Note for solution of spherical Dirac equation (DEQURK)

by Tomohiro Oishi (tomohiro.oishi@yukawa.kyoto-u.ac.jp), revised on 2022/11/21.

1 Convention and basic formalism

We deal with the Dirac equation for spherical systems and its numerical solution in this note. First see TABLE 1 for basic conventions. In this note, I use the CGS-Gauss system of unit, and the typical units for the length and energy are of the nuclear physics, namely, fm and MeV . Note that $\hbar c \cong 197 \mathrm{MeV} \cdot \mathrm{fm}$.

TABLE 1: Conventional rules in this note.

Name	Quantity	Definition
flat metric	$g^{\mu \nu}=g_{\mu \nu}$	$=\operatorname{diag}(+,-,-,-)$
4D coordinate	$x^{\mu}=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$	$=(c t, x, y, z)$
	$x_{\mu}=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$	$=(c t,-x,-y,-z)$
4D derivative	$\partial^{\mu}=\frac{\partial}{\partial x_{\mu}}$	$=\left(\frac{\partial}{c \partial t},-\vec{\nabla}\right)$
	$\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}=g_{\mu \nu} \partial^{\nu}$	$=\left(\frac{\partial}{c \partial t}, \vec{\nabla}\right)$
4D momentum	$p^{\mu}=\left(p^{0}, p^{1}, p^{2}, p^{3}\right)=i \hbar \partial^{\mu}$	$=\left(\frac{E}{c}, \vec{p}\right)$
	$p_{\mu}=g_{\mu \nu} p^{\nu}$	$=\left(\frac{E}{c},-\vec{p}\right)$
gamma matrices	$\gamma^{\mu}=\left(\gamma^{0}, \vec{\gamma}\right)$	$=(\beta, \beta \vec{\gamma})$
reduced derivative	$\gamma^{\mu} \partial_{\mu}=\gamma_{\mu} \partial^{\mu}$	$=\gamma^{0} \partial_{c t}+\vec{\gamma} \cdot \vec{\nabla}$

1.1 spin algebra

Pauli's sigma matrices read

$$
\hat{s}_{x} \equiv \frac{\sigma_{1}}{2}, \quad \hat{s}_{y} \equiv \frac{\sigma_{2}}{2}, \quad \hat{s}_{z} \equiv \frac{\sigma_{3}}{2}, \quad \text { where } \quad \sigma_{1}=\left(\begin{array}{cc}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

These satisfy $\sigma_{i} \sigma_{j}=\delta_{i j}+i \epsilon^{i j k} \sigma_{k}$, and thus,

$$
\begin{align*}
\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i} & =2 \delta_{i j} \\
\sigma_{i} \sigma_{j}-\sigma_{j} \sigma_{i} & =2 i \epsilon^{i j k} \sigma_{k} \Longleftrightarrow\left[\hat{s}_{i}, \hat{s}_{j}\right]=i \epsilon^{i j k} \hat{s}_{k} \tag{2}
\end{align*}
$$

It is also worthwhile to define $\sigma_{0, \pm 1}$:

$$
\begin{equation*}
\sigma_{0}=\sigma_{3(z)}, \quad \sigma_{ \pm} \equiv \frac{1}{\sqrt{2}}\left(\sigma_{1(x)} \pm i \sigma_{2(y)}\right) \tag{3}
\end{equation*}
$$

1.2 gamma matrices

In Dirac's representation, the (4×4) gamma matrices are defined as

$$
\begin{equation*}
\gamma^{\mu}=\left(\gamma^{0}, \vec{\gamma}\right) \equiv(\beta, \beta \vec{\alpha}) \tag{4}
\end{equation*}
$$

where

$$
\gamma^{0}=\beta=\left(\begin{array}{cc}
I & 0 \tag{5}\\
0 & -I
\end{array}\right), \quad \vec{\alpha}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
\vec{\sigma} & 0
\end{array}\right) \longleftrightarrow \gamma^{k}=(\beta \vec{\alpha})^{k}=\left(\begin{array}{cc}
0 & \sigma_{k} \\
-\sigma_{k} & 0
\end{array}\right) .
$$

Note that $\gamma_{0}=\gamma^{0}$. The following matrices are also useful:

$$
\gamma_{5}=\left(\begin{array}{cc}
0 & I \tag{6}\\
I & 0
\end{array}\right), \quad \sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]
$$

Dirac's conjugate:

$$
\begin{equation*}
\bar{\psi}(x) \equiv \psi^{\dagger}(x) \gamma^{0} \tag{7}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\bar{\psi}_{a}(x) \psi_{b}(x)=F_{a}^{*}(x) F_{b}(x)-G_{a}^{*}(x) G_{b}(x), \quad \bar{\psi}_{a}(x) \gamma^{0} \psi_{b}(x)=F_{a}^{*}(x) F_{b}(x)+G_{a}^{*}(x) G_{b}(x) \tag{8}
\end{equation*}
$$

1.3 angular-momentum convention

Clebsch-Gordan (CG) coefficient:

$$
\begin{equation*}
\mathcal{C}_{m_{1}, m_{2}}^{(J, M) j_{1}, j_{2}} \equiv\left\langle j_{1}, m_{1} ; j_{2}, m_{2} \mid\left(j_{1} j_{2}\right) J, M\right\rangle \Longleftrightarrow|J, M\rangle=\sum_{m_{1}, m_{2}} \mathcal{C}_{m_{1}, m_{2}}^{(J, M) j_{1}, j_{2}}\left|j_{1}, m_{1}\right\rangle\left|j_{2}, m_{2}\right\rangle . \tag{9}
\end{equation*}
$$

Note EQs. (3.5.14) and (3.5.17) in Edmonds's textbook [1]:

$$
\begin{equation*}
\mathcal{C}_{m_{2}, m_{1}}^{(J, M) j_{2}, j_{1}}=P \mathcal{C}_{m_{1}, m_{2}}^{(J, M) j_{1}, j_{2}}, \quad \mathcal{C}_{-m_{1},-m_{2}}^{(J,-M) j_{1}, j_{2}}=P \mathcal{C}_{m_{1}, m_{2}}^{(J, M) j_{1}, j_{2}}, \tag{10}
\end{equation*}
$$

where $P=(-)^{j_{1}+j_{2}-J}$. CG coefficients can be defined as REAL in any case.
The 3 j symbol as in EQ. (3.7.3) in Edmonds's textbook [1]:

$$
\left(\begin{array}{rrr}
j_{1} & j_{2} & j_{3} \tag{11}\\
m_{1} & m_{2} & -m_{3}
\end{array}\right) \equiv \frac{(-)^{j_{1}-j_{2}+m_{3}}}{\sqrt{2 j_{3}+1}} \mathcal{C}_{m_{1}, m_{2}}^{\left(j_{3}, m_{3}\right) j_{1}, j_{2}}=\left(\begin{array}{rrr}
j_{3} & j_{1} & j_{2} \\
-m_{3} & m_{1} & m_{2}
\end{array}\right)=\left(\begin{array}{rrr}
j_{2} & j_{3} & j_{1} \\
m_{2} & -m_{3} & m_{1}
\end{array}\right) .
$$

Note that, for the 3 j -symbol, an even permutation of any two columns keeps it identical, whereas an odd permutation yields the factor $(-)^{j_{1}+j_{2}+j_{3}}$ as in EQ. (3.7.5) in Ref. [1].

Double-bar matrix element (DBME) or reduced matrix element as in EQ. (5.4.1) in Ref. [1]:

$$
\begin{align*}
\left\langle j^{\prime}, m^{\prime}\right| \hat{T}_{K, M}|j, m\rangle & =(-)^{j^{\prime}-m^{\prime}}\left(\begin{array}{rrr}
j^{\prime} & K & j \\
-m^{\prime} & M & m
\end{array}\right)\left\langle j^{\prime}\left\|\hat{T}_{K}\right\| j\right\rangle \\
& =\frac{(-)^{j^{\prime}+K-j}}{\sqrt{2 j^{\prime}+1}} \mathcal{C}_{M, m}^{\left(j^{\prime}, m^{\prime}\right) K, j}\left\langle j^{\prime}\left\|\hat{T}_{K}\right\| j\right\rangle=\frac{(-)^{j-m}}{\sqrt{2 K+1}} \mathcal{C}_{m^{\prime},-m}^{(K, M) j^{\prime}, j}\langle\ldots\rangle . \tag{12}
\end{align*}
$$

1.4 Dirac spinor

Dirac spinor for the spherical system is generally given as

$$
\begin{equation*}
\psi_{N}(\boldsymbol{r})=\psi_{n l j m}(\boldsymbol{r})=\binom{i F_{N}(\boldsymbol{r})}{G_{N}(\boldsymbol{r})}=\binom{i f_{n l j}(r) \mathcal{Y}_{l j m}(\overline{\boldsymbol{r}})}{g_{n l j}(r) \frac{\vec{\sigma} \cdot \boldsymbol{r}}{r} \mathcal{Y}_{l j m}(\overline{\boldsymbol{r}})}, \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{Y}_{l j m}(\overline{\boldsymbol{r}}) \equiv \sum_{v= \pm 1 / 2} \mathcal{C}_{h, v}^{(j, m) l, \frac{1}{2}} Y_{l, h=m-v}(\overline{\boldsymbol{r}}) \cdot \chi_{v} \tag{14}
\end{equation*}
$$

Of course, $\hat{s}_{z} \chi_{ \pm \frac{1}{2}}= \pm \frac{1}{2} \chi_{ \pm \frac{1}{2}}$. Note also that

$$
\begin{equation*}
\frac{\vec{\sigma} \cdot \boldsymbol{r}}{r} \mathcal{Y}_{l j m}(\overline{\boldsymbol{r}})=\mathcal{Y}_{\ell j m}(\overline{\boldsymbol{r}}), \tag{15}
\end{equation*}
$$

where $\ell=l \mp 1$ when $l=j \pm \frac{1}{2}$. Thus, the Dirac spinor can be reformulated as

$$
\begin{equation*}
\psi_{n l j m}(\boldsymbol{r})=\binom{i f_{n l j}(r) \mathcal{Y}_{(l=j \pm 1 / 2) j m}(\overline{\boldsymbol{r}})}{g_{n l j}(r) \mathcal{Y}_{(\ell=j \neq 1 / 2) j m}(\overline{\boldsymbol{r}})} . \tag{16}
\end{equation*}
$$

Remember also that $(\vec{\sigma} \cdot \boldsymbol{r} / r)^{2}=r^{2} / r^{2}=1$. For example, when the larger component has the $d_{5 / 2}(l=2)$ character, the corresponding smaller component has the $f_{5 / 2}(\ell=3)$ char-actor. Table 2 lists some sets of (l, ℓ).

TABLE 2: Angular quantum numbers for spherical Dirac spinors.

larger	smaller	(l, ℓ)
$s_{1 / 2}$	$p_{1 / 2}$	$(0,1)$
$p_{3 / 2}$	$d_{3 / 2}$	$(1,2)$
$p_{1 / 2}$	$s_{1 / 2}$	$(1,0)$
$d_{5 / 2}$	$f_{5 / 2}$	$(2,3)$
$d_{3 / 2}$	$p_{3 / 2}$	$(2,1)$

1.5 units

We assume the $(1+3)$-dimensional time and space as well as the CGS-Gauss system of units in this note. In the MKSA or CGS-Gauss system of units, except the electro-magnetic terms, the Dirac equation is given as

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \psi(t, \boldsymbol{r})=\left[-i \hbar c \beta \vec{\gamma} \cdot \vec{\nabla}+\beta M c^{2}+W\right] \psi(t, \boldsymbol{r}), \tag{17}
\end{equation*}
$$

where W is some external potential in the unit of energy (e.g., MeV). From $\beta \beta=I$ and $\gamma^{\mu} \partial_{\mu}=\beta \partial_{c t}+\vec{\gamma} \cdot \vec{\nabla}$, it is also expressed as

$$
\begin{equation*}
\left[i \hbar c \gamma^{\mu} \partial_{\mu}-M c^{2}-\beta W\right] \psi(t, \boldsymbol{r})=0 \tag{18}
\end{equation*}
$$

The Lagrangian density, which works as the source of this equation, reads

$$
\begin{equation*}
\mathcal{L}=\bar{\psi}\left[i \hbar c \gamma^{\mu} \partial_{\mu}-M c^{2}-\beta W\right] \psi(x), \tag{19}
\end{equation*}
$$

where $\bar{\psi} \equiv \psi^{\dagger} \beta$. Note that, because the Lagrangian $L \equiv \int d^{3} r \mathcal{L}$ and $M c^{2}$ have the dimension of energy, $\bar{\psi} \psi$ is in the unit of fm^{-3}. As coincidence, if some interaction term(s) has the form, $\mathcal{L}_{\mathrm{I}}=\bar{\psi} X \psi(x)$, then this wild-card part X must have the dimension of energy, e.g. in MeV . This knowledge may help us, for example, to infer the unit of the coupling constant.

For dimensional analysis, the action must satisfy $[S]_{D}=\left[\int d t \int d^{3} \boldsymbol{r} \mathcal{L}\right]_{D}=E T$, since Lagrangian (as well as Hamiltonian) keeps the dimension of energy, $\left[d^{3} \boldsymbol{r} \mathcal{L}\right]_{D}=E=M L^{2} T^{-2}$. Thus, Lagrangian density has $[\mathcal{L}]_{D}=E L^{-3}$. Note that, in the MKSA or CGS-Gauss system of units, the dimensional analysis concludes that,

$$
\begin{equation*}
\left[c^{2} \cdot \text { mass }\right]_{D}=[\text { energy }]_{D}=\left[\frac{\hbar c}{\text { length }}\right]_{D}=\left[\frac{\hbar}{\text { time }}\right]_{D}=E . \tag{20}
\end{equation*}
$$

Note for "Plank's natural system of units" - In the Plank's natural system of units, one assumes that $\hbar \equiv 1$ and $c \equiv 1$. With this assumption, dimensions of mass, energy, length, and time can be related as

$$
\begin{equation*}
[\text { mass }]_{D}=[\text { energy }]_{D}=\left[\frac{1}{\text { length }}\right]_{D}=\left[\frac{1}{\text { time }}\right]_{D}=M^{+1} . \tag{21}
\end{equation*}
$$

TABLE 3: Dimensional numbers of some quantities, $[\text { Quantity }]_{D}$.

Quantity	In MKSA or	In Plank's
	CGS-Gauss	natural
mass	M	M^{+1}
time and length	T and L	M^{-1}
energy	$E=M L^{2} T^{-2}$	M^{+1}
\mathcal{L} or \mathcal{H}	$E L^{-3}$	M^{+4}
$\bar{\psi} \psi(x)$	L^{-3}	M^{+3}
$\phi^{2}(x)$ (scalar boson)	$E^{-1} L^{-3}$	M^{+2}
$A^{\mu} A_{\mu}(x)$ (vector boson)	$E^{-1} L^{-3}$	M^{+2}

2 Dirac equation with spherical potential(s)

We discuss the spherical Dirac equation in the following form:

$$
\begin{equation*}
i \hbar c \frac{\partial}{\partial(c t)} \psi(t, \boldsymbol{r})=\left[-i \hbar c \beta \vec{\gamma} \cdot \vec{\nabla}+\beta M c^{2}+\beta S(r)+W(r)\right] \psi(t, \boldsymbol{r}), \tag{22}
\end{equation*}
$$

where $S(r)$ and $W(r)$ are the spherical, scalar and vector potentials, respectively, given in the unit of energy (e.g., $\mathrm{MeV})$. From $\beta \beta=I$ and $\gamma^{\mu} \partial_{\mu}=\beta \partial_{c t}+\vec{\gamma} \cdot \vec{\nabla}$, it is also expressed as

$$
\begin{equation*}
\left[i \hbar c \gamma^{\mu} \partial_{\mu}-M c^{2}-S(r)-\beta W(r)\right] \psi(t, \boldsymbol{r})=0 . \tag{23}
\end{equation*}
$$

The Lagrangian density, which works as the source of this equation, reads

$$
\begin{equation*}
\mathcal{L}=\bar{\psi}\left[i \hbar c \gamma^{\mu} \partial_{\mu}-M c^{2}-S(r)-\beta W(r)\right] \psi(x), \tag{24}
\end{equation*}
$$

where $\bar{\psi} \equiv \psi^{\dagger} \beta$. Note that, in the meson-exchange model for atomic nuclei, the potential terms are obtained from the sigma and omega meson fields. That is, $S(r)=g_{\sigma} \sigma(r)$ and $W(r)=g_{\omega} \omega(r)$ with $\omega_{\mu}=\delta_{\mu 0} \omega(r)$, respectively. In numerical calculations, these meson fields need to be solved self-consistently to the fermion field. In the following, however, these potentials are given as the external input parameters.

2.1 large and small components

For the time-independent solution of EQ. (22), that is, $i \hbar \partial_{t} \psi=E_{N} \psi$, the Dirac equation reads

$$
\begin{equation*}
\left[-i \hbar c \beta \vec{\gamma} \cdot \vec{\nabla}+\beta M c^{2}+\beta S(r)+W(r)\right] \psi_{N}(t, \boldsymbol{r})=E_{N} \psi_{N}(t, \boldsymbol{r}) \tag{25}
\end{equation*}
$$

Dirac spinor for the spherical system is generally given as in EQ. (13). In addition, we use $f_{n l j}(r)=a_{n l j}(r) / r$ and $g_{n l j}(r)=b_{n l j}(r) / r$ in the following sections. Therefore,

$$
\begin{equation*}
\psi_{N}(\boldsymbol{r})=\psi_{n l j m}(\boldsymbol{r})=\binom{i F_{N}(\boldsymbol{r})}{G_{N}(\boldsymbol{r})}=\binom{i \frac{a_{n l j}(r)}{r} \mathcal{Y}_{l j m}(\overline{\boldsymbol{r}})}{\frac{b_{n l j}(r)}{r} \frac{\vec{\sigma} \cdot \boldsymbol{r}}{r} \mathcal{Y}_{l j m}(\overline{\boldsymbol{r}})} \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{Y}_{l j m}(\overline{\boldsymbol{r}}) \equiv \sum_{v= \pm 1 / 2} \mathcal{C}_{h, v}^{(j, m) l, \frac{1}{2}} Y_{l, h=m-v}(\overline{\boldsymbol{r}}) \cdot \chi_{v}, \quad \text { with } \quad \hat{s}_{z} \chi_{ \pm \frac{1}{2}}= \pm \frac{1}{2} \chi_{ \pm \frac{1}{2}} \tag{27}
\end{equation*}
$$

Remember that $\frac{\vec{\sigma} \cdot \boldsymbol{r}}{r} \mathcal{Y}_{l j m}(\overline{\boldsymbol{r}})=\mathcal{Y}_{\ell j m}(\overline{\boldsymbol{r}})$, where $\ell=l \mp 1$ when $l=j \pm \frac{1}{2}$.
By using this ansatz EQ. (26), the EQ. (25) is transformed as

$$
\begin{align*}
-i \hbar c \vec{\sigma} \cdot \vec{\nabla} G_{N}(\boldsymbol{r})+\left[M c^{2}+S(r)+W(r)\right] i F_{N}(\boldsymbol{r}) & =E_{N} i F_{N}(\boldsymbol{r}) \\
-i \hbar c \vec{\sigma} \cdot \vec{\nabla} i F_{N}(\boldsymbol{r})+\left[-M c^{2}-S(r)+W(r)\right] G_{N}(\boldsymbol{r}) & =E_{N} G_{N}(\boldsymbol{r}) \tag{28}
\end{align*}
$$

Before going to the further calculations, now we focus on the $\vec{\sigma} \cdot \vec{\nabla}$ term. By using,

$$
\begin{equation*}
(\vec{\sigma} \cdot \vec{A})(\vec{\sigma} \cdot \vec{B})=\vec{A} \cdot \vec{B}+i \vec{\sigma} \cdot(\vec{A} \times \vec{B}) \tag{29}
\end{equation*}
$$

then the operator $\vec{\sigma} \cdot \vec{\nabla}$ becomes

$$
\begin{align*}
\vec{\sigma} \cdot \vec{\nabla} & =\frac{(\vec{\sigma} \cdot \vec{r})^{2}}{r^{2}} \vec{\sigma} \cdot \vec{\nabla}=\frac{\vec{\sigma} \cdot \vec{r}}{r^{2}}(\vec{\sigma} \cdot \vec{r})(\vec{\sigma} \cdot \vec{\nabla}) \\
& =\frac{\vec{\sigma} \cdot \vec{r}}{r^{2}}[\vec{r} \cdot \vec{\nabla}+i \vec{\sigma} \cdot(\vec{r} \times \vec{\nabla})] \\
& =\frac{\vec{\sigma} \cdot \vec{r}}{r^{2}}[\vec{r} \cdot \vec{\nabla}-\vec{\sigma} \cdot \vec{L} / \hbar]=\frac{\vec{\sigma} \cdot \vec{r}}{r^{2}}\left[r \frac{d}{d r}-\frac{2 \vec{S} \cdot \vec{L}}{\hbar^{2}}\right] \tag{30}
\end{align*}
$$

where we have used $\vec{\sigma}=2 \vec{S} / \hbar, i \vec{\nabla}=-\vec{p} / \hbar$, and $\vec{L}=\vec{r} \times \vec{p}$. Namely, the spin-orbit coupling is naturally concluded from "kinetic term" in the Dirac formalism. If the gap of potentials, $S(r)-W(r)$, is constant, this spin-orbit term vanishes, as we see in the following.

2.2 spin-orbit coupling and Darwin term

Before going to the numerical solution, we check several characters of the Dirac equation. From EQ. (28),

$$
\begin{equation*}
G_{N}(\boldsymbol{r})=\frac{-i \hbar c}{E_{N}+M c^{2}+S(r)-W(r)} \vec{\sigma} \cdot \vec{\nabla} i F_{N}(\boldsymbol{r}) \tag{31}
\end{equation*}
$$

Thus, the corresponding large component reads

$$
\begin{equation*}
-(\hbar c)^{2} \vec{\sigma} \cdot \vec{\nabla} \frac{\vec{\sigma} \cdot \nabla i \overrightarrow{F_{N}}(\boldsymbol{r})}{E_{N}+M c^{2}+S(r)-W(r)}+\left[M c^{2}+S(r)+W(r)\right] i F_{N}(\boldsymbol{r})=E_{N} i F_{N}(\boldsymbol{r}) \tag{32}
\end{equation*}
$$

We use $\epsilon_{N}(r) \equiv E_{N}+M c^{2}+S(r)-W(r)$ and $i F_{N} \longrightarrow F_{N}$ in the following. Since $(\vec{\sigma} \cdot \vec{\nabla})^{2}=\nabla^{2}$, it becomes

$$
\begin{align*}
&-\frac{(\hbar c)^{2}}{\epsilon_{N}(r)} \nabla^{2} F_{N}(\boldsymbol{r})-(\hbar c)^{2}\left(\vec{\sigma} \cdot \vec{\nabla} \frac{1}{\epsilon_{N}(r)}\right)\left(\vec{\sigma} \cdot \vec{\nabla} F_{N}(\boldsymbol{r})\right) \\
&+\left[M c^{2}+S(r)+W(r)\right] F_{N}(\boldsymbol{r})=E_{N} F_{N}(\boldsymbol{r}) \tag{33}
\end{align*}
$$

Next, for the second term, please notice that

$$
\begin{align*}
& \left(\vec{\sigma} \cdot \vec{\nabla} \frac{1}{\epsilon_{N}(r)}\right)=\frac{\vec{\sigma} \cdot \vec{r}}{r^{2}}\left[r \frac{d \epsilon_{N}^{-1}(r)}{d r}-\left(\vec{\sigma} \cdot \vec{L} \frac{1}{\epsilon_{N}(r)}\right)\right]=\frac{\vec{\sigma} \cdot \vec{r}}{r^{2}}\left[r \frac{d \epsilon_{N}^{-1}(r)}{d r}-0\right] \\
& \left(\vec{\sigma} \cdot \vec{\nabla} F_{N}(\boldsymbol{r})\right)=\frac{\vec{\sigma} \cdot \vec{r}}{r^{2}}\left[r \frac{d}{d r}-\frac{2 \vec{S} \cdot \vec{L}}{\hbar^{2}}\right] F_{N}(\boldsymbol{r}) \tag{34}
\end{align*}
$$

Thus, by using $(\vec{\sigma} \cdot \vec{r})^{2} / r^{4}=1 / r^{2}$, the EQ. (33) is transformed as

$$
\begin{align*}
&-\frac{(\hbar c)^{2}}{\epsilon_{N}(r)} \nabla^{2} F_{N}(\boldsymbol{r})-\frac{(\hbar c)^{2}}{r^{2}}\left[r \frac{d \epsilon_{N}^{-1}(r)}{d r}\right] {\left[r \frac{d}{d r}-\frac{2 \vec{S} \cdot \vec{L}}{\hbar^{2}}\right] F_{N}(\boldsymbol{r}) } \\
&+\left[M c^{2}+S(r)+W(r)\right] F_{N}(\boldsymbol{r})=E_{N} F_{N}(\boldsymbol{r}) \\
& \Longrightarrow\left[-\frac{(\hbar c)^{2}}{\epsilon_{N}(r)} \nabla^{2}-(\hbar c)^{2} \frac{(-) \epsilon_{N}^{\prime}(r)}{\epsilon_{N}^{2}(r)} \frac{d}{d r}+\frac{(\hbar c)^{2}}{r} \frac{(-) \epsilon_{N}^{\prime}(r)}{\epsilon_{N}^{2}(r)} \frac{2 \vec{S} \cdot \vec{L}}{\hbar^{2}}\right. \\
&+S(r)+W(r)] F_{N}(\boldsymbol{r})=\left(E_{N}-M c^{2}\right) F_{N}(\boldsymbol{r}) \tag{35}
\end{align*}
$$

where the 1st term in the LHS corresponds to the kinetic energy, the 2nd term is so-called Darwin term, and the 3rd term indicates the spin-orbit coupling. These Darwin and spin-orbit terms can be naturally concluded from the Dirac equation, whereas those were just introduced as "phenomenology" in the Schroedinger equation.

It is convenient to find that,

- the total potential is given as $S(r)+W(r)$, whereas,
- the spin-orbit and Darwin terms depend on the $\epsilon_{N}^{\prime}(r)=S^{\prime}(r)-W^{\prime}(r)$.

Thus, even though the total potential is zero or very small, it does not guarantee the free condition for fermions. Remember also that, for the spin-orbit coupling term,

$$
\begin{equation*}
2 \vec{S} \cdot \vec{L} \mathcal{Y}_{l j m}(\overline{\boldsymbol{r}})=\hbar^{2} K_{l j} \mathcal{Y}_{l j m}(\overline{\boldsymbol{r}}) \tag{36}
\end{equation*}
$$

where

$$
\begin{align*}
K_{l j}=j(j+1)-l(l+1)-\frac{3}{4} & =l, \quad \text { when } j=l+\frac{1}{2} \\
& =-l-1, \quad \text { when } j=l-\frac{1}{2} \tag{37}
\end{align*}
$$

It is also convenient to note that,

$$
\begin{align*}
2 \vec{S} \cdot \vec{L} \frac{\vec{\sigma} \cdot \boldsymbol{r}}{r} \mathcal{Y}_{l j m}(\overline{\boldsymbol{r}}) & =2 \vec{S} \cdot \vec{L} \mathcal{Y}_{\ell, j m}(\overline{\boldsymbol{r}}), \quad \text { with } \ell=l \pm 1 \text { for } j=l \pm \frac{1}{2} \\
& =\hbar^{2} Q_{l j} \mathcal{Y}_{\ell, j m}(\overline{\boldsymbol{r}}) \tag{38}
\end{align*}
$$

where

$$
\begin{align*}
Q_{l j}=j(j+1)-\ell(\ell+1)-\frac{3}{4} & =-l-2, \quad \text { when } j=l+\frac{1}{2} \\
& =l-1, \quad \text { when } j=l-\frac{1}{2} \tag{39}
\end{align*}
$$

2.3 reduction from Dirac to Schroedinger equations

The correspondence between the EQ. (35) and the Schroedinger equation is obtained as follows. First (i) we assume $S(r)=0$, namely, only the vector-type potential is finite. Notice that, e.g. the Coulomb potential mediated by the photon (vector-gauge field) is consistent to this assumption. Then (ii) in the non-relativistic limit, $E_{N}-W(r) \cong M c^{2}$, and thus, $\epsilon_{N}(r) \cong 2 M c^{2}$. Note also that $\epsilon_{N}^{\prime}(r)=-W^{\prime}(r)$. Therefore, the EQ. (35) is approximated as

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 M} \nabla^{2}-(\hbar c)^{2} \frac{W^{\prime}(r)}{4 M^{2} c^{4}} \frac{d}{d r}+\frac{(\hbar c)^{2}}{r} \frac{W^{\prime}(r)}{4 M^{2} c^{4}} \frac{2 \vec{S} \cdot \vec{L}}{\hbar^{2}}+W(r)\right] F_{N}(\boldsymbol{r})=\left(E_{N}-M c^{2}\right) F_{N}(\boldsymbol{r}) \tag{40}
\end{equation*}
$$

The 1st and 4th terms are well-known kinetic and potential terms in the Schroedinger equation, respectively.

2.4 solution of free Dirac equation

For $E=+\sqrt{c^{2} \vec{p}^{2}+c^{4} M^{2}}>0$ without external potentials, there are two solutions with $p_{0}=+E$ and $p_{0}=-E$:

$$
\begin{align*}
& \psi_{[+E,+\vec{p},+s]}(x)=\exp \left[-i \frac{p^{\mu} x_{\mu}}{\hbar}\right] \sqrt{\frac{E+M}{2 E}}\binom{1}{\frac{\vec{\sigma} \cdot \vec{p}}{M+E}} \chi_{+s} \\
& \psi_{[-E,-\vec{p},-s]}(x)=\exp \left[+i \frac{p^{\mu} x_{\mu}}{\hbar}\right] \sqrt{\frac{E+M}{2 E}}\binom{\frac{\vec{\sigma} \cdot \vec{p}}{M+E}}{1} \chi_{-s} \tag{41}
\end{align*}
$$

3 Numerical solution of spherical Dirac equation

Our goal in this section is to summarize necessary points for the numerical solution of spherical Dirac equation. We start again from EQ. (28):

$$
\begin{align*}
-i \hbar c \vec{\sigma} \cdot \vec{\nabla} G_{N}(\boldsymbol{r})+\left[M c^{2}+S(r)+W(r)\right] i F_{N}(\boldsymbol{r}) & =E_{N} i F_{N}(\boldsymbol{r}) \\
-i \hbar c \vec{\sigma} \cdot \vec{\nabla} i F_{N}(\boldsymbol{r})+\left[-M c^{2}-S(r)+W(r)\right] G_{N}(\boldsymbol{r}) & =E_{N} G_{N}(\boldsymbol{r}) \tag{42}
\end{align*}
$$

Notice that, from EQ.(30),

$$
\begin{equation*}
\vec{\sigma} \cdot \vec{\nabla}=\frac{(\vec{\sigma} \cdot \vec{r})^{2}}{r^{2}} \vec{\sigma} \cdot \vec{\nabla}=\frac{\vec{\sigma} \cdot \boldsymbol{r}}{r^{2}}[\vec{r} \cdot \vec{\nabla}-\vec{\sigma} \cdot \vec{L} / \hbar]=\frac{\vec{\sigma} \cdot \boldsymbol{r}}{r^{2}}\left[r \frac{d}{d r}-\frac{2 \vec{S} \cdot \vec{L}}{\hbar^{2}}\right], \tag{43}
\end{equation*}
$$

where we have used $\vec{\sigma}=2 \vec{S} / \hbar, i \vec{\nabla}=-\vec{p} / \hbar$, and $\vec{L}=\vec{r} \times \vec{p}$. Using the label $K_{l j}$ and $Q_{l j}$, which are determined as $2 \vec{S} \cdot \vec{L} \mathcal{Y}_{l j m}=\hbar^{2} K_{l j} \mathcal{Y}_{l j m}$ and $2 \vec{S} \cdot \vec{L} \frac{\vec{\sigma} \cdot \boldsymbol{r}}{r} \mathcal{Y}_{l j m}=\hbar^{2} Q_{l j} \frac{\vec{\sigma} \cdot \boldsymbol{r}}{r} \mathcal{Y}_{l j m}$, one finds that

$$
\begin{align*}
\vec{\sigma} \cdot \vec{\nabla} i F_{N}(\boldsymbol{r}) & =\vec{\sigma} \cdot \vec{\nabla} i F_{n l j}(r) \mathcal{Y}_{l j m}(\overline{\boldsymbol{r}})=\frac{\vec{\sigma} \cdot \boldsymbol{r}}{r^{2}} i\left[r \frac{d F_{n l j}(r)}{d r}-K_{l j} F_{n l j}(r)\right] \mathcal{Y}_{l j m}(\overline{\boldsymbol{r}}), \\
& =i\left[\frac{d F_{n l j}(r)}{d r}-\frac{K_{l j}}{r} F_{n l j}(r)\right] \frac{\vec{\sigma} \cdot \boldsymbol{r}}{r} \mathcal{Y}_{l j m}(\overline{\boldsymbol{r}}) \tag{44}
\end{align*}
$$

and

$$
\begin{align*}
\vec{\sigma} \cdot \vec{\nabla} G_{N}(\boldsymbol{r}) & =\vec{\sigma} \cdot \vec{\nabla} G_{n l j}(r) \frac{\vec{\sigma} \cdot \boldsymbol{r}}{r} \mathcal{Y}_{l j m}(\overline{\boldsymbol{r}})=\frac{\vec{\sigma} \cdot \boldsymbol{r}}{r^{2}}\left[r \frac{d G_{n l j}(r)}{d r}-Q_{l j} G_{n l j}(r)\right] \frac{\vec{\sigma} \cdot \boldsymbol{r}}{r} \mathcal{Y}_{l j m}(\overline{\boldsymbol{r}}) \\
& =\left[\frac{d G_{n l j}(r)}{d r}-\frac{Q_{l j}}{r} G_{n l j}(r)\right] \mathcal{Y}_{l j m}(\overline{\boldsymbol{r}}) \tag{45}
\end{align*}
$$

Therefore, EQ. (42) is transformed as

$$
\begin{align*}
&-i \hbar c\left[\frac{d G_{n l j}(r)}{d r}-\frac{Q_{l j}}{r} G_{n l j}(r)\right] \mathcal{Y}_{l j m}(\overline{\boldsymbol{r}})= {\left[E_{N}-W(r)-S(r)-M c^{2}\right] i F_{n l j}(r) \mathcal{Y}_{l j m}(\overline{\boldsymbol{r}}), } \\
&-i \hbar c \cdot i\left[\frac{d F_{n l j}(r)}{d r}-\frac{K_{l j}}{r} F_{n l j}(r)\right] \frac{\vec{\sigma} \cdot \boldsymbol{r}}{r} \mathcal{Y}_{l j m}(\overline{\boldsymbol{r}})= {\left[E_{N}-W(r)+S(r)+M c^{2}\right] } \\
& G_{n l j}(r) \frac{\vec{\sigma} \cdot \boldsymbol{r}}{r} \mathcal{Y}_{l j m}(\overline{\boldsymbol{r}}) . \tag{46}
\end{align*}
$$

Thus,

$$
\begin{align*}
\frac{d F_{n l j}}{d r} & =\frac{K_{l j}}{r} F_{n l j}(r)+\frac{M c^{2}+S(r)+E_{N}-W(r)}{\hbar c} G_{n l j}(r) \\
\frac{d G_{n l j}}{d r} & =\frac{M c^{2}+S(r)-E_{N}+W(r)}{\hbar c} F_{n l j}(r)+\frac{Q_{l j}}{r} G_{n l j}(r) \tag{47}
\end{align*}
$$

For another representation with $F_{n l j}(r) \equiv \frac{a_{n l j}(r)}{r}$ and $G_{n l j}(r) \equiv \frac{b_{n l j}(r)}{r}$, these equations change as

$$
\begin{align*}
\frac{d a_{n l j}}{d r} & =\frac{K_{l j}+1}{r} a_{n l j}(r)+\frac{M c^{2}+S(r)+E_{N}-W(r)}{\hbar c} b_{n l j}(r), \\
\frac{d b_{n l j}}{d r} & =\frac{M c^{2}+S(r)-E_{N}+W(r)}{\hbar c} a_{n l j}(r)+\frac{Q_{l j}+1}{r} b_{n l j}(r) . \tag{48}
\end{align*}
$$

Here, one can use a trick: $K_{l j}+1=-Q_{l j}-1$ for whatever $j=l \pm 1 / 2$. Thus, by using

$$
\begin{align*}
\kappa_{l j} \equiv K_{l j}+1=-Q_{l j}-1 & =l+1 \text { for } j=l+1 / 2 \\
& =-l \text { for } j=l-1 / 2 \tag{49}
\end{align*}
$$

then one finally gets

$$
\begin{align*}
\frac{d a_{n l j}}{d r} & =\frac{\kappa_{l j}}{r} a_{n l j}(r)+\frac{M c^{2}+S(r)+E_{N}-W(r)}{\hbar c} b_{n l j}(r) \\
\frac{d b_{n l j}}{d r} & =\frac{M c^{2}+S(r)-E_{N}+W(r)}{\hbar c} a_{n l j}(r)+\frac{-\kappa_{l j}}{r} b_{n l j}(r) \tag{50}
\end{align*}
$$

In the following, we introduce the new symbols as

$$
s(r) \equiv M c^{2}+S(r), \quad v(r) \equiv E_{N}-W(r), \quad \epsilon_{N}(r) \equiv s(r)+v(r)
$$

Then the last equations for $\left\{a_{n l j}(r), b_{n l j}(r)\right\}$ read

$$
\frac{d}{d r}\binom{a}{b}=\left(\begin{array}{cc}
\frac{\kappa}{r} & \frac{s+v}{\hbar c} \tag{51}\\
\frac{s-v}{\hbar c} & \frac{-\kappa}{r}
\end{array}\right)\binom{a}{b}
$$

Since this EQ. (51) is simply the single-derivative matrix equation, the 4th-order Runge-Kutta (RK4) method can be utilized to obtain the numerical solutions of $a_{n l j}(r)$ and $b_{n l j}(r)$ [2]. Here we summarize TIPs for numerical implementation:

- Physical input parameters necessary: (i) mass and energy $\left(M c^{2}, E_{N}\right)$; (ii) quantum numbers of interest $N=$ (n, l, j); (iii) scalar and vector potentials $S(r)$ and $W(r)$; physical constants.
- Numerical parameters necessary: (i) cutoff maximum and minimum energies; (ii) radial mesh parameters $\left(d r, R_{\max }\right)$.
- For finding the eigenenergy E_{N} of the bound state, as one example, one should employ the iteration combined with the node-counting technique. Namely, the RK4 solution for the fixed set of (n, l, j) is repeated by elaborating the input $E_{n l j}$ until when the results are expected as converged.
- For the starting values of $f_{n l j}(r)$ and $g_{n l j}(r)$ necessary to use the RK4 method, one can refer to their asymptotic forms at $r \cong 0$, which are given in the following sections.

3.1 large component $a(r)$

First, we eliminate $b(r)$:

$$
\begin{align*}
b(r) & =\frac{\hbar c}{\epsilon_{N}(r)}\left(a^{\prime}(r)-\frac{\kappa}{r} a(r)\right) \\
b^{\prime}(r) & =\hbar c\left\{(-) \frac{\epsilon_{N}^{\prime}}{\epsilon_{N}^{2}}\left(a^{\prime}(r)-\frac{\kappa}{r} a(r)\right)+\frac{1}{\epsilon_{N}}\left(a^{\prime \prime}(r)-\frac{\kappa}{r} a^{\prime}(r)+\frac{\kappa}{r^{2}} a(r)\right)\right\} \\
& =\left(\text { from EOM...) }=\frac{s(r)-v(r)}{\hbar c} a(r)-\frac{\kappa}{r} \frac{\hbar c}{\epsilon_{N}}\left(a^{\prime}(r)-\frac{\kappa}{r} a(r)\right)\right. \tag{52}
\end{align*}
$$

By some calculations,

$$
\begin{align*}
\Longrightarrow & a^{\prime \prime}(r)-\frac{\kappa}{r} a^{\prime}(r)+\frac{\kappa}{r^{2}} a(r)-\frac{\epsilon_{N}^{\prime}}{\epsilon_{N}(r)}\left(a^{\prime}(r)-\frac{\kappa}{r} a(r)\right)=\frac{s^{2}-v^{2}}{(\hbar c)^{2}} a(r)-\frac{\kappa}{r}\left(a^{\prime}(r)-\frac{\kappa}{r} a(r)\right) \\
\Longrightarrow & a^{\prime \prime}(r)-\frac{\epsilon_{N}^{\prime}}{\epsilon_{N}} a^{\prime}(r)+\left(\frac{\kappa}{r^{2}}+\frac{\epsilon_{N}^{\prime}(r)}{\epsilon_{N}(r)} \cdot \frac{\kappa}{r}-\frac{s^{2}-v^{2}}{(\hbar c)^{2}}-\frac{\kappa^{2}}{r^{2}}\right) a(r)=0 \\
& a^{\prime \prime}(r)-\frac{\epsilon_{N}^{\prime}}{\epsilon_{N}} a^{\prime}(r)+\left(-\frac{l(l+1)}{r^{2}}+\frac{\epsilon_{N}^{\prime}}{\epsilon_{N}} \cdot \frac{\kappa}{r}-\frac{s^{2}-v^{2}}{(\hbar c)^{2}}\right) a(r)=0, \tag{53}
\end{align*}
$$

where we have used $\kappa_{l j}\left(\kappa_{l j}-1\right)=l(l+1)$ for whatever $j=l \pm 1 / 2$. Or equivalently,

$$
\begin{align*}
& -\frac{(\hbar c)^{2}}{\epsilon_{N}(r)} a^{\prime \prime}(r)+\frac{(\hbar c)^{2} \epsilon_{N}^{\prime}(r)}{\epsilon_{N}^{2}(r)} a^{\prime}(r)+\left[\frac{(\hbar c)^{2}}{\epsilon_{N}(r)} \frac{l(l+1)}{r^{2}}-\frac{(\hbar c)^{2} \epsilon_{N}^{\prime}(r)}{\epsilon_{N}^{2}(r)} \frac{\kappa}{r}+s(r)-v(r)\right] a(r)=0 \\
& \left\{-\frac{(\hbar c)^{2}}{\epsilon_{N}(r)} \frac{d^{2}}{d r^{2}}+\frac{(\hbar c)^{2} \epsilon_{N}^{\prime}(r)}{\epsilon_{N}^{2}(r)} \frac{d}{d r}+\left[\frac{(\hbar c)^{2}}{\epsilon_{N}(r)} \frac{l(l+1)}{r^{2}}-\frac{(\hbar c)^{2} \epsilon_{N}^{\prime}(r)}{\epsilon_{N}^{2}(r)} \frac{\kappa}{r}+S(r)+W(r)\right]\right\} a(r) \\
& =\left(E_{N}-M c^{2}\right) a(r) \tag{54}
\end{align*}
$$

Then, in the non-relativistic limit, this equation becomes the Schroedinger equation with the potential $S(r)+W(r)$.

3.2 small component $b(r)$

Next we focus on $b_{n l j}(r)$. By introducing $\zeta_{N} \equiv s(r)-v(r)=M c^{2}+S(r)-E_{N}+W(r)$,

$$
\begin{align*}
a(r) & =\frac{\hbar c}{\zeta_{N}(r)}\left(b^{\prime}(r)+\frac{\kappa}{r} b(r)\right) \\
a^{\prime}(r) & =\hbar c\left\{(-) \frac{\zeta_{N}^{\prime}}{\zeta_{N}^{2}}\left(b^{\prime}(r)+\frac{\kappa}{r} b(r)\right)+\frac{1}{\zeta_{N}(r)}\left(b^{\prime \prime}(r)+\frac{\kappa}{r} b^{\prime}(r)-\frac{\kappa}{r^{2}} b(r)\right)\right\} \\
& =\left(\text { from EOM...) }=\frac{\kappa}{r} \frac{\hbar c}{\zeta_{N}(r)}\left(b^{\prime}(r)+\frac{\kappa}{r} b(r)\right)+\frac{s(r)+v(r)}{\hbar c} b(r)\right. \tag{55}
\end{align*}
$$

By some calculations,

$$
\begin{align*}
& \Longrightarrow \quad b^{\prime \prime}(r)+\frac{\kappa}{r} b^{\prime}(r)-\frac{\kappa}{r^{2}} b(r)-\frac{\zeta_{N}^{\prime}}{\zeta_{N}}\left(b^{\prime}(r)+\frac{\kappa}{r} b(r)\right)=\frac{\kappa}{r}\left(b^{\prime}(r)+\frac{\kappa}{r} b(r)\right)+\frac{s^{2}-v^{2}}{(\hbar c)^{2}} b(r) \\
& \Longrightarrow \quad b^{\prime \prime}(r)-\frac{\zeta_{N}^{\prime}}{\zeta_{N}} b^{\prime}(r)+\left(-\frac{\kappa(\kappa+1)}{r^{2}}-\frac{\zeta_{N}^{\prime}}{\zeta_{N}} \cdot \frac{\kappa}{r}-\frac{s^{2}-v^{2}}{(\hbar c)^{2}}\right) b(r)=0 \tag{56}
\end{align*}
$$

By dividing this equation by $-\epsilon_{N}(r) /(\hbar c)^{2}$, where $\epsilon_{N}(r)=s(r)+v(r)$, one finds

$$
\begin{align*}
& \left\{-\frac{(\hbar c)^{2}}{\epsilon_{N}(r)} \frac{d^{2}}{d r^{2}}+\frac{(\hbar c)^{2} \zeta_{N}^{\prime}(r)}{\epsilon_{N}(r) \zeta_{N}(r)} \frac{d}{d r}+\left[\frac{(\hbar c)^{2}}{\epsilon_{N}(r)} \frac{\kappa(\kappa+1)}{r^{2}}-\frac{(\hbar c)^{2} \epsilon_{N}^{\prime}(r)}{\epsilon_{N}(r) \zeta_{N}(r)} \frac{\kappa}{r}+S(r)+W(r)\right]\right\} b(r) \\
& =\left(E_{N}-M c^{2}\right) b(r) \tag{57}
\end{align*}
$$

3.3 asymptotic form at $r \cong 0$ with $W^{\prime}(r)=S^{\prime}(r)=0$

Within this assumption, the EQ. (53) is approximated as

$$
\begin{equation*}
\left[\frac{d^{2}}{d r^{2}}-\frac{l(l+1)}{r^{2}}-C(r)\right] a_{n l j}(r) \cong 0, \quad C(r) \equiv \frac{s^{2}(r)-v^{2}(r)}{(\hbar c)^{2}}, \quad \frac{d}{d r} C(r \cong 0)=0 \tag{58}
\end{equation*}
$$

(i) Because this equation keeps the same for $r \longrightarrow-r$, the asymptotic form must be $a(r) \cong \sum_{n} r^{2 n+1}$ or $\cong \sum_{n} r^{2 n}$, in its expanded form. (ii) By considering the special case with $S(r)=W(r) \equiv 0$, namely $C(r)=$ const., the possible form can be limited as $a(r) \cong r^{l+1}+\mathcal{O}\left(r^{l+3}\right)$. (iii) Assuming $a(r) \cong r^{l+1}+\chi C(r) r^{l+3}+\mathcal{O}\left(r^{l+5}\right)$, the factor χ must satisfy that,

$$
\begin{equation*}
0 \cdot \frac{r^{l+1}}{r^{2}}+\frac{r^{l+3}}{r^{2}}\{\chi(l+3)(l+2)-\chi(l+1) l-1\} C(r)+\mathcal{O}\left(r^{l+5-2}\right) \cong 0 \longrightarrow \chi=\frac{1}{4 l+6} \tag{59}
\end{equation*}
$$

Therefore, without the normalization,

$$
\begin{equation*}
a_{n l j}(r \cong 0)=r^{l+1}+\frac{C(r)}{4 l+6} r^{l+3}+\mathcal{O}\left(r^{l+5}\right) \tag{60}
\end{equation*}
$$

The corresponding $b_{n l j}(r)$ can be computed from the Dirac equation:

$$
\begin{equation*}
b_{n l j}(r \cong 0)=\frac{\hbar c}{s(r)+v(r)}\left[\frac{d a_{n l j}}{d r}-\frac{\kappa_{l j}}{r} a_{n l j}(r)\right] \tag{61}
\end{equation*}
$$

4 Sample calculation

For the benchmark of programme DEQURK to solve the spherical Dirac equation with RK4 method, we present the sample calculations for the single-proton energies in the ${ }^{100} \mathrm{Sn}$ nucleus.

- In FIG. 1, the scalar and vector potentials utilized for this $\mathrm{p}+{ }^{100} \mathrm{Sn}$ system are displayed. Notice that the vector potential $W(r)$ includes the Coulomb barrier in addition to the attractive-nuclear potential. These potentials are obtained by fitting them to the self-consistent mean-field results from Relativistic Hartree-Bogoliubov (RHB) calculations with the DD-PC1 parameters [3].
- In FIG. 2, the Dirac-spinor functions, $f_{n l j}(r)=a_{n l j}(r) / r$ and $g_{n l j}(r)=b_{n l j}(r) / r$, are presented for $1 s_{1 / 2}, 2 s_{1 / 2}$, $1 p_{3 / 2}$, and $2 s_{3 / 2}$ orbits of protons. Each state is normalized as $\int \bar{\psi}(\boldsymbol{r}) \psi(\boldsymbol{r}) d \boldsymbol{r}=1$. Notice that the smaller component $g_{n l j}(r)$ is indeed minor compared to the larger component $f_{n l j}(r)$.
- In TABLE 4, the single-proton energies of protons are summarized. The DEQURK method approximately reproduces these energies obtained from RHB with DD-PC1 Lagrangian. The small deviation is due to the fitting errors in potentials.

TABLE 4: Single-particle energies for protons in ${ }^{100} \mathrm{Sn}$. The unit is MeV. The scalar and vector potentials are plotted in FIG. 1. The corresponding results from RHB with DD-PC1 are also presented [3, 4].

Orbit	DEQURK (Runge-Kutta)	RHB with DD-PC1
$1 s_{1 / 2}$	-48.888	-47.985
$2 s_{1 / 2}$	-20.653	-19.528
$1 p_{3 / 2}$	-39.562	-38.346
$2 p_{3 / 2}$	-6.981	-6.767
$1 p_{1 / 2}$	-38.354	-37.240
$2 p_{1 / 2}$	-5.781	-5.300
$1 d_{5 / 2}$	-28.429	-26.976
$1 d_{3 / 2}$	-25.306	-23.975
$1 f_{7 / 2}$	-16.386	-14.987
$1 f_{5 / 2}$	-10.957	-9.553

FIG. 1: The scalar and vector potentials used for $\mathrm{p}+{ }^{100} \mathrm{Sn}$ system. The corresponding results obtained from RHB calculation with DD-PC1 Lagrangian are also plotted [3].

References

[1] A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton Landmarks in Physics (Princeton University Press, Princeton, 1960).
[2] "Runge-Kutta method", Encyclopedia of Mathematics, EMS Press, (2001).
[3] T. Niksic, N. Paar, D. Vretenar, and P. Ring, Computer Physics Communications 185, 1808 (2014).
[4] M. Serra, Doctoral Thesis (2001).

FIG. 2: The Dirac-spinor functions, $F_{N}(r)=a_{n l j}(r) / r$ and $G_{N}(r)=b_{n l j}(r) / r$, obtained with DEQURK for $1 s_{1 / 2}$, $2 s_{1 / 2}, 1 p_{3 / 2}$, and $2 s_{3 / 2}$ orbits of protons.

