

ブラックホールへの超臨界降着 ~ X線連星 から 活動銀河核 まで ~

豊内大輔 (大阪大学)

YITP workshop @ 京都大学 2024年8月5日

Eddington限界降着率

BHの重力 vs. 電子散乱輻射圧

$$rac{GM_{
m BH}}{r^2} \ge rac{\kappa L}{4\pi cr^2}$$
 κ :電子散乱断面積 $L \le L_{
m Edd} \equiv rac{4\pi cGM_{
m BH}}{r}$

光度は降着率に対して

Credit: NASA

$$L = \frac{GM_{\rm BH}\dot{M}}{r_{\rm in}} = 0.1\dot{M}c^2 \ (r_{\rm in} = 10 \ GM_{\rm BH}/c^2)$$

к

このとき、輻射圧が重力を上回る限界降着率は

$$\dot{M}_{
m Edd} = rac{L_{
m Edd}}{0.1c^2} = 2 imes 10^{-8} \left(rac{M_{
m BH}}{M_{\odot}}
ight) {
m M}_{\odot}/{
m yr}$$

Super-Eddington X-ray binaries

- SS433
 - A Galactic X-ray binary composed of a stellar mass BH + A-type giant
 - accreting gas at 10^{-5} M_{sun}/yr ~ 100 times the Edd. rate (King+2000).
 - Strong disk winds with 1000 km/s (Fabrika 2004).
- Ultraluminous X-ray (ULX) binaries
 - Extragalactic X-ray sources with $L_X > 10^{39}$ erg/s (~ L_{edd} for 10 M_{sun} BH)
 - 1800 ULXs have been detected and some have $L_X > 10^{42}$ erg/s (Walton+2022).

Super-Eddington mass transfer
for
$$M_d \sim 10 M_{\odot}$$
, $\tau_{KH} \sim 10^3 \text{ yr}$
 $\dot{M}_d \sim -\frac{M_d}{\tau_{KH}} \sim 10^{-2} \text{ M}_{\odot} \text{yr}^{-1} \sim 10^4 \dot{M}_{Edd}$

Super-Edd. accreting SMBHs at z > 4

Mass growth history of SMBHs

Photon trapping radius

- Photon diffusion timescale H τ / c > viscous timescale R / v_r

$$R_{\rm trapp} = \frac{H\tau v_r}{c} = \frac{H\kappa\Sigma}{c} \frac{\dot{M}}{2\pi R\Sigma} = 20 \frac{H}{R} \dot{m} R_g, \quad \text{where } \dot{m} \equiv \dot{M} / \dot{M}_{Edd}$$

• At trapping radius, the viscous flux exceeds the Eddington flux.

$$F_{\text{visc}} = \frac{3}{8\pi} \frac{R_g}{R^3} \dot{M} c^2 \left[1 - \left(\frac{R_{\text{in}}}{R}\right)^{1/2} \right], \quad = \quad F_{\text{Edd}} = \frac{L_{\text{Edd}}}{4\pi R^2}.$$
$$R_{\text{sph}} = 15 \dot{m} R_g, \quad \sim R_{\text{trapp}}$$

• Radiation-pressure driven outflows can arise from r < R_{trapp}.

Bondi radius

$$\begin{split} R_{\rm B} &= \frac{GM_{\rm BH}}{c_{\rm s,\infty}^2} \\ &= 1.4 \times 10^4 \text{ au} \left(\frac{M_{\rm BH}}{10^3 \, \rm M_\odot}\right) \left(\frac{T_\infty}{10^4 \, \rm K}\right)^{-1}, \end{split}$$

Bondi accretion rate ٠

$$\dot{M}_{\rm acc} \simeq 4\pi \rho_{\infty} R_{\rm B}^2 c_{\rm s}$$

 $\propto \rho_{\infty} T_{\infty}^{-3/2} M_{\rm BH}^2$

- **Photoionization heating** ٠

 - ✓ Т ↑↑ ✓ *M*_{acc} ↓↓

$$\dot{} \left\langle \dot{M}_{\rm acc} \right\rangle << \dot{M}_{\rm Edd}$$

RHD simulations of super-Eddington mass transfer (DT+24, MNRAS accepted)

RHD simulations of slim disks

	(Outer boun	Idary	Disk	size			
Table 1. Results an	d initial settings of	simulations	\checkmark	\downarrow			Acc. rate	OF rate
paper	method	Compton	$r_{ m out}$	$r_{ m K}$	$r_{ m qss}$	R_{trap}	$\dot{M}_{ m BH}$	$\dot{M}_{ m outflow}$
		[Yes/No]	$[r_{ m S}]$	$[r_{ m S}]$	$[r_{ m S}]$	$[r_{ m S}]$	$[L_{ m Edd}/c^2]$	$[L_{ m Edd}/c^2]$
our simulation	2D-RHD	Yes	3000	2430	~ 600	~ 270	~ 180 >>	~ 24
Ohsuga+05	2D-RHD	No	500	100	~ 30	~ 200	~ 130	
Ohsuga+11	2D-RMHD	No	105	40	~ 10	~ 150	~ 100	
Jiang+14	3D-RMHD	No	50	25	~ 20	~ 330	~ 220	~ 400
Sadowski+15	2D-GR-RMHD	Yes	2500	21	~ 35	~ 640	~ 420 <<	~ 7000
Sądowski $+16$	3D-GR-RMHD	Yes	500	20	~ 10	~ 260	~ 180	~ 520
Hashizume+15	2D-RHD	No	5000	100	~ 100	~ 230	~ 150	~ 500
Takahashi+16	3D-GR-RMHD	No	125	17	~ 10	~ 300	~ 200	
Kitaki+18	2D-RHD	Yes	3000	300	~ 200	~ 420	~ 280 ~	~ 300
Jiang+19	3D-RMHD	Yes	800	40	~ 15	~ 380	~ 250	

Here, r_{out} is the radius at the outer boundary, $r_{\rm K}$ is the initial Keplerian radius, $r_{\rm qss}$ is the radius, inside which the quasi steady state is established, $R_{\rm trap}$ is the photon-trapping radius derived based on equation 2, $\dot{M}_{\rm BH}$ is the accretion rate onto the black hole, and $\dot{M}_{\rm outflow}$ is the outflow rate at around $r_{\rm out}$. It is also indicated whether the Compton scattering effect is taken into account or not.

Kitaki+2021

Do outer boundary conditions affect the results?

3D & 2D RHD simulations

- Suppose a BH+RGB star binary undergoing stable mass transfer (Inayoshi+2017)
- $M_1 = 34 M_{sun}$, $M_2 = 41 M_{sun}$, $a = 36 R_{sun}$, $P = 2\pi/\Omega \sim 3 day$

Simulation results

Inner region r = 0.01-1 R_{\odot} (~100-10⁴ R_g)

Outer region $r = 0.8-17.3 R_{\odot} (\sim 10^4 - 10^5 R_g)$

Generation of outflows

- Hot convective region is established at the outskirts of the disk, gradually extending outward.
- Finally, outflows arise from the hot convective region with sufficient energy to escape from the Roche lobe.

Inward and Outward mass fluxes

Comparison with previous RHD simulations

Circum-binary disk (CBD) formation

- ✓ Over 90 % of outflows in our simulations have Φ_{L2} < Be < 0.
 - > Outflows will form a circum-binary disk.
- ✓ A large fraction of ULX binaries exhibit IR excess, indicating the presence of CBD (e.g., Heida+2014, Lopez+2017).
- ✓ CBD scenario can successfully explain the observed SED of some ULX binaries (e.g., Lau+2019, Lu+2022)
- \checkmark When the donor star causes a CCSN, the light curve would be affected by CBD.

Evolution of Circum-binary disk

- \checkmark CBD gradually expands due to the tidal torque from the binary.
- ✓ SAM of CBD mass loss is about five times higher than that of isotropic outflows.

Evolution of Circum-binary disk

- \checkmark CBD gradually expands due to the tidal torque from the binary.
- ✓ SAM of CBD mass loss is about five times higher than that of isotropic outflows.

$M_{ m II}/M_{ m I}$	Н	Ĉ,	E _f	I.	I 1	wmax
0.001	-1.519	-0.375	-0.339	1.145	1.180	1.82
0.05	-1.673	-0.171	-0.023	1.502	1 650	34.6
0.064	-1.692	-0.161	0.000	1.532	1.692	00
0.10	-1.726	_0 148	0.037	1 578	1 763	
0 20	-1.768	Unhound	0.072	1.616	1.840	Final SAM
0.30	-1.780	Unbound:	0.072	1.609	1.852	
0.40	-1.779	-0.193	0.061	1.587	1.840	of outflov
0.50	-1.774	-0.214	0.046	1.560	1.819	~~
0.60	-1.766	-0.232	0.029	1.533	1.795	8
0.70	-1.756	-0.250	0.013	1.506	1.770	8
0.78	-1.749	-0.263	0.000	1.486	1.749	00
0.80	-1.747	-0.266	-0.002	1.481	1.744	498.
0.90	-1.737	-0.280	-0.017	1.458	1.720	57.3
1.00	-1.728	-0.292	-0.031	1.436	1.697	30.7

Numerical calculation by Shu+1979

Implication for orbital evolution of binaries

Stability of mass-transferring binaries

Super-Edd. accretion in dense environments

Inayoshi+2016, DT+2019, 20

• Condition for the bondi like accretion $(r_{Bondi} > r_{HII})$

Super-Edd. accretion in dense environments

Inayoshi+2016, DT+2019, 20

• Condition for the bondi like accretion $(r_{Bondi} > r_{HII})$

Toyouchi et al. (2021)

- 3D RHD simulations of dusty accretion disks
- Super-Edd. accretion is possible!!

Time-averaged acc. rate

- Strong disk evaporation occurs when $R_{HII} > R_{bondi}$.
- Condition for super-Eddington accretion

$$\frac{\dot{M}_{\rm in}}{\dot{M}_{\rm Edd}} \gtrsim 10^2 \left\{ 1 + \left(\frac{Z}{10^{-2} Z_{\odot}} \right) \right\}^{-1} \left(\frac{c_s}{1 \text{ km s}^{-1}} \right)$$

Implications from cosmological simulations

- BH mass growth is strongly suppressed by stellar feedback!
- We probably need higher spatial resolution to explore nuclear regions.

Hopkins et al. (2023)

• First RMHD simulation resolving AGN accretion disks from cosmological initial condition.

~ 10 Edd. rate @ 300 r_s

BHの銀河中心への移動

- 10⁸ M_☉より重いBHだけ力学摩擦によって銀
 河中心に落ちる (Ma+21)
- BHからの輻射を考慮すると力学摩擦はさらに 弱まるはず(Park+17; DT+20)

Shi et al. (2023, 24a,b)

- 星形成 + BH質量成長の孤立系計算
- 初期に1000個のBHを分子雲内にばら撒く
- ・ 基本的にはBHへのガス降着率は低い。
- ごく一部(1%以下)のBHは分子雲コアに遭遇。
 - 超臨界降着を経験。
 - 分子雲コアとともに星団中心に落ちる。
- ・ 銀河進化の文脈で起こりうるか?

まとめ

- 輻射流体シミュレーションを用いたBHへのガス降着過程の研究でULXや高赤方偏移AGNについて理 解を深めたい。
- 円盤が十分光学的に厚いときはBHからボンディ半径のスケールからBHへ流れ込む超臨界降着が実現 する。
- 一方で、円盤内縁の光子捕獲半径付近から大規模なアウトフローが吹くため、BHへ降着するガスは 全体の1~10%程度になる。
- BHとホスト銀河の長期的共進化が課題。現状の銀河形成シミュレーションはBH成長を過小評価する。 銀河スケールからBH重力圏にガスを供給するメカニズムについて理解する必要がある。
- ホストハローの合体によりBHは必ずしも銀河中心にいるとは限らない。銀河中のBHの質量成長と力
 学進化を整合的に扱う必要がある。