Little Red Dots: A Key Building Block of the Massive BH Population at Cosmic Dawn

Kohei Inayoshi

Collaborators: Haojie Hu, Wenxiu Li, Zhengrong Li, Kejian Chen, Jingsong Guo, Masafusa Onoue, Kohei Ichikawa, Kazumi Kashiyama, Yuichi Harikane, Luis C. Ho, JWST CEERS/COSMOS-Web collaborations

August 5th, 2024 @Transient 2024, YITP

Peking University Kavli Institute for Astronomy & Astrophysics

Tenure Associate Prof. (2024.8.1~)

Thank you all for your continuous supports in the past 15 years, especially to Kyoto colleagues

1. Overviews of JWST observations 2. Little red dots — AGNs hypothesis

Outline

3. Applications — BH growth, spin, TDEs

1. Overview of JWST observations

Supermassive Black Holes (SMBH)

Key questions:

- 1) What is the origin of SMBHs?
- 2) How did BHs and galaxies interact?
- 3) Cosmological coevolution & high-z?

Galaxy mass

History of the Universe

JWST

High-z SMBH population

AGNs unveiled with JWST $M_{\bullet} \simeq 10^{6-8} M_{\odot}$

Hidden little monsters uncovered by JWST

- A Candidate for the Least-massive Black Hole in the First 1.1 Billion Years of the Universe

• Hidden Little Monsters: Spectroscopic Identification of Low-Mass, Broad-Line AGN at z > 5 with CEERS

Abundant fainter AGNs

Star-forming galaxies $\Phi \sim 10^{-3} - 10^{-2} \text{ Mpc}^{-3} \text{ mag}^{-1}$

e.g., Finkelstein+15, Bouwens+21, Harikane+22

JWST broad-line AGNs $\Phi \sim 10^{-5} - 10^{-4} \text{ Mpc}^{-3} \text{ mag}^{-1}$

e.g., Onoue+23, Kocevski+23, Harikane+23, Maiolino+23, Matthee+24, Greene+24, Kokorev+24

Bright QSOs (ground-based surveys) $\Phi \leq 10^{-8} - 10^{-7} \text{ Mpc}^{-3} \text{ mag}^{-1}$

Jiang+18, Matsuoka+18, McGreer+18, Niida+20

Abundant & low-luminosity AGNs (low-mass BHs) detected with JWST

• Overmassive BHs relative to the local relation

Intrinsically overmassive or just biased distribution? (Pacucci+23, Li, Silverman & Shen +24, Kormendy & Ho 2013)

 Transient super-Eddington accretion of BHs, which are also detectable with JWST

RHD simulations (KI+22a,b; Hu+22a,b) Semi-analytical models (Scoggins+23; Schneider+23)

Early BH-galaxy coevolution

2-1. Little Red Dots (observations)

NOTE: they seem a new population at high-z sources. We haven't reached a conclusion. Thus, I might talk about some chaos...

- Very compact & red sources (in JWST NIRCam)
- **Broad-component** of Balmer lines (Ha/Hb) \bullet

Little Red Dots

ev+24,

Normal (unobscured) AGNs seen by JWST

- Very compact (unless galaxy light dominates)
- Flat SED in F_v (NIRCam) + broad Balmer lines (NIRSpec)

Onoue+23, Kocevski+23, Guo+24 in prep

Characteristic v-shape SEDs

Two components!!

really? simpler is better...

LRD's SED at near IR

Pérez-González+ (2024)

Obscured AGNs (hot dust)

Obscured galaxy

LRD's SED at near IR

A short summary of observations

A short summary of observations

	AGN hypothesis	Galaxy hypothesis		
Image	O Compact	No robust host detection*		
Broad-line emission	O The best explanation	Stellar origin (WRs/SNe)?		
Red optical	O Dust-reddened AGN	dust-reddened galaxy (require too massive galaxy)		
Blue UV	Unknown (the host galaxy?)	Unknown		
Faint NIR	No hot dust heated by AGN?	C Consistent		
X-ray weak	Unknown (super-Edd?)	Consistent		
ALMA no detection	O No problem	No cold dust heated by star bursts?		

2-2. Little Red Dots (SED model)

Solutions for UV/NIR parts of LRD's SED

Li, KI, Chen, Ichikawa & Ho (2024) arXiv:2407.10760

Extinction laws in dense systems

- Heavier extinction from optical to UV
- SMC / Calzetti's laws (everyone uses)
- ISM extinction laws (see text book)
- Gray extinction at UV ranges (<3000A) due to the deficit of small-size grains; $a < \lambda/2\pi \sim 0.06 \ \mu m$
 - Orion Nebula (everyone knows)
 - Composite AGN spectra
 - High-z galaxies (6<z<13)

AGN SED + Extinction

Gray extinction maintains the v-shaped SED of LRDs

Re-emitted IR energy

 $T_{\rm dust}(r)$

warm dust

hot dust

mass distribution:

$$\rho(r) \propto r^{-r}$$

cold dust

 Torus model $\gamma > 1$ centrally concentrated density IR emission from **hot** dust

• Our model $0 < \gamma < 1$ less concentrated density IR emission from relatively cooler dust

see also e.g., Barvainis (1987), Hönig & Kishimoto (2017)

IR SED depending on density gradients

Energy transfer from NIR to MIR with extended dust distribution

Multi-wavelength SED of LRDs (only AGN)

Li, KI, Chen+ 2024

- Classical unified model: due to the presence of dense dusty tori
- Intermediate stage (LRDs): covering factor of BLRs

New AGN unified model

Clear classification of low-z AGNs (type 1 vs 2), depending on the viewing angle

Dynamically unsettled & extended gas/dust at higher redshifts, with a higher

3-1. Applications

Sołtan-Paczyński argument (BH growth & spin)

KI & Ichikawa (2024) arXiv:2402.14706

Soltan argument for QSOs

Mass conservation law in accreting/illuminating BHs

$$M_{\rm BH}(z) = M_{\rm BH}(z_{\rm s}) + \Delta M_{\rm BH}$$
$$\Delta M_{\rm BH} = \int \dot{M}_{\rm BH} dt = \int \frac{1}{-1}$$

E : radiative efficiency ~ 10%
(disk model, BH spin)
theoretical max ~ 42%

g/illuminating BHs Soltan 1982, Yu & Tremaine 2002

Soltan argument for QSOs

Mass conservation law in accreting/illuminating BHs

$$\rho_{\rm BH}(z) = \rho_{\rm BH}(z_{\rm s}) + \int \frac{1-\epsilon}{\epsilon} \cdot \frac{\mathscr{L}}{c^2} \frac{dt}{dz} dz$$
$$\simeq \rho_{\rm BH}(z_{\rm s}) + \frac{1-\bar{\epsilon}}{\bar{\epsilon}c^2} \int_{z_{\rm s}}^{z} dz \frac{dt}{dz} \int_{L_{\rm s}}^{L_{\rm s}} dz$$

radiatively efficient accretion $\bar{\epsilon} \sim 0.1 \quad (a_{\bullet} \sim 0.7)$ with moderate spins

Soltan 1982, Yu & Tremaine 2002

Mass density of local relic BHs = Mass accreted onto BHs over time

Soltan argument for the earliest BHs

Birth of rapidly spinning BHs at cosmic dawn

Radiative efficiency of >30% & rapid BH spins of a>0.99

Survey	Redshift	$\log_{10}\Delta\rho_{\bullet}$	<i>p</i> -value			
		$\epsilon_{\rm rad} = 0.1$	$\epsilon_{\rm rad} = 0.1$	$\epsilon_{\rm rad} = 0.2$	$\epsilon_{\rm rad} = 0.3$	$\epsilon_{\rm rad} = 0.42$
		$a_{\bullet} \simeq 0.674$	$a_{\bullet} \simeq 0.674$	$a_{\bullet} \simeq 0.960$	$a_{\bullet} \simeq 0.996$	$a_{\bullet} \simeq 1.00$
COSMOS-Web	5 < z < 9	$4.82^{+0.29}_{-0.19}$	0.00204	0.00569	0.0132	0.0350
Other surveys	4.5 < z < 8.5	$4.48^{+0.24}_{-0.22}$	0.00291	0.0115	0.0378	0.151

- Radio jets (BZ mechanisms) from early BHs
- Prolonged disk accretion vs. chaotic accretion
- GW waveform modulation by BH spins in their coalescences

KI & Ichikawa 24

3-2. Applications

TDEs from LRDs

KI, Kashiyama, Li, Harikane, Ichikawa & Onoue (2024)

Rapid BHs spins allow 1. TDEs by M>10⁸M_{sun} 2. Brighter jets, 3. ...

disrupted stellar debris

High-z TDEs from JWST AGNs

TDE rate vs. BHMF shape

30 days 1.0 yrs Roman (1000 sec) SED evolution of high-Z TDES

Color-magnitude diagram for high-z TDEs

Questions?

