超巨大ブラックホール周囲からの 高エネルギーニュートリノ放射

Collaborators:

- Kohta Murase, Peter Meszaros (Penn State)
- Ali Kheirandish (UNLV)
- Seiji Toshikage, Masaomi Tanaka (Tohoku U.)

2024/08/05-09 **Extreme Transients**

UNIVERSITY

Tohoku University Shigeo S. Kimura

- Tomoki Morokuma (Chiba Tech), Nozomu Tominaga (NAOJ) - Iwakiri, Shigeru Yoshida, Nobuhiro Shimizu (Chiba U.)

Outline

- Introduction
- High-energy Neutrinos from Accretion Flows onto SMBHs
- Optical Follow-up Observations to Cosmic Neutrino Events
- Summary

Cosmic-Rays (CRs) : High-energy atomic nuclei filling the Universe

Origin of CRs have been unknown for a century

Detection of Cosmic High-energy Neutrinos

- Soft spectrum: $F_{E_{u}}$ @ TeV > $F_{E_{u}}$ @ PeV
- Origin of cosmic neutrinos are a new big mystery

1450 m

2450 m

2820 n

High-energy neutrino production

Interaction between CRs & photons/nuclei → Neutrino production Gamma-rays inevitably accompanied with neutrinos

Neutrino Source Candidates in Pre-IceCube Era

pγ

Cosmic-ray Accelerators

• Gamma-ray Bursts

• Blazars

Manheim & Biermann 1989 Halzen & Zas 1997

- Cosmic-ray Reservoirs
- Galaxy Clusters

• Starburst Galaxies

pp

CRs are escaping from accelerators \rightarrow CRs are confined in reservoirs \rightarrow CRs are producing neutirons via pp channel

Neutrino Source Candidates in Pre-IceCube Era • Jetted AGN (Blazars)

Gamma-ray Bursts

- Very bright non-thermal gamma-rays => Existence of cosmic-ray electrons
- If protons are also accelerated, they will emit neutrinos

Neutrino Source Candidates in Pre-IceCube Era

No neutrinos from the direction & timing of GRBs

• Jetted AGN (Blazars)

Biermann 1989 . Zas 1997

1

No neutrinos from direction of γ -ray detected blazars

Neutrino Source Candidates in Pre-IceCube Era

pγ

Cosmic-ray Accelerators

• Gamma-ray Bursts

• Blazars

Manheim & Biermann 1989 Halzen & Zas 1997

- Cosmic-ray Reservoirs
- Galaxy Clusters

• Starburst Galaxies

pp

CRs are escaping from accelerators \rightarrow CRs are confined in reservoirs \rightarrow CRs are producing neutirons via pp channel

Gamma-ray Constraint on Neutrino Sources

- Fermi Satellite is measuring cosmic gamma-ray backgrounds
- v flux@10 TeV > γ-ray flux@100 GeV
- Consider sources from which both γ & v can easily escape \rightarrow fit theory to neutrino data \rightarrow γ -ray theory >> γ -ray data
- γ-ray needs to be absorbed inside the sources (hidden source) $\gamma + \gamma \rightarrow e^+ + e^-$
- γ rays freely escape from reservoirs => contradict with y-ray data

GeV

 $E^{2}\phi$

12

Neutrino Source Candidates in Pre-IceCube Era

py

Cosmic-ray Accelerators

• Gamma-ray Bursts

• Blazars

Manheim & Biermann 1989 Halzen & Zas 1997

- Cosmic-ray Reservoirs pp
- Starburst Galaxies • Galaxy Clusters

CRs are escaping from accelerators \rightarrow CRs are confined in reservoirs \rightarrow CRs are producing neutirons via pp channel

Current Source Candidates

• Seyfert Galaxies (Radio-quiet AGN)

 Strong evidence of neutrino signals from NGC 1068

• 2 possible association

• Tidal Disruption Events

reported from ZTF team

Stein+ 2021 Reusch+(incl. SSK) 2022 • Peculiar Supernovae (hypernova; Interacting supernova)

- No observational evidence
- Theory-motivated

How to find neutrino sources?

- Stacking analysis $(\gamma \rightarrow \nu)$
 - **Integrated Neutrino data** + Catalogued sources by EM \rightarrow Identify neutrino sources

- Follow-up Observations ($\nu \rightarrow \gamma$)
 - Neutrino Alerts + Follow-up observations by EM \rightarrow Identify neutrino sources

15

How to find neutrino sources?

- Stacking analysis $(\gamma \rightarrow \nu)$
 - Integrated Neutrino data

 + Catalogued sources by EM
 → Identify neutrino sources
 - We can find steady sources
 - Only sensitive to the catalogued sources

- Follow-up Observations ($\nu \rightarrow \gamma$)
 - Neutrino Alerts

 + Follow-up observations by EM
 → Identify neutrino sources

16

Current Source Candidates

• Seyfert Galaxies (Radio-quiet AGN)

• Strong evidence of neutrino signals from NGC 1068

IceCube 2022

(TDEs)

2 possible association

• Tidal Disruption Events

Month - Year

Murase, SSK+ 2020 Winter+ 2020

reported from ZTF team

Stein+ 2021 Reusch+(incl. SSK) 2022

• Peculiar Supernovae (hypernova; Interacting supernova)

• No observational evidence • Theory-motivated

 \rightarrow Optically thick disk + Corona

Particle Acceleration in Turbulence

ring box

Particle-In-Cell Simulatie

Hoshino 2013, 2015; Riquelme et al.

Magnetic reconnection \rightarrow relativistic particle production Interaction with Turbulence \rightarrow further energization

20

Some gain E, others lose E →diffusion in E space

 $\frac{\partial F_p}{\partial t} = \frac{1}{E^2} \frac{\partial}{\partial E} \left(\frac{E^2 D_E}{\partial E} \frac{\partial F_p}{\partial E} \right)$ ∂F_p

by MHD Turbulence

MHD + Test Particle Simulations

SSK+ 2016 ApJ, 2019 MNRAS; Sun & Bai 2021

MRI turbulence

21

$$\frac{\partial F_p}{\partial t} = \frac{1}{\varepsilon_p^2} \frac{\partial}{\partial \varepsilon_p} \left(\varepsilon_p^2 D_{\varepsilon_p} \frac{\partial F_p}{\partial \varepsilon_p} + \frac{\varepsilon_p^3}{t_{p-\text{cool}}} F_p \right) - \frac{F_p}{t_{\text{esc}}} + H_{p-\text{cool}} F_p$$
$$D_{\varepsilon_p} \approx \frac{\zeta c}{H} \left(\frac{V_A}{c} \right)^2 \left(\frac{r_L}{H} \right)^{q-2} \varepsilon_p^2,$$

Multi-messenger Spectra from NGC 1068

- Possible to explain IceCube data without overshooting γ -ray data
- CR acceleration is suppressed by Bethe-Heitler process with UV photons
- Both pp & pγ (with X-rays) contribute to resulting neutrino flux
- **Cascade emission at 10 MeV** ->Testable by MeV y ray satellites

Nearby Seyfert galaxies

Kheirandish, Murase, SSK 2021

Stacking nearby Seyferts

Future detectors should detect v from AGN --> testable by future neutrino experiments

v & y from Nearby Seyfert Galaxies

• NGC 4151: Neutrino source candidate ($\sim 3\sigma$)

 Our model can reproduce the tentative v data without overshooting γ data Murase, Karwin, SSK et al. 2024

• NGC 4945: γ-ray emitting AGN

• Our coronal model can explain γ -ray data for E < 0.3GeV

- \rightarrow Optically thick disk + coronae
- \rightarrow Optically thin flow

Cosmic High-energy Background from RQ AGNs

 γ (Total) Neutrinos (Total) γ by thermal *e* (RIAFs) γ by thermal *e* (AGN Coronae) Cascade γ (AGN Coronae) Cascade γ (RIAFs) Neutrinos (RIAFs) Neutrinos (AGN Coronae)

 $\Phi_{i} = \frac{c}{4\pi H_{0}} \int \frac{dz}{\sqrt{(1+z)^{3}\Omega_{m} + \Omega_{\Lambda}}} \int dL_{\mathrm{H}\alpha} \rho_{\mathrm{H}\alpha} \frac{L_{\varepsilon_{i}}}{\varepsilon_{i}} e^{-\tau_{i,\mathrm{IGM}}},$

- SSK+ 2021

 - **RIAFs**

6

- QSO: X-ray & 10 TeV neutrinos
- LLAGN: MeV y & PeV neutrinos
- Copious photons \rightarrow efficient $\gamma\gamma -> e+e \rightarrow$ strong GeV γ attenuation \rightarrow GeV flux below the Fermi data
- AGN cores can account for keV-MeV y & TeV-PeV v background

See also Murase, SSK+ 2020 PRL; SSK+ 2019, PRD; SSK+ 2015

27

Current Source Candidates

• Seyfert Galaxies (Radio-quiet AGN)

• Strong evidence of neutrino signals from NGC 1068

IceCube 2022

(TDEs)

2 possible association

• Tidal Disruption Events

reported from ZTF team

Stein+ 2021 Reusch+(incl. SSK) 2022 • Peculiar Supernovae (hypernova; Interacting supernova)

- No observational evidence
- Theory-motivated

How to find neutrino sources?

- Stacking analysis $(\gamma \rightarrow \nu)$
 - Integrated Neutrino data + Catalogued sources by EM \rightarrow Identify neutrino sources

- Follow-up Observations ($\nu \rightarrow \gamma$)
 - Neutrino Alerts + Follow-up observations by EM \rightarrow Identify neutrino sources
 - Only works for transients
 - We will have better EM data

Challenge to identify neutrino sources

Angular Resolution of Neutrino detector

-2 deg

- Angular resolution for optical: $\sim 0.1 - 1 \sec(1)$
- Angular Resolution for neutrino: $\sim 0.5 - 3 \deg$
- Number of unrelated transients: $\gtrsim 100$
- we cannot identify neutrino-emitting object...

Dedicated search strategy is necessary

Tidal Disruption Event (TDE)

- Stars are torn apart by supermassive black holes => luminous ($\sim 10^{43}$ erg/s) & long (\sim year) optical transients
- 2 TDEs are reported to associate with cosmic neutrino events

IC191001 <=> AT2019dsg ; IC200530 <=> AT2019fdr

Neutrino emissions from TDEs

- Several possible sites of neutrino emissions
- Our best-guess scenario: accretion disk & corona

star

 $\log_{10} E_{\nu} (\text{GeV})$

Many models are proposed => We need more observations to test scenario

Neutrino Follow-up with Subaru/HSC

- Expected distance: z = 0.5 1 ==> Deep survey (24 25 mag) **Only Subaru/ HSC can achieve both criteria**
- Angular error of neutrino: 1 deg² ==> Wide-field survey (1 deg²)
- => Look for blue & slowly evolving transients using Subaru/HSC
- ToO proposals have been accepted for S23A, S23B, S24A

Neutrino Follow-up with Subaru/HSC

- Expected distance: z = 0.5 1 ==> **Deep survey (24 25 mag)**
- Angular error of neutrino: 1 deg² ==> Wide-field survey (1 deg²) • Only Subaru/ HSC can achieve both criteria
- => Look for blue & slowly evolving transients using Subaru/HSC
- ToO proposals have been accepted for S23A, S23B, S24A

Transient Classification Simulations

- Optical sky includes a lot of variable objects (supernovae, active galaxies, TDEs)
- We use SNCosmo Package with additional lightcurve templates

Cf. Kimura et al. 2020; Hammerstein et al. 2023

Transient Classification Simulations

- TDE is rare object => need to reject a lot of AGN, SNe from detected transient
- Lightcurve & color evolution templates => determine criteria to pick up TDE
 - Bluer color (g-r < 0.7)
 - Long duration (Bright for > 45 days)
 - Continuously declining lightcurve with significant variation
- Result of classification simulation (Error region = 1 deg^2 , 15-day cadence, 4 ToO observations)

Number of source TDE candidates	0.6	< 0.01	< 0.01	0.01	0.04
Number of detected transients	1	80 Dre	50 Dimina	260	0.2
Transient type	TDE (signal)	CCSN (noise)	SN la (noise)	AGN (noise)	TDE (noise

If we find TDEs in neutrino error regions multiple times, we can establish TDEs as neutrino sources

Near Future Neutrino Alert

- Target: Peculiar SNe (Interacting SNe; Hypernovae)
- Photometric classification is challenging => need to perform spectroscopic observations
- Multiplet alert: two neutrino signals within a certain time period => biased toward the nearby events

Multiplet-alert Candidate

Type: **Triplet**, (RA, DEC)=(0.58 deg, -0.35 deg) Energy: logE=(3.62, 5.47, 4.31), $\Delta T = 16.4$ days, local p-value= 7.4×10^{-7} , FAR= 0.078 [1/yr], MAXI p-value=0.283

- Long interval (16.4 days)
 - => hypernova scenario does not work
 - => TDE & interacting SNe are feasible
- ZTF does not report any transient
 - => Let us discuss constraint on transients

Strategy to constrain transients

We are trying to obtain "generic" constraint on transients
 => adopt a simple-phenomenological lightcurve

Strategy to constrain transients

- We are trying to obtain "generic" constraint on transients $L(\nu, t) = L_{pk} \exp\left(-\frac{|t t_{pk}|}{T_{decay}}\right) B_{\nu}(T_{sn})$ => adopt a simple-phenomenological lightcurve
- Give total neutrino energy (\mathscr{C}_{ν}) & time lag btw EM & v (Δt) # We can convert \mathscr{C}_{ν} to the event rate, suppose that the transient is \mathscr{C}_{ν} the dominant source of the cosmic high-energy neutrino background \mathcal{L}_{pk}

Strategy to constrain transients

- We are trying to obtain "generic" constraint on transients $L(\nu, t) = L_{pk} \exp\left(-\frac{|t t_{pk}|}{T_{decay}}\right) B_{\nu}(T_{sn})$ => adopt a simple-phenomenological lightcurve
- Give total neutrino energy (\mathscr{C}_{ν}) & time lag btw EM & v (Δt) # We can convert \mathscr{C}_{ν} to the event rate, suppose that the transient is \mathscr{C}_{ν} the dominant source of the cosmic high-energy neutrino background \mathcal{L}_{pk}
- Give (T_{decay}, L_{pk})
 => generate light curve with z-dist. by Triplet alert
 # typical distance: TDE ~ 50 Mpc; SN IIn ~ 10 Mpc
 => evaluate the consistency with respect to ZTF data
- Repeat the procedure by various T_{decay} & L_{pk} => constrain these two parameters

Constraints by ZTF data

- Both TDE-like & SN IIn-like scenarios are strongly disfavored by ZTF data
- If this triplet event is true, we can put very strong constraint on transient neutrino sources
- Real-time multiplet alert will be implemented in 2024/2025 => various transients will be constrained or discovered near future

1042

10⁴⁵

[10⁴⁴]

to 10⁴³

1042

_{pk}[erg

Future Optical Follow-up in 2020s

- Follow-up to doublet alert => HSC or Vera Rubin: 10 - 30 SNe with \sim 23 mag => PFS spectroscopy for all the SNe
- Jet-powered SNe are rare (1% of SNe) => number of unrelated SNe < 0.1 => identify jet-powered SNe as neutrino sources

Doublet **Neutrino Alert**

Transient Search by HSC or Rubin

Jet-powered SNe as neutrino sources

Future Optical Follow-up in 2030s

- Neutrino detectors will have significant updates (IceCube-Gen2; TRIDENT) - Angular error: 0.1 deg
- Singlet alert is more frequent than doublet
- Singlet alert => HSC or Rubin: 3 - 10 SNe (25 - 27 mag)
 - => Spectroscopy by ELTs

=> Identify peculiar SNe as neutrino sources

High-resolution neutrino alert

Transient Search by HSC or Rubin

Peculiar SNe as neutrino source

Summary

- Cosmic neutrinos are the smoking gun signature to identify cosmic-ray sources
- Pre-IceCube models are strongly disfavored by current IceCube data
- Accretion flows onto SMBHs are currently most likely sources of cosmic neutrinos => We propose stochastic acceleration scenario, which can explain IceCube data
- Follow-up observations to neutrino alerts will be able to identify neutrino sources
- Current our strategy: Search for TDEs using Subaru/HSC => We have developed a simulation tool which enables us to distinguish TDEs from SNe/AGN
- Multiplet alert will be key to identify cosmic neutrino sources => Report of triplet event candidate in archival data, => we can put strong constraint on SN IIn- & TDE-like transients with archival optical data

Thank you for your attention

