## Personal Notes 2016.Oct.12-01

## Tomohiro Oishi

## 1 Problem of Combat

We start from the linear equation of Z-force combat:

$$
\partial_{t}\left(\begin{array}{c}
n_{1}(t)  \tag{1}\\
\vdots \\
n_{Z}(t)
\end{array}\right)=\left(\begin{array}{ccc}
a_{11}(t) & \cdots & a_{Z 1}(t) \\
\vdots & & \vdots \\
a_{1 Z}(t) & \cdots & a_{Z Z}(t)
\end{array}\right)\left(\begin{array}{c}
n_{1}(t) \\
\vdots \\
n_{Z}(t)
\end{array}\right) \equiv \hat{\mathcal{A}}(t) \cdot \vec{N}(t) .
$$

Here $\hat{\mathcal{A}}$ and $\vec{N}$ are generally time-dependent. $n_{i}(t)$ is the man-power of $i$-th force in time. There is not an analytic solution in general, and one needs computational (numerical) simulations.

If the combat matrix, $\hat{\mathcal{A}}$, can be (i) time-independent $(\hat{\mathcal{A}} \bowtie t)$, and (ii) also diagonalized, Eq.(1) is solved as follows.

$$
\hat{\mathcal{A}} \longrightarrow \hat{\mathcal{U}}^{-1} \hat{\mathcal{A}} \hat{\mathcal{U}} \equiv \hat{\mathcal{B}}=\left(\begin{array}{ccc}
b_{11} & \cdots & 0  \tag{2}\\
\vdots & & \vdots \\
0 & \cdots & b_{Z Z}
\end{array}\right)
$$

Using this diagonalized matrix, we obtain,

$$
\begin{align*}
& \partial_{t} \vec{N}(t)=\hat{\mathcal{A}} \cdot \vec{N}(t) \\
\Longrightarrow & \partial_{t} \vec{X}(t)=\hat{\mathcal{B}} \cdot \vec{X}(t), \text { where } \vec{X} \equiv \hat{\mathcal{U}}^{-1} \cdot \vec{N},  \tag{3}\\
\Longrightarrow & \dot{x}_{i}=b_{i i} x_{i} \\
& x_{i}(t)=e^{t b_{i i}} x_{i}(0) . \tag{4}
\end{align*}
$$

Finally,

$$
\begin{equation*}
\vec{N}(t)=\hat{\mathcal{U}} \vec{X}(t) \tag{5}
\end{equation*}
$$

Here, "solvability" is thanks to the conditions (i) and (ii). Notice that this statement is valid even when the combat matrix is complex. In that case, $\hat{\mathcal{A}}$ should be Hermitian (?), because $\left\{b_{i i}\right\}$ should be real.

### 1.1 Case with $Z=2$ and $a_{11}=a_{22}=0$

This case actually corresponds to the second (square) law of Lanchester [1]. In this case, we concern the combat of two forces, where

$$
\hat{\mathcal{A}}=\left(\begin{array}{cc}
0 & -b  \tag{6}\\
-c & 0
\end{array}\right) \longleftrightarrow\left\{\begin{array}{l}
\dot{n}_{1}(t)=-b n_{2}(t) \\
\dot{n}_{2}(t)=-c n_{1}(t)
\end{array}\right.
$$

In the following, we assume that factors $(b, c)$ are positive, corresponding to that manpowers $\left(n_{1}(t), n_{2}(t)\right)$ only decrease in combat. If $b<c$, force- 1 is stronger than force- 2 : damage per a unit of time (DPT) by force- $2<$ DPT by force- 1 . For example, $(b, c)=(3,5)$ means "one of force- 1 kills 5 of force-2, while one of force- 2 kills 3 of force- 1 ".

The solution can be obtained analytically. Obviously the eigenvalues are $\lambda= \pm \sqrt{b c}$, and diagonalizing process yields,

$$
\begin{align*}
\hat{\mathcal{U}} & =\left(\begin{array}{cc}
1 & 1 \\
\sqrt{c / b} & -\sqrt{c / b}
\end{array}\right), \hat{\mathcal{U}}^{-1}=\frac{1}{2}\left(\begin{array}{cc}
1 & \sqrt{b / c} \\
1 & -\sqrt{b / c}
\end{array}\right),  \tag{7}\\
\Longrightarrow \quad \hat{\mathcal{B}} & =\hat{\mathcal{U}}^{-1} \hat{\mathcal{A}} \hat{\mathcal{U}}=\frac{1}{2}\left(\begin{array}{cc}
1 & \sqrt{b / c} \\
1 & -\sqrt{b / c}
\end{array}\right)\left(\begin{array}{cc}
0 & -b \\
-c & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
\sqrt{c / b} & -\sqrt{c / b}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
1 & \sqrt{b / c} \\
1 & -\sqrt{b / c}
\end{array}\right)\left(\begin{array}{cc}
-\sqrt{b c} & \sqrt{b c} \\
-c & -c
\end{array}\right)=\left(\begin{array}{cc}
-\sqrt{b c} & 0 \\
0 & \sqrt{b c}
\end{array}\right) . \tag{8}
\end{align*}
$$

(Remember that $\hat{\mathcal{A}}$ was not definitely the orthogonal matrix.) Thus,

$$
\begin{equation*}
\partial_{t} \vec{X}(t)=\hat{\mathcal{B}} \vec{X}(t) \longrightarrow \vec{X}(t)=\binom{x_{1}(0) e^{-t \sqrt{b c}}}{x_{2}(0) e^{t \sqrt{b c}}} \tag{9}
\end{equation*}
$$

Note that the initial values, $x_{i}(0)$, are given as

$$
\vec{X}(0) \equiv \hat{\mathcal{U}}^{-1} \vec{N}(0)=\left\{\begin{array}{l}
x_{1}(0)=\frac{1}{2}\left[n_{1}(0)+\sqrt{\frac{b}{c}} n_{2}(0)\right],  \tag{10}\\
x_{2}(0)=\frac{1}{2}\left[n_{1}(0)-\sqrt{\frac{b}{c}} n_{2}(0)\right]
\end{array}\right.
$$

where $n_{1}(0)$ and $n_{2}(0)$ should be positive. (What negative number of soldiers means ??) For later discussions, we emphasize that

$$
\begin{equation*}
-1<\frac{x_{2}(0)}{x_{1}(0)}<1 . \tag{11}
\end{equation*}
$$

Finally,

$$
\vec{N}(t)=\hat{\mathcal{U}} \vec{X}(t)=\left\{\begin{array}{cc}
n_{1}(t)= & x_{1}(t)+x_{2}(t),  \tag{12}\\
n_{2}(t)= & \sqrt{\frac{c}{b}} x_{1}(t)-\sqrt{\frac{c}{b}} x_{2}(t) .
\end{array}\right.
$$

Eqs.(10) and (12) provides the core result of this problem. Also, we can find that $x_{2}(0)$ determines "win or lose". Details are given in the following.

### 1.1. 1 condition to win or lose

Let's concern the "time to kill out". Under a certain condition determined with $\left(n_{1}(0), n_{2}(0)\right)$ and ( $b, c$ ), force- 1 can win by killing all the soldiers of force- 2 , at certain time, $t_{w 1}$. Namely,

$$
\begin{align*}
n_{2}\left(t_{w 1}\right)=\sqrt{\frac{c}{b}}\left[x_{1}\left(t_{w 1}\right)-x_{2}\left(t_{w 1}\right)\right] & =0 \\
x_{1}\left(t_{w 1}\right) & =x_{2}\left(t_{w 1}\right) \\
e^{-2 t_{w 1} \sqrt{b c}} & =\frac{x_{2}(0)}{x_{1}(0)} \\
t_{w 1} & =\frac{-1}{2 \sqrt{b c}} \ln \left(\frac{x_{2}(0)}{x_{1}(0)}\right) . \tag{13}
\end{align*}
$$

Thus, if $t_{w 1}$ can be positive finite, force- 1 wins. This condition is trivially equivalent to that $0<x_{2}(0)$. Remember also that $x_{2}(0)<x_{1}(0)$ is always satisfied. At $t=t_{w 1}$, the number of remaining soldiers of force- 1 is,

$$
\begin{align*}
n_{1}\left(t_{w 1}\right)=x_{1}\left(t_{w 1}\right)+x_{2}\left(t_{w 1}\right) & =x_{1}(0) e^{\frac{1}{2} \ln \left(\frac{x_{2}(0)}{x_{1}(0)}\right)}+x_{2}(0) e^{\frac{-1}{2} \ln \left(\frac{x_{2}(0)}{x_{1}(0)}\right)} \\
& =x_{1}(0) \sqrt{\frac{x_{2}(0)}{x_{1}(0)}}+x_{2}(0) \sqrt{\frac{x_{1}(0)}{x_{2}(0)}}=2 \sqrt{x_{1}(0) x_{2}(0)} \\
& =\sqrt{n_{1}(0)^{2}-\left(\frac{b}{c}\right) n_{2}(0)^{2} .} \tag{14}
\end{align*}
$$

In contrast, the condition of force- 2 to win can be given as that $0<t_{w 2}<+\infty$, where

$$
\begin{align*}
n_{1}\left(t_{w 2}\right)=x_{1}\left(t_{w 2}\right)+x_{2}\left(t_{w 2}\right) & =0 \\
& \vdots  \tag{15}\\
t_{w 2} & =\frac{-1}{2 \sqrt{b c}} \ln \left(\frac{-x_{2}(0)}{x_{1}(0)}\right) .
\end{align*}
$$

Consequently, force-2 must keep $x_{2}(0)<0$ to win.
From Eqs.(11), (13) and (15), we find that $t_{w 1}$ and $t_{w 2}$ are di-lemma quantities: if one is real, another should be imaginary. Namely, there are no possibilities of "win-win" case in this problem.

If $x_{2}(0)=+0$ or -0 , as well as $\left(t_{w 1}, t_{w 2}\right) \longrightarrow(+\infty$, imag $)$ or (imag, $\left.+\infty\right)$, respectively, the combat never ends. This happens when force-1 and 2 satisfy the par (Gokaku) condition, given as

$$
\begin{equation*}
x_{2}(0)=0 \leftrightarrow n_{1}(0)=\sqrt{\frac{b}{c}} n_{2}(0) . \tag{16}
\end{equation*}
$$

In this case, $n_{1}(t) / n_{2}(t)=\sqrt{b / c}=$ const during the time-evolution.

### 1.1.2 case study

In the following, we describe some examples. For this purpose, we employ the software gnuplot and its script as follows.

```
# (d/dt) n1(t) = -b * n2(t)
# (d/dt) n2(t) = -c * n1(t)
#--- Input-1: initial numbers of soldiers (powers). Default=(a)
n1_0 = 5.0 ; n2_0 = 3.0
#--- Input-2: proficiency factors, (b,c). Default=(a)
p = 1.0
b = 1.0*p ; c = 1.0*p
#b = p*(n1_0/n2_0)**2 ; c = p ### factors for "never-ending combat".
#--- Results:
a = sqrt(b*c) ; d = sqrt(b/c)
f0 = (n1_0 + d*n2_0) * 0.5 ; g0 = (n1_0 - d*n2_0) * 0.5
f(x) = f0 * exp(-a*x) ; g(x) = g0 * exp(a*x)
```

```
w1 = -0.5*log( g0/f0) / a ### Time when "n_2(w1)=0".
#w2 = -0.5*log(-g0/f0) / a ### Time when "n_1(w2)=0".
n1(x) = f(x) + g(x)
n2(x) = (f(x) - g(x)) / d
s(x) = n1(x)-n2(x)
t(x) = n1(w1)
z(x) = 0
set size 0.6, 0.6
set xlabel "Time, t" ; set ylabel "Power"
xm = 1.3*w1 ; ym = f0*2.5
set arrow from w1,-2 to w1,n1(w1) nohead lt 2
set xtics (0, w1) ; set label 1 at w1,-0.5 "t_{w1}"
p[0:xm][-2:ym] \
n1(x) w lp lt 1 ti "n_1(t)", \
n2(x) w lp lt 3 ti "n_2(t)", \
s(x) w lp lt 7 ti "n_1(t)-n_2(t)", \
t(x) w l lt 8 ti "n_1(t_{w1})", \
z(x) w l lt 0 ti ""
#pause -1
#unset label ; unset arrow #; reset
```

(See also the corresponding panel in Fig. 1 for each case.)

- (a): case with $\left(n_{1}(0), n_{2}(0)\right)=(5,3)$ and $(b, c)=(1,1)$. This is a typical study of the second (square) law of Lanchester, and its result is well known as [1],

$$
\begin{equation*}
n_{1}\left(t_{w 1}\right)=\sqrt{n_{1}(0)^{2}-n_{2}(0)^{2}}=\sqrt{5^{2}-3^{2}}=4 . \tag{17}
\end{equation*}
$$

In Fig.1-(a), we plot $n_{1}(t)$ and $n_{2}(t)$. At $t_{w 1} \simeq 0.7, n_{1}\left(t_{w 1}\right)=4$ is exactly reproduced.

- (b): $\left(n_{1}(0), n_{2}(0)\right)=(5,3)$ and $(b, c)=(25 / 9,1)$. Here we use $(b / c)=\left(n_{1}(0) / n_{2}(0)\right)^{2}$ in order to satisfy Eq.(16). In Fig.1-(b), both powers decrease but never become zero.
- (c): $\left(n_{1}(0), n_{2}(0)\right)=(5,5)$ and $(b, c)=(0.16,0.25)$. In this case, at $t=0$, force-1 and 2 have the equal numbers of soldiers. However, due to the different proficiency factors, force-1 eventually wins. Utilizing Eq.(14), the remaining force-1 soldiers at the end of combat is $\sqrt{5^{2}-\left(\frac{0.16}{0.25}\right) 5^{2}}=3$.
- (d): $\left(n_{1}(0), n_{2}(0)\right)=(4,5)$ and $(b, c)=(0.3,0.5)$. In this case, force- 1 eventually wins even though it had the less soldiers than force-2 at $t=0$. Again, the remaining force- 1 soldiers at the end of combat is $\sqrt{4^{2}-\left(\frac{0.3}{0.5}\right) 5^{2}}=1$.


Figure 1: Plots for several sets of parameters, whose details are in text. Time and power are plotted in arbitrary units.

## References

[1] Wikipedia "Lanchester's laws" (https://en.wikipedia.org/wiki/Lanchester'slaws).

