb
repulsion increasing rp−p. Thus, for rc−pp ≥ 10 fm which is a typical position of the potential
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Figure 7.10: The 2p-density distribution for the decay states, ρ̄d(t), obtained with the time-
evolving calculations. All the uncorrelated partial waves up to (h11/2)2 are included. (The left
column): These distributions are plotted as a function of rc−pp = (r2

1 +r2
2 +2r1r2 cos θ12)1/2/2 and

rp−p = (r2
1 + r2

2 − 2r1r2 cos θ12)1/2. (The middle column): The same as the left column but as a
function of r1 and r2, obtained by integrating ρ̄d for θ12. In order to clarify the peak(s), the radial
weight r2

1r
2
2 is omitted. (The right column): The angular distributions of the decay state plotted

as a function of the opening angle θ12 between the two protons. It is obtained by integrating ρ̄d(t)
for the radial coordinates. Beside the total distribution, the spin-singlet and triplet components
are also plotted.
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Figure 7.11: The same as Fig.7.10 but for the case with only (l = odd)2 waves. Notice a different
scale in the left column from that in Fig.7.10.
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barrier from the core, the density distribution extends around the rc−pp
∼= rp−p region. In this

process, the pairing correlation plays an important role to generate the significant diproton-like
configuration before the end of the barrier penetration, similarly to the dinucleon correlations.

In the right column of Fig. 7.10, the distributions are also displayed as a function of the
opening angle, θ12. We can clearly see that the decay state has a high peak at θ12 ∼= π/6, and
thus the emitted two protons should show the opening angles close to this value. However, this
result may appear somewhat inconsistent to the experiments, in which the correlation is much
weaker in the observed angular distribution of 6Be [55, 71] (see Fig. 5.4). A reason for this
discrepancy is due to the final-state interactions (FSIs) at the late stage of propagation of the
two protons. In the experiments, the observed spectra and the correlation patterns correspond
to those at the late-time region, where the two protons have been much influenced by FSIs. On
the other hand, in this thesis, we mainly discuss the earlier stage of the 2p-emission with a small
value of Rbox. By taking the FSIs into account at the late stage, we expect that we achieve a
better agreement between the theoretical and experimental results. For this purpose, however, we
would have to expand the model space defined with Rbox and lmax, which would severely increase
the computational costs.

7.4.2 Case of (l = odd)2 Waves

We next discuss the case only with (l = odd)2 waves (Fig. 7.11). Even though the experimental
Q2p and Γ2p are not simultaneously represented in this case (see Fig. 7.7), it is still useful to
discuss the density distribution in order to know what happens when the pairing correlation
between the parity-plus and minus states in the core-proton subsystem is absent. In Fig. 7.11,
the decay density shows strong patterns as the sequential emission introduced in Fig. 7.9(f):
significant increments occur along the lines with rc−pp

∼= rp−p/2 and r1 ≫ r2 or r1 ≪ r2. Notice
that the contribution from the simultaneous emissions also exists, especially in the earlier time
region. As a result, the decay state has widely spread amplitudes as a mixture of these emission
modes. However, the simultaneous mode is quite minor compared with the full mixing case.
Notice that the character of a true 2p-emitter exists also in this case: the core-proton resonance
is located at 1.96 MeV which is above Q2p1.37 MeV. Even with the strong pairing attraction and
the energy condition of the true 2p-emitter, the process hardly becomes the correlated emission
when the parity-mixing is forbidden or extensively suppressed. On the other hand, the angular
distribution shows exactly the symmetry form, and is almost invariant during the time-evolution.
In this calculation, we exclude the pairing correlation between the parity-plus and minus states
in the core-proton, not only at t = 0 but also during the time-evolution. In other words, there
are almost no FSIs to alter the shape of the angular distribution.

7.4.3 Without Pairing Correlation

For a comparison with the above two cases, we also perform similar calculations but by completely
neglecting the pairing correlation. In this case, we only consider the uncorrelated Hamiltonian,
h1 +h2. Because of the absence of the non-diagonal components in the Hamiltonian matrix, it can
be proved that, if the s.p. resonance is at an energy ǫ0 with its width γ0, the 2p-resonance should
be at 2ǫ0 with its width 2γ0 since there are no couplings between the two protons. The 2p-wave
function is expanded on the uncorrelated basis with a single set of angular quantum numbers.
Namely,

|Φ(lj)(t)〉 =
∑

na,nb

Cna,nb,l,j |Ψ̃na,nb,l,j〉 , (7.17)
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Figure 7.12: The same as Fig. 7.7 but for the case without the pairing correlations.

where (lj) = (p3/2) for 6Be. In order to reproduce the empirical Q-value of 6Be, we inevitably
modify the core-proton potential. We employ V0 = −68.65 MeV instead of that in the full mixing
case to yield the s.p. resonance at ǫ0(p3/2) = 1.37/2 = 0.685 MeV, with which the core-proton
scattering data are not reproduced and the character of a true 2p-emitter disappears. With this
potential, we get the s.p. resonance with a broad width: γ0(p3/2) ∼= 170 keV.

The result for the 2p-decay width is shown in Fig. 7.12 and in the last column of Table 3. To
get the saturated result, we somewhat need a relatively longer time-evolution than that in the
full mixing and the (l = odd)2 cases. Thus, in Table 3, we estimate the decay at ct3000 fm by
width the result well converges in this case. We also expand the radial box to Rbox = 200 fm in
order to neglect the artifact due to the reflection in the longer time-evolution. After a sufficient
time-evolution, the total decay width, Γ(t), converges to about 340 keV which is consistent to that
expected from the s.p. resonance, γ0(p3/2). During the time-interval shown in Fig. 7.12, there
still remain some oscillations in Γ(t). This is a characteristic behavior of the broad resonance,
namely the oscillatory deviation from the exponential decay-rule. For the spin-singlet and triplet
configurations, their contributions have exactly the ratio of 2 : 1. This result is simply due to
including only (p3/2)2 partial waves, and is proved by calculating the coefficient DJ in Eq.(3.67).

By comparing the results with those in the full mixing case, where the pairing correlations
are fully taken into account, we can clearly see a decisive role of the pairing correlations in 2p-
emissions. Assuming the empirical Q-value, if we explicitly consider the pairing correlations, the
decay width becomes narrow and agrees with the experimental data. On the other hand, in
the no pairing case, we need a modified core-proton interaction to reproduce the empirical Q-
value, and the core-proton resonance properties become inconsistent with the experimental data.
Even though the Q-value is adjusted in this way, the calculated 2p-decay width is significantly
overestimated in this case. Namely, we cannot simultaneously reproduce the experimental Q-
value and the decay width with the no pairing assumption. If one is focused to reproduce them
simultaneously, one may need unphysical assumptions for the core-proton interactions. In the
next Section, we will present further investigations about this problem.

In Fig. 7.13, we show the density distribution of the decay state during the time-evolution.
Obviously, the process is the sequential or, moreover, like the one-proton emission in this case.
There is a significant increase of the density along the lines with rc−pp

∼= rp−p/2 and, consistently,
with r1 ≫ r2 and r1 ≪ r2 (see Fig. 7.9 again). On the other hand, the probability for the
simultaneous and correlated emissions are negligibly small. We emphasize that this is quite
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Figure 7.13: The same as Fig. 7.10 but for the case without the pairing correlations and a deeper
Vc−p.
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different from that in the full mixing case, where the correlated emission is apparent. Notice
that, with a disagreement with the experimental decay width, this result should not correspond
to the 2p-emission of 6Be in reality. This situation can be interpreted as the limit where the
core-proton resonance plays an excessively dominant role.

7.5 Role of Pairing Correlation

In order to discuss the role of the pairing correlations in the 2p-emission, we calculate the 2p-decay
width for different Q-values, for the full-mixing and the no pairing cases.

To this end, the Q-value is varied by modifying the parameter V0 in the core-proton potential
(Eq.(7.6)). In the previous calculations, we used V0 = −58.7 and V0 = −68.65 MeV in the full
mixing and the no pairing cases, respectively. These original values yield the empirical Q-value,
Q2p = 1.37 MeV. In addition to these original values, we change the value of V0 as V0 ± 0.5 and
V0± 1.0 MeV. The calculated decay widths are well converged after a sufficient time-evolution in
all the cases. We note that, in the full mixing case, we adopt the same pairing interaction as in
the previous calculation.
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Figure 7.14: The calculated decay widths for the 2p-emission of 6Be, as a function of the Q-
value. The Q-value is varied by modifying the core-proton potential. The experimental values
are indicated as the point at Q2p = 1.37 and Γ2p = 0.092(6) MeV.

In Fig. 7.14, the decay width is plotted as a function of the Q-value. The decay width in
each case is evaluated at ct = 1200 and 3000 fm in the full mixing and the no pairing cases,
respectively. Clearly, the no pairing calculation overestimates the decay width, in all the region
of Q2p. Namely, the three-body system becomes easier to decay without the pairing correlations
compared to the full-mixing case, even if we consider the same value of the total energy (Q-
value). In other words, the pairing correlation plays an essential role in the meta-stable state,
stabilizing it against particle emissions. Moreover, as we have confirmed in the previous section,
the emission modes with and without the pairing correlations are essentially different to each
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other: the correlated emission is suggested if the pairing correlation is fully considered, whereas
omitting it yields the sequential emission. Of course, this result can be associated with the
character of 6Be as a true 2p-emitter. Consequently, we conclude that the pairing correlation
must be treated explicitly in the meta-stable states, or one would miss the essential effect on the
dynamical phenomena.

7.6 Summary of this Chapter

We have applied the time-dependent three-body model to 6Be, which has a close character to the
true 2p-emitter. The initial state of 6Be has the diproton correlation, similarly to the dineutron
correlation in the ground state of 6He. The empirical relation between Q2p and Γ2p is well
reproduced by fully including the pairing correlation (in the full mixing case). We have also
showed that the decay process at its earlier stage is mainly the correlated emission, in which the
two protons are emitted to the same direction with S12 = 0, like a diproton. The dominance of
the spin-singlet decay width is explained as the effect of the (s1/2)2 wave.

We have performed the calculations by switching off a part of the pairing correlation in order
to study its role in the 2p-emissions. First, we excluded the parity-mixing in the core-proton
subsystem, equivalently to forbidding the diproton correlation in particle-bound nuclei. Notice
that the character of a true 2p-emitter exists also in this assumption. In this case, the decay
width and its spin-singlet ratio are remarkably underestimated compared to the full mixing case.
The decay process has a large component of the sequential emission, which is quite different from
the correlated emission. From this result, we can infer that the diproton correlation is essential in
describing the 2p-emission. Second, we completely omitted the pairing correlation, and adjusted
the mean-field between the core and a proton to reproduce the Q-value of the emitted two protons.
The character of a true 2p-emitter no longer exists in this case. It was shown that the pairing
correlation plays an essential role in the meta-stable states: omitting the pairing correlation leads
to a largely overestimated decay width, and almost the perfect sequential emission which scarcely
exists in the full mixing case.

At this moment, the dependence of 2p-emissions on the initial diproton correlation is strongly
suggested, but this has not yet been proved. Indeed, the FSIs must be taken into account at the
late stage of the time-evolution, in order to probe the diproton correlation with the experimental
observables. Towards this goal, we plan to expand our model space defined with Rbox and lmax,
enabling us to perform the longer time-evolution where the FSIs play a dominant role. The
sensitivity to the diproton correlation is translated to the initial-configuration dependence of
observables. If the Q2p and Γ2p are by no means reproduced simultaneously by excluding the
diproton correlation at t = 0, we will be able to conclude the presence of the diproton correlation.
Possibly, for instance, we will also infer that the observed signals associated with the diproton-
emission [55,71] reflect the survived components originally emerged at t = 0. The time-dependent
method, which can distinguish the cause and the effect in the observables, will be a powerful tool
in these discussions. We also mention that the other approaches within complex-energy framework
is hard to separately discuss the early and late time regions, or equivalently, the cause and the
effect. Therefore, our studies will produce a complementary point of view to the 2p-emission and
possibly the diproton correlation.

The expansion of the model space, however, will lead to a serious increment of computational
costs. To overcome this difficulty, we will have to adopt an improved boundary condition which
does not emerge the reflection of the wave function at the edge of the radial box, or/and more
efficient bases which can reduce the dimension of the Hamiltonian matrix. Additionally, we should
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also concern the pairing interaction. The pairing interaction employed in this thesis should be
regarded as an effective interaction, since it is inconsistent to the scattering problem of 2pin
vacuum due to our modification of v0. Within further expanded model space, it may cause the
unphysical result. One may also introduce a three-body force, which works only if three particles
are close to each other [32, 34, 221]. The effect of this three-body force on decay processes is an
important topic, in regard to whether such an interaction is really just a phenomenological one
or has a physical meaning beyond the two-body force.
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Chapter 8

Two-Proton Emission of 16Ne

For further investigation of 2p-emissions in this Chapter, we take up another 2p-emitter, 16Ne.
To this end, we assume the three-body system of 14O and two valence protons. The quantum
meta-stability is treated within the time-dependent framework. In the case of 6Be discussed in
the previous Chapter, our time-dependent three-body model well reproduced the experimental
Q2p and Γ2p simultaneously. It suggests that the three-body assumption is valid for this nucleus.
On the other hand, it has been a serious problem that a similar theoretical three-body model
within the complex-energy framework do not simultaneously reproduce the Q2p and Γ2p of other
light 2p-emitters [170]. Thus, it is worthwhile to check whether our model works or not for these
nuclei. The application to the 16Ne nucleus to be discussed in this Chapter is one example of
studies towards this direction.
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Figure 8.1: The level scheme of 16Ne and its isotones. The printed values for 16Ne are taken from
the Ref. [59]. Those for 15F are calculated with the core-proton interaction which is originally
introduced in the Ref. [192]. The color-box of each level indicates its decay width.

In Figure 8.1, we show the level scheme of 16Ne and its daughter nuclei after the 1p- and
2p-emissions, measured from the ground state of 14O. Indeed, the 1p-resonance of the 14O+p
in the (s1/2)-channel is located near the 2p-resonance of 16Ne. Its width, Γ1p ≃ 500 keV is so
large that one may wonder whether the resonance character truly exists in this system or not.
The sequential emission through the core-proton channel is expected to be minor, due to its
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Figure 8.2: The original and confining potentials for the (s1/2), (p3/2) and (d5/2) channels in the
14O-p subsystem. The border radius for modifying the potential is 8.5 fm for all the channels.

broad width. We also stress that there are still ambiguities in the experimental data of the first
resonance of 15F [57,191,192,222–225]. Consequently, it is still unclear whether the 16Ne nucleus
is a true 2p-emitter or not. In this work, we will assume a relatively low energy and narrow width
in the (s1/2)-channel, as detailed in the next section.

8.1 Set up for Calculations

General assumptions for the numerical calculations are similar to those for the 6Be in the previous
Chapter. We assume that the core nucleus, 14O is a structureless particle with the spin-parity of
0+. Because the first resonance state of 16Ne also has the spin-parity of 0+, we only need the 0+

uncorrelated basis for the valence two protons. The calculations are performed in the truncated
space defined by the energy-cutoff: ǫa +ǫb ≤ Ecut = 40 MeV. The continuum states are discretized
within a radial box of Rbox = 80 fm. For the angular momentum channels, we take lmax = 5, that
is, we include all the partial waves from (s1/2)2 to (h11/2)2.

We assume the Woods-Saxon and Coulomb potentials between the core and a proton, similarly
to Eq.(7.5). We employ the same parameters as those in the Ref. [192], in which the authors
discussed the scattering problem of 14O+p theoretically. The first and second resonances obtained
with these parameters are shown in Fig. 8.1. We calculate and fit the derivative of the phase-shift,
according to Eq.(D.27), to get E1p and Γ1p. These values are consistent to several experimental
results [57, 224, 225].

For the proton-proton pairing interaction, we use the Minnesota potential given by Eq.(4.29)
in this case. In order to reproduce the Q-value of 2p-emission, Q2p ≡ 〈H3b〉 = 1.40 MeV, we adjust
the strength of the repulsive part as v0 = 126.2 MeV. The other parameters in the Minnesota
potential are fixed to the original values in ref. [153].

The initial 2p-state for the time-evolution is defined as a quasi-bound state obtained with the
confining potentials, similarly to the previous calculations for 6Be. The confining potentials for
16Ne are defined as follows. In Chapter 4, we have confirmed that in 17,18Ne nuclei, the valence
two protons are mainly in the (d5/2)

2-orbit. Because 16Ne is an isotope of these nuclei, the first
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Figure 8.3: (The left panel) The 2p-density distribution at t = 0 for the ground state of 16Ne.
It is obtained by including all the partial waves up to (h11/2)2, and plotted as a function of
rc−pp = (r2

1 + r2
2 + 2r1r2 cos θ12)1/2/2 and rp−p = (r2
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2−2r1r2 cos θ12)1/2. (The right panel) The

angular distribution at t = 0 obtained by integrating ρ̄2p(t = 0) with r1 and r2.

resonance of 16Ne is also expected to have a large component of (d5/2)
2-configuration. According

to this consideration, for the single particle (s.p.) (d5/2)-channel, we modify the core-proton
potential at t = 0 in order to fix the quasi-bound state as follows.

V conf
c−p, (d5/2)(r) =

{

Vc−p, (d5/2)(r) (r ≤ Rb),

Vc−p, (d5/2)(Rb) (r > Rb),
(8.1)

with Rb = 8.5 fm in this case. For other s.p. channels, we define it as

V conf
c−p (r) =

{

Vc−p(r) (r ≤ Rb),
Vc−p(r) + Vb(r) (r > Rb),

(8.2)

where Vb(r) = Vc−p, (d5/2)(Rb)−Vc−p, (d5/2)(r). The original and confining potentials for the (s1/2),
(p3/2) and (d5/2) channels are shown in Fig. 8.2.

By diagonalizing the modified Hamiltonian including V conf
c−p (r), we obtain the initial 2p-state.

In Figure 8.3, we show the initial density, ρ2p(t = 0), and its angular distribution. One can clearly
see a significant diproton correlation, characterized by the localization of the two protons in the
S12 = 0 configuration. The spin-singlet ratio is obtained as P (S12 = 0) = 87.9%. The prominent
three peaks are due to the dominant (d5/2)

2 wave, with its probability of 49.56% in this state. In
addition, the (s1/2)2 wave has a comparable probability of 44.70% in this state. The other waves
with (l = odd)2 and (l = even)2 carry the probabilities of 3.61% and 2.13%, respectively. It is
worthwhile to compare this result with that of 17Ne obtained in Chapter 4. By comparing the
left panel of Fig. 8.3 with Fig. 4.10(a), it can be seen that the spatial distribution is a little
more extended in the 16Ne nucleus. This is consistent with the increment of the (s1/2)2 wave,
which has a long tail outside the core-proton potential. While this result can be interpreted as
a characteristic difference between the bound and meta-stable 2p-states, anyway, the diproton
correlation is still suggested in the initial state of 16Ne. If our time-dependent calculation yields
the decay width that is consistent with the experiments, we can associate the behavior of the
emitted two protons (at the earlier stage) with the diproton correlation.
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Figure 8.4: The decay probabilities and the decay width of 2p-emissions from 16Ne, obtained
with the time-dependent method. Those for the spin-singlet and triplet configurations are also
plotted. In calculations, all the partial waves up to (h11/2)2 are included. The parameters of
the pairing interaction are adjusted to reproduce the experimental Q-value, Q2p,Exp. = 1.40(2)
MeV [59]. Note that the experimental decay width, Γ2p,Exp. = 110± 40 keV [59] is too higher to
be indicated in the lower panel.

8.2 Decay Width

The results for the decay probability and the decay width are shown in Fig. 8.4. The calculation is
carried out up to ct = 2800 fm where the reflection at Rbox can be neglected. Unfortunately, there
is a large discrepancy between the calculated and the experimental decay widths. In Fig. 8.4, after
a sufficient time-evolution, the calculated decay width approximately converges to Γ2p,Thr. ≃ 2−3
keV, which is underestimated against the experimental value, Γ2p,Exp. = 110 ± 40 keV [59].
This discrepancy would not be attributed to our small model space, or the uncertainties in the
time-dependent calculation since a similar three-body model calculation also yielded a similar
discrepancy [46, 170]. Additionally, in the earlier time region, the decay probability shows a big
bump, causing a large oscillation in the decay width, Γ(t). We do not know exactly whether
this bump is just an artifact, or originates from the initial configuration, including the diproton
correlation.

In order to investigate a possible cause of the underestimated decay width, we carry out
similar calculations but with different values of v0 in the Minnesota pairing interaction, intuitively
discarding the fine set up for the Q-value. In Fig. 8.5, we show the results obtained with
v0 = 200.0, 168.0 and 126.2 MeV. The first value is identical to the original parameter [153],
whereas the third value is that used in Fig. 8.4. The decay width is reproduced if we take
v0 = 168 MeV, which yields Q2p,Thr. = 2.04 MeV. In this case, compared with the previous case
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Figure 8.5: The decay widths obtained for different values of v0 in the Minnesota pairing attrac-
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with Q2p,Thr. = 1.40, the two protons have a larger energy to overcome the potential barriers, and
the decay width becomes also larger, leading to the agreement with the experimental value. It
means that our naive three-body model leads to an over stabilization against the 2p-emission of
16Ne.

Notice also that there remains sizable oscillations in Γ(t) even after a sufficient time-evolution.
We conjecture that the mixing of the two resonances, namely those in the (s1/2) and (d5/2)-
channels of the core-proton subsystem, is responsible for this result. However, we do not explore
deeply into this problem here. Indeed, we will rather discuss what causes the over stabilization
of the two protons.

8.3 Possibilities of Improvements

The first possible cause of the over stabilization of 16Ne is a lack of core excitations in the present
theoretical model. In other words, the intrinsic degrees of freedom of the core nucleus may not
be neglected for 16Ne. One may wonder why the present model works well for 6Be, but does not
for 16Ne. This is due to the stability of the core nuclei, namely alpha-particle and 14O for 6Be
and 16Ne, respectively. The first excited state of α is located at E = 20.2 MeV, which is much
higher than the first excited state of 14O at E = 5.1 MeV [152]. Thus, the core excitation may
be relatively important in 16Ne compared to 6Be.

Indeed, from recent studies on weakly-bound nuclei, it is expected that excitations of the
core nucleus play an important role in the halo structure and the electro-magnetic excitations of
these nuclei [226–232]. For the meta-stable processes, it has been recognized that a coupling of
the valence particle with these degrees of freedom might enhance the tunneling probability and
thus increase the decay width [79, 233–235]. The similar effect of the core excitation is expected
to exist in the 2p-emission, which might restore an discrepancy between the calculated and the
experimental decay widths. The most possible source of these excitations is the deformation of
the core nucleus. However, even if the core is not deformed, the considerable component of these
excitations exist, namely the “two-particle and two-hole (2p2h-)” type of excitations from the
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naive shell structure, due to the pairing correlations. It includes the 2p2h-excitations by two
protons, two neutrons and a proton-neutron pair. The former two are caused by the ordinary
pairing correlations, whereas the last one is associated with the tensor force [230]. Taking these
core excitations into account means an extension of the inert-core model, and may lead to a
relaxation of over stabilization of 2p-emissions. However, for this purpose, we must expand
the model space, which would increase the cost of calculations. To treat it correctly will be a
challenging task in our future works.

The second possibility is due to a model-dependence of the pairing interaction, as partially
discussed in the previous Chapter. In this thesis, we have adopted the simple Minnesota in-
teraction between two protons. With other interactions, which include the spin-orbit or the
momentum-dependence, might reproduce the experimental Q2p and Γ2p simultaneously. Further-
more, in order to reproduce the total Q-value, we have intuitively modified the parameter of the
Minnesota potential in this work. However, by modifying the parameter, two-nucleon scattering
property at infinitely far from the core is no longer reproduced. This deviation may affect the
calculated results, especially for the meta-stable processes, in which the final-state interactions
play an important role even far from the core. To improve this point, we will have to install
the density-dependence into the pairing interaction, or employ the phenomenological three-body
force, which works only when all the particles are localized in a small region. A work towards
this direction is in the progress now.
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Chapter 9

Summary of Thesis

We have theoretically investigated the diproton correlation and its effect on the two-proton emis-
sion. These are both the exotic features of proton-rich nuclei which are located far from the
beta-stability line, and thus are the novel interests in current nuclear physics. Furthermore, these
two phenomena can be strongly connected to each other, because they have a common basis of
physics, namely the nuclear pairing correlation. The diproton and dineutron correlations are the
intrinsic structures characterized by a spatial localization of two nucleons of the same kind with
a large component of the spin-singlet configuration. These are exotic features which cannot be
reproduced within the pure mean-field theory of nuclei, and are strongly related to the density-
dependence of pairing correlations, which is an important prediction from the modern theory for
nuclear structures. Recently, the two-proton decays and emissions have attracted much interests
as an efficient tool to probe the diproton correlation. In the observables of the emitted two pro-
tons, information on the diproton correlation may be reflected. In order to establish this idea,
further investigations were still necessary with a realistic assumptions for calculations. Revealing
their fundamental relation is expected to provide another way to probe the nuclear pairing phe-
nomena and the dinucleon correlations, simultaneously a development of the advanced nuclear
theory which covers both the low and high density-regions, and both bound and meta-stable
systems. Nevertheless, few people have discussed this possibility within a realistic assumptions
of calculations [48, 144].

For this purpose, we have carried out the quantum three-body model calculations in this thesis.
Our calculations provide semi-microscopic descriptions for the nuclear pairing correlations. By
performing model calculations and analyzing their results, we have obtained several important
conclusions.

In the former half of this thesis, we have discussed the diproton correlation in bound proton-
rich nuclei. By calculating 18Ne, 18O and 17Ne nuclei, we have confirmed that the diproton
correlation exists in the ground state of these nuclei, similarly to the dineutron correlation in
neutron-rich nuclei. In these systems, a prominent localization of the two protons and neutrons
are predicted. The spin-singlet configuration takes the major contribution to this localization. It
has also been shown that the Coulomb repulsive force between the two protons does not affect
significantly this correlation. Even though this repulsion extends the density distribution of
two nucleons and weakens the binding energy, its effect is not sufficiently strong to destroy the
diproton correlation. Our calculations have indicated that the effect of the Coulomb force reduces
the pairing energy gap only by about 10 %, being consistent to other theoretical studies. We have
also found that whether the dinucleon correlations exist or not is insensitive to the total binding
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energy of a three-body systems. Namely, the dinucleon correlations can be considered not only
in loosely bound nuclei, but also in deeper bound systems.

From these results, we can conclude that the dinucleon correlations exist almost independently
of (i) whether the pair consists of protons or neutrons, and of (ii) whether that the pair is loosely
or deeply bound to the core nucleus. Eventually, the dinucleon correlations should be discussed
as a common property of both stable and unstable nuclei.

In the latter half of this thesis, we have focused on the relation between the diproton correlation
and the two-proton emissions. In two-proton emissions, a pair of protons are emitted directly from
the parent nucleus. This process is a typical meta-stable phenomenon governed by the quantum
tunneling effect, and can be an promising tool to probe the diproton correlation. It can be
expected that if the valence two protons have the diproton correlation inside the potential barrier,
its effect can be reflected in the decay observables. However, in order to extract information on the
diproton correlation from the decay observables, one has to treat both the quantum meta-stability
and the many-body property on an equal footing.

For this purpose, we have developed the time-dependent three-body model. In this model, the
initial 2p-state is defined as a quasi-bound state within a phenomenological confining potential.
The quantum tunneling process can be treated by solving the time-dependent Schrödinger equa-
tion. The sensitivity of 2p-emissions to the diproton correlation has been discussed by studying
its dependence on the initial configuration of the two protons, with or without a diproton-like
clustering. We would like to emphasize that our time-dependent approach has an advantage to
treat the quantum meta-stable processes, enabling us to distinguish the essential cause of phe-
nomena. Especially, for two-proton emissions, several theoretical works have already been done,
most of which have been based on the time-independent formalism. However, the relation between
the observables in the 2p-emissions and the nuclear intrinsic structures, including the diproton
correlation, has not been discussed. Thus, our present study provides a novel insight into these
important problems.

By applying this model to the 6Be nucleus, which is the simplest two-proton emitter, We
have obtained several results suggesting that the diproton correlation is reflected in the decay
observables. To be more specific, first, we have confirmed that the experimental two-proton
decay-width of 6Be is well reproduced only by assuming the diproton correlation in the initial
state. Furthermore, the decay width is mostly from the spin-singlet configuration. Second, the
emitted two protons are expected to have a diproton-like cluster at the early stage of emissions,
due to the pairing correlations (that is, the correlated emission). We have also performed the same
calculations but based on the pure mean-field model, completely ignoring the pairing correlations.
In such calculations, the decay width is severely overestimated, and the emission process shows
mostly the pure sequential emission, differing from the case with the pairing correlations. These
results suggest the importance of the diproton correlation in the 2p-emissions.

At this moment, the strong dependence of the 2p-emission on the diproton correlation is sug-
gested. It means that the 2p-emission can be an effective tool to evince the diproton correlation.
In order to prove it completely, however, there still remain several open problems listed below.

1. Final-state interactions: Our present results have predicted a significant correlated emission,
including the diproton-like clustering in the early stage of the two-proton emissions of 6Be.
However, on the other hand, there is no significant signal of the correlated emission in
the experimental angular and energy correlation patterns. A reason for this discrepancy
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may be the final-state interactions (FSIs). In the experimental data, there is a strong
modification of the correlation pattern by the FSIs among all the particles. Especially, the
long-ranged Coulomb forces can extensively affect the two protons during their propagation.
Consequently, the observed data correspond to the late stage of the emission process. It
has yet to be clarified how the diproton correlation at the initial and the earlier stages are
reflected in the experiments. In order to address this question, by taking the FSIs sufficiently
into account, we would need to expand our model-space so that a longer time-evolution can
be carried out. However, at the same time, it inevitably leads to a serious increment of
computing costs, and one would need to develop more economic procedures for the three-
body model calculations to resolve this problem. Such procedures include, e.g. assuming a
sophisticated boundary condition to avoid the reflection of wave functions at the edge of the
box, and employing an efficient bases to reduce the dimension of the Hamiltonian matrix.

2. Pairing interaction in the asymptotic region: In the present study, we have used the nuclear
potential between two nucleons, by modifying its parameter to reproduce the total Q-value
of the 2p-emissions. However, such modified potential is not consistent to the two-nucleon
scattering property in vacuum, and may lead to a serious error in the calculated results.
Especially, in order to reproduce the angular distributions of the two protons, we might
have to weaken the pairing attraction in the asymptotic region. For this purpose, one
should install the density-dependence into the pairing potential, or employ a three-body
force which works as a short-ranged attraction between three particles. The effect of the
three-body force on the two-nucleon emissions and decays is an important problem, as well
as whether such an three-body force has an physical meaning or not.

3. Core excitations: For the 6Be nucleus, our three-body model well reproduces the experi-
mental data of the Q-value and decay-width. However, for another light two-proton emitter,
16Ne, our calculations have not been successful in reproducing them consistently: the 2p-
decay width is considerably underestimated even if we employ the appropriate parameters
for the total Q-value. We note that this problem is not only in our calculations but also in
other studies based on a similar three-body model to ours [46,170]. Given this discrepancy,
we anticipate a limitation of the simple three-body model assuming an inert, structure-less
core, and the importance of the core excitations. Similar problems have been reported in
other studies of, e.g. the nuclear meta-stable processes [79,159,233–235] and the structures
of nuclei far from the beta-stability line [226–232], suggesting that the core excitation plays
an important role in these phenomena. To discard the assumption of an inert core may
resolve the discrepancy between the calculated and the observed 2p-widths. Treating it
correctly will be an important task in our future works. We also note that the explicit
treatment of the core excitations would be connected to the role of the tensor force, because
the tensor force causes the 2p2h-type of excitations of the core [230].

After these improvements, our time-dependent method will be more sophisticated and will be
able to reveal the essential relation between the diproton correlation and the two-proton emissions.
Moreover, similar time-dependent approaches can be applied to describe other quantum meta-
stable processes in few-body systems. Especially, considering the dinucleon correlations, the most
important one may be the two-neutron (2n-) emissions. In analogy to the relation between the
diproton correlation and the 2p-emissions, the 2n-emissions can be a powerful tool to examine
the dineutron correlation in neutron-rich nuclei. Because of the absence the long-ranged Coulomb
FSIs, a theoretical treatment may be easier than that for the 2p-emissions, although the problems
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of an asymptotic pairing interaction and of the core excitations still remain. Work towards this
direction is also an challenging task in the future.

The quantum meta-stability plays an important role in various situations in our world. Es-
pecially, those of three or more fermions, or with many degrees of freedom, have been one of the
most important subjects in modern physics. However, in spite of its importance, there remain a
lot of unknown aspects of the quantum meta-stability. The theoretical treatment still needs a fur-
ther development, where the two complementary (or competing) frameworks coexist at present.
Atomic nuclei, which show various radioactive processes, are one of the most suitable fields to
discuss these physics. The knowledge gained in this field can be extended to other quantum meta-
stable phenomena with many fermions or with strong correlations. Understanding the quantum
meta-stability among different scales will be a great benchmark in future physics.
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Appendix A

Numerov Method

This is the numerical method to solve an ordinary differential equation in which only the zeroth
and the second order terms are included, such as

[

d2

dx2
+ f(x)

]

U(x) = 0, (A.1)

where f(x) is an arbitrary source function. The solution, U(x), is sampled at equidistant points
xn, (n = 0 ∼ N) where the distance between two sampling points is defined as a. With this
method, starting from the solution values at two consecutive sampling points, namely U0 ≡ U(x0)
and U1 ≡ U(x1), we can calculate the remaining solution values as

Un+2 =
(2− 5a2fn+1/6)Un+1 − (1 + a2fn)Un

1 + a2fn+2/12
+O(a6), (A.2)

where we neglect O(a6). The derivation of Eq.(A.2) is based on the discrete Taylor expansion for
U(x) until the fifth order. Considering the two sampling points, xn−1 = xn−a and xn+1 = xn +a,
Taylor expansions are given as

Un+1 ≡ U(xn + a)

= Un + aU ′
n +

a2

2!
U ′′

n +
a3

3!
U (3)

n +
a4

4!
U (4)

n +
a5

5!
U (5)

n +O(a6), (A.3)

Un−1 ≡ U(xn − a)

= Un − aU ′
n +

a2

2!
U ′′

n −
a3

3!
U (3)

n +
a4

4!
U (4)

n −
a5

5!
U (5)

n +O(a6), (A.4)

where U
(m)
n ≡ dmU(x)/dxm|x=xn

. The sum of these two equations gives

Un−1 + Un+1 = 2Un + a2U ′′
n +

a4

12
U (4)

n +O(a6). (A.5)

Solving this equation for a2U ′′
n leads to

−a2U ′′
n = 2Un − Un−1 − Un+1 +

a4

12
U (4)

n +O(a6). (A.6)

In this equation, we can replace U ′′
n to −fnUn because of Eq.(A.1). Similarly, for the fourth term

in the right hand side, we can use

U (4)(x) =
d2

dx2
[−f(x)U(x)]. (A.7)
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The numerical definition of the second derivative is given as the second order difference quotient,
that is

d2

dx2
[−f(x)U(x)]⇒ −fn−1Un−1 − 2fnUn + fn+1Un+1

a2
. (A.8)

After these replacements, Eq.(A.6) is transformed as

a2fnUn = 2Un − Un−1 − Un+1 −
a4

12

fn−1Un−1 − 2fnUn + fn+1Un+1

a2
+O(a6). (A.9)

Finally, we solve this equation for Un+1 to get

Un+1 =
(2− 5a2fn/6)Un − (1 + a2fn−1)Un−1

1 + a2fn+1/12
+O(a6), (A.10)

which is equivalent to Eq.(A.2).
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Formalism of Many-Body Coordinates

In this Chapter, we introduce the general formalism for the transformation of coordinates of
many-particle systems. For N particles in the three dimensional space, one needs N coordinates
of space, {xi}, i = 1 ∼ N . In general, these degrees of freedom are separated into the center-
of-mass coordinate, rG, and N − 1 relative coordinates, rk, k = 1 ∼ N − 1. The V-coordinate
used in this thesis is just one kind of definitions of rk, k = 1, 2, and its definition is detail in the
following. The derivations of the three-body Hamiltonian in the V-coordinates is also introduced.
For more general formulations and applications, see e.g. the textbook [236].

B.1 Coordinates for Many-Body Problems

We start our discussions from the original coordinates xi and their conjugate momenta πi. These
satisfy

[(xi)µ, (πj)ν ] = i~δij · δµν =⇒ πi = −i~ ∂

∂xi

, (B.1)

where µ and ν = x, y, z. Here we define the column vector ~X and ~Π, whose i-th component is xi

and πi, respectively.

~X ≡







x1
...

xN






, ~Π ≡







π1
...

xN






. (B.2)

Using the transform-matrix U , one can define the new set of coordinates, {ri}, as follows:

~R ≡







r1
...

rN






= U ~X ⇐⇒ ~X = U−1 ~R, (B.3)

or equivalently,

ri =

N
∑

j=1

Uijxj ⇐⇒ xi =

N
∑

j=1

(U−1)ijrj. (B.4)

The conjugate momenta are also written by applying the chain-rule:

πi = −i~ ∂

∂xi

= −i~
∑

j

∂rj

∂xi

∂

∂rj

=
∑

j

Ujipj. (B.5)
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Thus, indicating the transverse matrix of U as tU , the conjugate momenta of ~R can be defined as

~P ≡







p1
...

pN






= (tU)−1~Π ⇐⇒ ~Π = tU ~P , (B.6)

or equivalently,

pi =

N
∑

j=1

(tU)−1
ij πj ⇐⇒ πi =

N
∑

j=1

tUijpj . (B.7)

Note that the conjugate relation is still satisfied as

[(ri)µ, (pj)ν ] = i~δij · δµν . (B.8)

The transform-matrix, U , can be chosen arbitrarily and there is no mathematical discrimination
between different Us. However, in practice, there are two major coordinates used to solve the
many-body problems. In this thesis, we choose so called “core-center coordinates” defined by the
transform-matrix,

U ≡















1 0 0 · · · 0 0 −1
0 1 0 · · · 0 0 −1
...
0 0 0 · · · 0 1 −1

m1

M
m2

M
m3

M
· · · mN−2

M

mN−1

M
mN

M















, (B.9)

where its inverse matrix is given by

U−1 ≡































1− m1

M
−m2

M
−m3

M
· · · −mN−1

M
1

−m1

M
1− m2

M
−m3

M
· · · −mN−1

M
1

−m1

M
−m2

M
1− m3

M
· · · −mN−1

M
1

...
−m1

M
−m2

M
−m3

M
· · · 1− mN−1

M
1

−m1

M
−m2

M
−m3

M
· · · −mN−1

M
1































, (B.10)

with M ≡
∑N

i=1mi. In these coordinates, the vector rN indicates the center-of-mass motion,
whereas rk with k = 1 ∼ (N − 1) indicates the relative motion between the central core and the
k-th particle. We schematically indicate these coordinates in the case of three-body systems in
Figure B.1.

We briefly introduce another famous coordinates, namely “Jacobi coordinates”. Those are
defined by

UJ ≡































1 −1 0 0 · · · 0 0

m1

m12

m2

m12
−1 0 · · · 0 0

m1

m123

m2

m123

m23

m123
−1 · · · 0 0

...
m1

m12···(N−1)

m2

m12···(N−1)
· · · · · · · · · mN−1

m12···(N−1)
−1

m1

M
m2

M
· · · · · · · · · mN−1

M
mN

M































, (B.11)
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Figure B.1: (left panel) The original coordinates for the three-body system. (right panel) The
core-center coordinates.

and its inverse matrix is given by

U−1
J ≡































m2

m12

m3

m123

m4

m1234
· · · mN

M
1

− m1

m12

m3

m123

m4

m1234
· · · mN

M
1

0 − m12

m123

m4

m1234
· · · mN

M
1

0 0 − m123

m1234
· · · mN

M
1

...
0 0 0 · · · −m12···(N−1)

M
1































, (B.12)

with m12 ···N ′ ≡
∑N ′

i=1mi. This set of coordinates has been used as well as the core-center coordi-
nates for nuclear few-body models [236]. In this thesis, we use these coordinates only for the two
relative momenta in the three-body system, in order to calculate 〈hc−NN〉 and 〈hN−N〉 in Chapters
4 and 7.

B.2 Hamiltonian of Three-Body System

In this thesis, we study the quantum three-body systems consisting of the core-nucleus and the
two valence nucleons. We approximately use the same mass for a proton and a neutron. Thus, the
masses of the core and a valence nucleon are mC = ACm and m1 = m2 = m, respectively, where
AC is the mass-number of the core. The total Hamiltonian written in the original coordinates,
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{xi}, is given as

H =
π2

1

2m
+

π2
2

2m
+

π2
C

2ACm
+VC−N1(x1 − xC) + VC−N2(x2 − xC) + vN1−N2(x1 − x2), (B.13)

where we assigned the third coordinate, x3, to the core-nucleus.
To get the Hamiltonian in the core-center, or sometimes called “V-coordinates” for three-body

systems, we consider the transform-matrix, U , defined as

U =





1 0 −1
0 1 −1
m
M

m
M

ACm
M



 ⇐⇒ U−1 =





1− m
M

−m
M

1
−m

M
1− m

M
1

−m
M

−m
M

1



 , (B.14)

where M = m1 +m2 +mC = (AC + 2)m. The transformed coordinates are written as





r1

r2

r3



 = U





x1

x2

xC



 =





x1 − xC

x2 − xC
m
M

x1 + m
M

x2 + ACm
M

xC



 , (B.15)

where r3 corresponds to the center-of-mass, rG. Notice also that x1 − x2 = r1 − r2 and thus
we can simply replace vN1−N2(x1 − x2) −→ vN1−N2(r1 − r2). On the other hand, the conjugate
momenta are transformed as





π1

π2

πC



 = tU





p1

p2

pG



 =





p1 + m
M

pG

p2 + m
M

pG

−p1 − p2 + ACm
M

pG



 . (B.16)

From Eq.(B.16), the kinetic terms can be re-written as

π2
1

2m
+

π2
2

2m
+

π2
C

2ACm
(B.17)

=
1

2

(

1

m
+

1

ACm

)

p2
1 +

1

2

(

1

m
+

1

ACm

)

p2
2 +

1

ACm
p1 · p2 +

1

2M
p2

G

=
p2

1

2µ
+

p2
2

2µ
+

p1 · p2

ACm
+

p2
G

2M
(B.18)

where µ = m(AC + 1)/AC. As the final result, the total Hamiltonian takes the form below.

H =
p2

1

2µ
+

p2
2

2µ
+

p1 · p2

ACm
+

p2
G

2M

+VC−N1(r1) + VC−N2(r2) + vN1N2(r1 − r2). (B.19)

Notice that in Eq.(B.19), the center-of-mass motion is separated from the three-body relative
motion. Assuming that pG = 0, the three-body Hamiltonian, H3b, in Chapter 3 is correctly
derived.
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Scattering Problem with Contact
Potential

In this Chapter, we discuss the nucleon-nucleon scattering problem with the phenomenological
contact potential, V (r) = V0δ(r). The contact potential can provide physical meanings only
within the truncated space defined by the energy cutoff, Ecut. With an arbitrary Ecut value, one
can determine V0 to reproduce the scattering character, namely the scattering length or the phase
shift at the lower energy limit. The Schrödinger equation of this scattering problem is written as

[

− ~
2

2µ
∇2

r
+ V0δ(r)

]

φ(r) = Eφ(r), (C.1)

with the incident energy E. Here µ = m/2 is the relative mass for the two-nucleon system where
m is the one-nucleon mass.

We define the relative momentum, k ≡
√

2µE
~

, and the converted potential, v(r) ≡ 2µ
~2 V0δ(r) =

v0δ(r). Using these symbols, we can modify the Schrödinger equation as below.

[

∇2
r

+ k2
]

φ(r, k) = v(r)φ(r, k). (C.2)

The outgoing solution of this equation is formally represented with a Green’s function [11]:

G(+)(r, r′, k) ≡ lim
η→0

∫

d3p

(2π)3

eip·(r−r
′)

p2 − k2 − iη (C.3)

=
1

4π

eik|r−r
′|

|r − r′| , (C.4)

which satisfies

[

∇2
r

+ k2
]

G(+)(r, r′, k) = −
∫

d3p

(2π)3
eip·(r−r

′) (C.5)

= −δ(r− r′). (C.6)

The scattered wave function within the outgoing boundary condition, φ(+), is formulated as

φ(+)(r, k) = φ
(+)
0 (r, k)−

∫

d3r′G(+)(r, r′, k)v(r′)φ(+)(r′, k), (C.7)
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where φ
(+)
0 (r, k) indicates the outgoing plane-wave. Substituting v(r′) = v0δ(r

′), we can solve
the φ(+)(r′, k) as

φ(+)(r, k) = φ
(+)
0 (r, k)−

∫

d3r′G(+)(r, r′, k)v0δ(r
′)φ(+)(r′, k), (C.8)

= φ
(+)
0 (r, k)−G(+)(r, 0, k)v0φ

(+)(0, k), (C.9)

= φ
(+)
0 (r, k)− v0

4π
φ(+)(0, k)

eikr

r
. (C.10)

Here we used Eq.(C.4) to get the last formula. Now we can derive the well-known formula for
the scattered wave, that is

φ(+)(r, k) = φ
(+)
0 (r, k) + f(k)

eikr

r
, (C.11)

by defining the “form factor”, f(k), as

f(k) = − v0

4π
φ(+)(0, k). (C.12)

It means that the scattered wave was disrupted only at r = 0, consistently to the infinitesimal
range of the contact interaction.

On the other hand, substituting Eq.(C.3) into Eq.(C.7), we can derive an alternative formula
for the scattered wave:

φ(+)(r, k) = φ
(+)
0 (r, k)− v0φ

(+)(0, k) lim
η→0

∫

d3p

(2π)3

eip·r

p2 − k2 − iη . (C.13)

At r = 0, assuming the energy cutoff, EC ←→ kC , we can apparently solve this equation. That
is

φ(+)(0, k) = φ
(+)
0 (0, k)− v0φ

(+)(0, k)
1

2π2

∫ kC

0

dp
p2

p2 − k2
(C.14)

= 1− v0

2π2
φ(+)(0, k)

[

kC +
k

2
ln

∣

∣

∣

∣

kC − k
kC + k

∣

∣

∣

∣

]

. (C.15)

Thus we get

φ(+)(0, k) =

(

1 +
v0

2π2

[

kC +
k

2
ln

∣

∣

∣

∣

kC − k
kC + k

∣

∣

∣

∣

])−1

, (C.16)

which is the complementary equation to Eq.(C.12).

C.1 Low Energy Limit

In the following, we consider the s-wave at the low energy limit (k → 0). As well known, the form
factor can be written as

fs(k) =
1

k
eiδs sin δs (C.17)

where δs is the phase shift. It leads to an asymptotic formula below:

|fs(k)|2 =
sin2 δs
k2

=
1

k2 + k2 cot2 δs
(C.18)

=⇒ k cot δs =

(

1

|fs(k)|2 − k
2

)1/2

≃ 1

|fs(k)|

(

1− k2|fs(k)|2
2

)

. (C.19)
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From Eqs.(C.12), (C.16) and (C.19), the phase shift of the s-wave can be approximated as

k cot δs ≃ −
4π

v0

(

1 +
v0

2π2

[

kC +
k

2
ln

∣

∣

∣

∣

kC − k
kC + k

∣

∣

∣

∣

])

. (C.20)

Note that the logarithmic term is expanded as a polynomial of k:

ln

∣

∣

∣

∣

k − kC

k + kC

∣

∣

∣

∣

≃ −2
k

kC
+O

(

(

k

kC

)3
)

, (C.21)

where there are no terms on the order of k0. On the other hand, there is an well-known empirical
formula for k cot δs at k → 0, such as

k cot δs ≃ −
1

ann

+
rnn

2
k2. (C.22)

Here ann is the nucleon-nucleon scattering length whose empirical value is −18.5 fm, whereas the
rnn is the effective range. Comparing the leading terms in Eqs. (C.20) and (C.22), the strength
V0 can be defined within the energy-cutoff kC to reproduce the scattering length. That is

−4π

v0

(

1 +
v0kC

2π2

)

= − 1

ann

=⇒ v0 = 4π

(

1

ann

− 2

π
kC

)−1

= 4π

(

πann

π − 2annkC

)

. (C.23)

Remembering v0/2 = µV0/~
2, consequently we get the fitting formula for the contact potential:

V0 =
~

2

2µ

(

4π2ann

π − 2annkC

)

. (C.24)

It should be noted that Eq. (C.24) is valid at k → 0 limit. However, in practical cases, the
parameter defined with ann = −18.5 fm may be too strong especially for the valence nucleons.
Thus the lower value, e.g. ann = 15.0 fm, is also used to prepare the appropriate paring attraction
as often as the original value. In this thesis, we confirmed that our conclusions do not change
even if we employ ann = 15.0 fm instead of ann = 18.5 fm.
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Appendix D

Two-Body Scattering with Spherical
Potential

Our goal in this Appendix is to derive the fitting formula for the phase-shift of two-body scattering
problems. For simplicity, we assume that the potential between two particles is spherical. For
quantum resonances in two-body systems, one can usually solve the asymptotic waves analytically.
The phase shift and its derivative can be computed by using these asymptotic waves, where it
indicates the pole(s) of the S-matrix for the resonance. Even if one is interested in the scattering
problem with three or more particles, it is often necessary to solve the partial two-body systems
in order to, e.g. prepare the fine two-body interactions.

D.1 Solutions in Asymptotic Region

Assuming the relative wave function as φljm(r, s) = Rlj(r)Yljm(r̄, s), the radial equation of this
problem reads

[

− ~
2

2µ

{

d2

dr2
− l(l + 1)

r2

}

+ Vlj(r)− E
]

Ulj(r, E) = 0, (D.1)

where we defined Ulj(r, E) ≡ rRlj(r) from the radial wave function. The relative energy, E, for
the scattering problem satisfies

E > lim
r→∞

Vlj(r) ≡ 0. (D.2)

The equivalent but more convenient radial equation takes the form given by
[

d2

dρ2
− l(l + 1)

ρ2
− Vlj(r)

E
+ 1

]

Ulj(ρ) = 0, (D.3)

where ρ ≡ kr defined with the relative momentum, k(E) ≡ √2Eµ/~. In numerical calculations,
this type of equations can be solved with, e.g. Numerov method explained in Chapter 3.

To calculate the phase-shift and also other important quantities, asymptotic solutions of
Eq.(D.3) are often necessary. In the following, we note these solutions for two major poten-
tials frequently used in nuclear physics.

D.1.1 Short-Range Potential

Short-range potentials, including nuclear interactions, are characterized as

lim
r→∞

Vlj(r) < O(r−2). (D.4)
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The asymptotic condition can be satisfied at ρ ≫ 1. A general solution in this region can be
written as

Ulj(ρ)

ρ
= C1jl(ρ) + C2nl(ρ), (D.5)

with spherical Bessel and Neumann functions, such as

jl(kr) −→
1

kr
sin
(

kr − lπ
2

)

, (D.6)

nl(kr) −→
−1

kr
cos
(

kr − lπ
2

)

. (D.7)

Or equivalently, the out-going and in-coming waves can be given as

h
(+)
l (kr) ≡ jl(kr) + inl(kr) −→

1

ikr
ei(kr−l π

2 ), (D.8)

h
(−)
l (kr) ≡ jl(kr)− inl(kr) −→

−1

ikr
e−i(kr−l π

2 ). (D.9)

Using the coefficients Alj and Blj, a general solution takes the form of

Ulj(kr)

kr
= Alj(E)h

(+)
l (kr) +Blj(E)h

(−)
l (kr)

= Blj(E)[Slj(E)h
(+)
l (kr) + h

(−)
l (kr)], (D.10)

with the S-matrix, Slj(E) ≡ Alj(E)/Blj(E). Note that |Slj(E)|2 = 1 from the conservation law
of the flux. Introducing the phase-shift, δlj(E) as Slj(E) ≡ e2iδlj(E), we can get the well-known
asymptotic form of Ulj .

Ulj(kr)

kr
−→ Blj(E)

ikr

[

Slj(E)ei(kr−l π
2 ) − e−i(kr−l π

2 )
]

=
Blj(E)eiδlj(E)

ikr

[

ei(kr−l π
2
+δlj(E)) − e−i(kr−l π

2
+δlj(E))

]

∝ 1

kr
sin
[

kr − lπ
2

+ δlj(E)
]

. (D.11)

Note that δlj(E) ∈ R since |Slj(E)|2 = 1.

D.1.2 Coulomb Potential

It is formulated as

Vlj(r) = V (r) = α~c
Z1Z2

r
, α ≡ e2

4πǫ0 · ~c
. (D.12)

Defining Sommerfeld parameter, η ≡ Z1Z2αµc/~k, Eq.(D.3) can be written as

[

d2

dρ2
− l(l + 1)

ρ2
− 2η

ρ
+ 1

]

Ul(ρ, η) = 0. (D.13)

With this Coulomb potential, the asymptotic condition can be satisfied at ρ ≫ 2η. A general
solution takes the form as

Ul(ρ, η)

ρ
= C1

Fl(ρ, η)

ρ
+ C2

Gl(ρ, η)

ρ
, (D.14)
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where Fl and Gl are the Coulomb functions [237]. Precise derivations of these functions are found
in, e.g. textbook [238]. Their asymptotic forms read

1

kr
Fl(kr, η) −→ 1

kr
sin
(

kr − lπ
2
− η ln 2kr + al(η)

)

, (D.15)

1

kr
Gl(kr, η) −→ 1

kr
cos
(

kr − lπ
2
− η ln 2kr + al(η)

)

, (D.16)

with al(η) = arg Γ(l + 1 + iη), which is independent of kr. There is also an iterative formula for
al(η) as

al+1(η) = al(η) + tan−1 η

l + 1
. (D.17)

Eliminating these unimportant phases, the outgoing and incoming waves can be formulated as
[238],

u
(+)
l (kr, η) ≡ e−ial(η) [Gl(kr, η) + iFl(kr, η)] −→ ei(kr−l π

2
−η ln 2kr), (D.18)

u
(−)
l (kr, η) ≡ eial(η) [Gl(kr, η)− iFl(kr, η)] −→ e−i(kr−l π

2
−η ln 2kr). (D.19)

By using these functions, a general solution can be replaced to

Ulj(ρ, η) = Alj(E, η)u
(+)
l (kr, η) +Blj(E, η)u

(−)
l (kr, η) (D.20)

∝
[

Slj(E, η)u
(+)
l (kr, η) + u

(−)
l (kr, η)

]

, (D.21)

where we need an additional variable, η, in two coefficients. The S-matrix, Slj(E, η), and the
phase-shift, δlj(E, η), can be defined similarly in the case with short-range potentials. The asymp-
totic solution is also given as

Ulj(ρ, η) −→∝ sin
[

ρ− lπ
2
− η ln 2ρ + δlj(E, η)

]

. (D.22)

In the following, however, we will not use Eqs.(D.11) and (D.22), although those are useful for
analytic discussions.

D.2 Fitting Formula for Phase-Shift

We explain how to compute the S-matrix within the numerical framework. First, we consider the
position r = Rb at which two particles can be separated sufficiently from each other. The radial
mesh, dr, should be enough small compared with Rb. At this point, we assess the quantity q
defined as

q(X) ≡ Ulj(X)

Ulj(X + d)
(D.23)

with X ≡ k · Rb and d ≡ k · dr. Remember that the perturbed wave, Ulj(X), is computed
numerically. On the other hand, in the case with Coulomb potential for instance, q(X) is also
evaluated as

q(X) =
Slj(E, η)u

(+)
l (X, η) + u

(−)
l (X, η)

Slj(E, η)u
(+)
l (X + d, η) + u

(−)
l (X + d, η)

, (D.24)
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where u
(+)
l and u

(−)
l can be computed independently of Ulj . By solving Eq.(D.23) and Eq.(D.24)

simultaneously for Slj(E, η), we can get

Slj(E, η) =
Ulj(X + d)u

(−)
l (X, η)− Ulj(X)u

(−)
l (X + d, η)

Ulj(X)u
(+)
l (X + d, η)− Ulj(X + d)u

(+)
l (X, η)

, (D.25)

and 2iδlj(E, η) = lnSlj(E, η). This is the numerical formula for the S-matrix and the phase-shift.
Notice that the similar formula can be derived in the case with short-range potentials.

Practically, it is well known that the phase-shift can be fitted by the Breit-Wigner distribution.
That is

δlj(E) = tan−1

[

Γ0/2

E0 − E

]

+ Clj(E), (D.26)

or equivalently,
dδlj(E)

dE
=

Γ0/2

Γ2
0/4 + (E0 − E)2

+
dClj(E)

dE
, (D.27)

where Clj(E) is a smooth back-ground. The central value, E0, and width, Γ0, correspond to the
complex pole of the S-matrix, locating at E = E0 − iΓ0/2. Accordingly, we have got the fitting
formula, which is equivalent to Eq.(4.28) in Chapter 4.
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Appendix E

General Formalism of Time-Dependent
Method

We briefly introduce the basic formalism of the time-dependent framework for quantum meta-
stable phenomena in this Chapter. We mainly assume the (multi-)particle emissions. However,
almost all formulas in the following can be generally applied to various kinds of quantum meta-
stable phenomena, which has been described within several structure or reaction models.

E.1 Continuum Expansion

First we assume the eigen-states of the total Hamiltonian, H , which is responsible for the time-
evolution1. Considering the degeneration, they can be formulated as

H |E, i(E)〉 = E |E, i(E)〉 , (E.1)

〈E ′, j(E ′) |E, i(E)〉 = δ(E ′ −E)δji. (E.2)

Here the eigen-energy E is real so that we consider the pure Hermite space, in contrast to other
theoretical methods which employ the space with complex eigen-energies, such as Berggren space.
The i(E) identifies one of the degenerating states with the same energy E. However, as a basic rule
in the following, we omit these labels for simplicity. If it is necessary to recount the degeneration,
we remember these labels only for some important formulas.

Adopting these eigen-states as bases, an arbitrary meta-stable state, |ψ0〉, can be expanded as

|ψ0〉 =

∫

dEµ(E) |E〉 , (E.3)

where {µ(E)} are the expanding coefficients. The normalization is represented as

1 = 〈ψ0 |ψ0〉 =

∫

dE |µ(E)|2 . (E.4)

Physical properties of |ψ0〉 are not clear at this moment. Those are characterized by the expanding
coefficients. In the following, we discuss about physics described with |ψ0〉.

1For simplicity, the total Hamiltonian is assumed to be static, and is not dependent on the wave function
self-consistently. The similar time-dependent theory with non-static Hamiltonian can be considered. However, it
is over complicated and beyond the coverage of this thesis.
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E.2 Time Evolution

The quantum meta-stable phenomena, including particle(s)-decays and emissions, can be treated
as the time-developments of meta-stable systems. Assuming |ψ0〉 as the initial state, we consider
the time-evolution via H .

|ψ(t)〉 = e−itH/~ |ψ0〉 (E.5)

=

∫

dEµ(E)e−itE/~ |E〉 . (E.6)

The expectational value of H , indicated as E0, obviously conserves during the time-evolution.

E0 ≡ 〈ψ0 |H |ψ0〉 = 〈ψ(t) |H |ψ(t)〉 =

∫

dEE |µ(E)|2 . (E.7)

This conservation coincide with that the energy-spectrum, defined by
{

|µ(E)|2
}

, is invariant
during the time-evolution. For a particle(s)-decay or emission, E0 corresponds to the Q-value
carried out by the emitted particle(s).

The survival coefficient, β(t), is defined as the overlap between the initial and the present
states.

β(t) ≡ 〈ψ0 |ψ(t)〉 (E.8)

=

∫

dE ′µ(E ′)

∫

dEµ(E)
〈

E ′ ∣
∣ e−itE/~

∣

∣E
〉

=

∫

dE |µ(E)|2 e−itE/~. (E.9)

Note that β(0) = 1. In Eq.(E.9), the survival coefficient can be given by the Fourier transforma-
tion of the invariant energy-spectrum. This is nothing but the “Krylov-Fock theorem” [85, 86].
As one of the important observable properties, the survival probability can be given by

Psurv(t) = |β(t)|2 , (E.10)

which leads to the decay-rule in this meta-stable process. In the next section, we discuss the
correspondence between the actual decay-rule and the invariant energy-spectrum.

E.3 Exponential Decay-Rule

The exponential decay-rule has been popular especially in the radioactive processes. That is

P (t) = e−t/τP (0), (E.11)

where P (t) means the probability of a radioactive nucleus to survive with its characteristic lifetime,
τ . As the first step to discuss the decay-rule, we proof that this exponential decay-rule is equivalent
to the ideal Breit-Wigner (BW-) distribution in the energy-spectrum. The squared expanding
coefficients,

{

|µ(E)|2
}

, are assumed to have the BW-distribution, or equivalently, the form of
Cauchy-Lorentz function whose center and full width at the half maximum (FWHM) are E0 and
Γ0, respectively. That is

|µ(E)|2 =
1

π

(Γ0/2)

(E − E0)2 + (Γ0/2)2
(E.12)
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with −∞ ≤ E ≤ ∞. Or equivalently,

|ψ0〉 =

∫ ∞

−∞
dE

√

Γ0

2π

eia(E)

(E0 − iΓ0/2)− E |E〉 , (E.13)

where
{

eia(E)
}

with a(E) ∈ R are arbitrary phase-factors. If we consider the degeneration,
Eq.(E.12) is modified as

|µ(E)|2 =
∑

i(E)

|µ(E, i(E))|2 =
1

π

(Γ0/2)

(E −E0)2 + (Γ0/2)2
. (E.14)

The normalization is obviously given by

1 = 〈ψ(t) |ψ(t)〉 =

∫ +∞

−∞
dE

1

π

(Γ0/2)

(E − E0)2 + (Γ0/2)2
. (E.15)

For the ideal BW-distribution, however, how to define the expectational value of H is not obvious.
We should be careful for the range of the integration which is critical for the 1st moment of BW-
distributions. At this moment, we assume the isotropic infinite range with the central value of
E0.

∫

I

dE ≡ lim
R→∞

∫ E0+R

E0−R

dE. (E.16)

Thus, the 1st moment of the energy is identical to the Cauchy’s principal value, namely the center
of the distribution.

〈ψ0 |H |ψ0〉 = 〈ψ(t) |H |ψ(t)〉 (E.17)

=

∫

I

dE ′µ(E ′)

∫

I

dEµ(E) 〈E ′ |H |E〉

=

∫

I

dE ′µ(E ′)

∫

I

dEµ(E)δ(E ′ − E)E

=

∫

I

dE |µ(E)|2E = E0, (E.18)

In the following, we omit the subscript I. Substituting Eq.(E.12) into Eq.(E.9), the survival
coefficient can be derived by picking up the residue at the pole of E = E0 − iΓ0/2, namely

β(t) =
1

π

∫

dE
(Γ0/2)

(E − E0)2 + (Γ0/2)2
e−itE/~ = · · ·

= e−it(E0−iΓ0/2)/~. (E.19)

Then the survival probability yields the well-known exponential decay-rule, such that

Psurv(t) = |β(t)|2 = e−t/τ , (E.20)

where the τ = ~/Γ0 is the lifetime of this meta-stable state [84, 216].
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E.4 Practical Problems

In practice, however, the situation is not so simple. First of all, there is the lower limit for the
expansion on the energy space, consistently to the threshold of the emission. Fixing it as E = 0,
we should modify Eq.(E.13) as

∫ ∞

−∞
dE −→

∫ ∞

0

dE. (E.21)

Second, the actual energy spectra are not limited to have the perfect BW-distributions. This
discordance leads to the deviation from the exponential decay-rule [213]. Especially, if the decay
width is comparably broad to the Q-value: E0 ≈ Γ0, assuming the BW-distribution may diverge
from reality.

For the numerical calculations, we intuitively have to concern two additional affairs. The first
is the discretization of the continuum space, and the second is the energy cutoff, Ecut. Thus,
Eq.(E.6) should be modified as

|ψ(t)〉 =
∑

N

FN (0)e−itEN /~ |EN〉 , (E.22)

where EN ≤ Ecut.
Finally, we mention the effect of the initial configuration (IC). One cannot discuss the meta-

stable process without concerning how the initial state should be defined. The initial state,
especially of the particle(s)-emission, is usually characterized as, for instance, the state where the
emitted particles are confined in the narrow region, and/or the state which obeys the outgoing
boundary condition. However, even with these constraints, there may be different ICs which follow
almost the same decay-rule. Possibly, obtained results after the time-evolution may significantly
depend on the selection of the IC, even though the decay-rule itself hardly changes. In this
thesis, we employed the phenomenological procedure with confining potentials to fix it. The more
realistic way to fix the IC is, of course, considerable. Discussing this effect is, however, beyond
the scope of this thesis.
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[146] C. Bäumer et al.: Phys. Rev. C 71 (2005) 044003.

[147] J. R. Bergervoet, P. C. van Campen, W. A. van der Sanden, J. J. de Swart: Phys. Rev. C
38 (1988) 15.

[148] E. Hairer, S. P. Nørsett, G. Wanner: Solving Ordinary Differential Equations I (Springer-
Verlag, Berlin and Heidelberg, Germany, 1993). And references there in.

[149] A. R. Edmonds: Angular Momentum in Quantum Mechanics (Princeton University Press,
Princeton, USA, 1960) 2nd ed., Princeton Landmarks in Physics.

132



REFERENCES

[150] C. T. Kelley: Iterative Methods for Linear and Nonlinear Equations (Society for Indus-
trial and Applied Mathematics (SIAM), Philadelphian, USA, 1995), Frontiers in Applied
Mathematics, Vol. 16.

[151] J. A. Lay, D. V. Fedorov, A. S. Jensen, E. Garrido, C. Romero-Redondo: The European
Physical Journal A 44 (2010) 261.

[152] Chart of Nuclides in NNDC Databases.

[153] D. Thompson, M. Lemere, Y. Tang: Nuclear Physics A 286 (1977) 53 .

[154] Y. Suzuki, H. Matsumura, B. Abu-Ibrahim: Phys. Rev. C 70 (2004) 051302.
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[206] S. Aoyama, T. Myo, K. Katō, K. Ikeda: Progress of Theoretical Physics 116 (2006) 1. And
references therein.

[207] O. Serot, N. Carjan, D. Strottman: Nuclear Physics A 569 (1994) 562 .

[208] P. Talou, N. Carjan, D. Strottman: Phys. Rev. C 58 (1998) 3280.

[209] P. Talou, D. Strottman, N. Carjan: Phys. Rev. C 60 (1999) 054318.

[210] P. Talou, N. Carjan, C. Negrevergne, D. Strottman: Phys. Rev. C 62 (2000) 014609.
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