

GRB jets colliding with massive circum-stellar materials and associated electromagnetic transients

Akihiro Suzuki (Research Center for the Early Universe, Univ. of Tokyo)

collaborator: Keiichi Maeda (Kyoto U.), Christopher M. Irwin (RESCEU)

- Refs. <u>Suzuki</u> & Maeda (2022), ApJ 925, 148
 - Maeda, <u>Suzuki</u>, & Izzo (2023), MNRAS 522, 2267
 - Suzuki, Irwin, & Maeda (2024), PASJ, arXiv:2406.06939

Exploring Extreme Transients @YITP 2024/08/06

48 AS 522, 2267 J, arXiv:2406.0693

and more

Introduction

Gamma-ray bursts

- a burst of gamma-rays in the sky
- duration > 2 sec \rightarrow long-duration GRB
- SNe-Ic

Gamma-ray bursts

- a burst of gamma-rays in the sky
- duration > 2 sec \rightarrow long-duration GRB •
- massive stars' explosive death \rightarrow relativistic jet •
- association with supernovae (SNe), in particular, • SNe-Ic

licular,	long GRBs	short GRB		
duration T ₉₀	> 2 sec	< 2 sec		
γ -ray spectrum	soft	hard		
origin	massive star's collapse	NS-NS merge		
optical counterpart	core-collapse supernova	kilonovae		
after-glow	bright	dark		
host galaxy	star-forming	old populatio		
location	associated with stellar lights	outskirt		

- GRB
- smaller $L_{\gamma,iso}$ and $E_{\gamma,iso}$ by 5-6 orders of magnitudes
- outliers in Epeak-Eiso relation •
- more common than normal GRBs

- GRB
- smaller $L_{\gamma,iso}$ and $E_{\gamma,iso}$ by 5-6 orders of magnitudes
- outliers in Epeak-Eiso relation •

- GRB
- magnitudes

- GRB
- magnitudes

X-ray transient missions: Now and Future

- Swift BAT(2004-) :can miss soft X-ray-dominated transients like IIGRBs
- **Einstein Probe**: launched in 2024/1 and now in the commissioning phase •
- **SVOM** (Space-based multi-band astronomical Variable Objects Monitor) mission: • launched in 2024/6

	BAT/Swift	WXT/EP	ECLAIRs/ SVOM
Energy range [keV]	15-150	0.4-5	4 - 250
FoV [str]	1.4	0.35	2
Sensiviity [erg/cm²/s]	~10 ⁻⁸ (for a GRB)	1.2x10 ⁻¹⁰ (for 100s)	several 10 ⁻⁸ ?
localization accuracy [']	~4	~2-3	3-10

https://swift.gsfc.nasa.gov/about_swift/bat_desc.html https://arxiv.org/abs/2209.09763 https://irfu.cea.fr/Projets/SVOM/svom.html

Einstein Probe

Exploring the dynamic X-ray Universe

Overview

The Einstein Probe (EP) is a mission of the Chinese Academy of Sciences (CAS) dedicated to time-domain high-energy astrophysics. Its primary goals are to discover high-energy transients and monitor variable objects. To achieve this, EP employs a very large instantaneous field-ofview (3600 square degrees), along with moderate spatial resolution (FWHM ~5 arcmin) and energy resolution.

Learn More

low-luminosity GRBs are UHECRs and ν source?

- cosmological GRBs had been promising ν sources • Waxman&Bahcall(1997), Rachen&Meszaros(1998), Ahlers+(2011)
- So far, IceCube found no association of ν events with (powerful) GRBs. Abbasi+(2012,21,22), Aartsen+(2015,16,17)
- (powerful) GRBs contribute only up to 1% of diffuse ν flux at ~0.1-1 PeV? •
- unlike cosmological GRBs, IIGRBs are dark in γ -ray, but more common • e.g., 230+490-190 Gpc-3 yr-1 (Soderberg+ 2006), 100-1800 Gpc-3 yr-1 (Guetta&Della Valle 2007)

Halzen&Kheirandish (2022), arXiv:2202.00694

11

low-luminosity GRBs are failed jets?

- jet deceleration = energy dissipation
- the jet energy goes into kinetic and thermal energies of expanding CSM a small fraction of the thermal energy goes into CRs and ν
- remaining part goes into thermal radiation •

 $\epsilon_{\rm acc} E_{\rm internal} \simeq E_{\rm CR} + E_{\nu} {}^{\rm Murase\&loka\ 2013,\ Senno+2016)} {}_{\rm CR,\ \nu\ obs.}$

12

Jet simulations

GRB jet simulations: setups

- 3D special relativistic hydrodynamic simulation in (x,y,z)
- 14 M_{sun} CO core (16TI; Woosley&Heger 2006)
- chemical composition: hypernova-like (e.g., lwamoto+ 2000)
- thermal bomb ($5x10^{51}$ erg, $R_{in}=10^{9}$ cm)
- relativistic jet (5x10⁵¹ erg per jet, t_{jet}=20s, θ_{jet} =10 deg, $R_{in}=10^9 cm, \Gamma_{\infty} \sim 100$

z>0

 $\rho_{\rm csm} \propto r^{-2}$

CSM/Extended envelop Mcsm: 0.1 - 10 Msun Rcsm: 40Rsun or 400Rsun

X,Y

14Mo CO core

thermal bomb 5x10⁵¹erg + relativistic jet 5x10⁵¹erg

inner core R_{in}=10⁹cm

model	Mcsm[Msun]	Rcsm[Rs
M01R40	0.1	
M03R40	0.3	
M1R40	1.0	
M3R40	3.0	
M10R40	10	
M01R400	0.1	
M03R400	0.3	
M1R400	1.0	
M3R400	3.0	
M10R400	10	

see, AS & Maeda (2022) for more detail

GRB jet-CSM collision in meridional slice (x-z plane) from t=30 to t=200 s а •

• a GRB jet-CSM collision in meridional slice (x-z plane) from t=100 to $t=3x10^3$ s

• a GRB jet-CSM collision in meridional slice (x-z plane) from $t=2x10^3$ to $t=9x10^3$ s

- 40Rsun models: Mcsm=0.1-10Msun
- massive CSMs decelerate the jet efficiently
- massive CSMs collimate the jet
- M_{csm}=10M_{sun}: non-relativistic jet head.

- 40Rsun models: Mcsm=0.1-10Msun
- massive CSMs decelerate the jet efficiently
- massive CSMs collimate the jet
- M_{csm}=10M_{sun}: non-relativistic jet head.

- 40Rsun models: Mcsm=0.1-10Msun
- massive CSMs decelerate the jet efficiently
- massive CSMs collimate the jet
- M_{csm}=10M_{sun}: non-relativistic jet head.

- 40Rsun models: Mcsm=0.1-10Msun
- massive CSMs decelerate the jet efficiently
- massive CSMs collimate the jet
- M_{csm}=10M_{sun}: non-relativistic jet head.

[10¹²cm] 4 9 ы 2 [10¹²cm] ы 2 0 [10¹²cm] 4 9 N 2 0 -2

- 40Rsun models: Mcsm=0.1-10Msun
- massive CSMs decelerate the jet efficiently
- massive CSMs collimate the jet
- M_{csm}=10M_{sun}: non-relativistic jet head.

GRB jet simulations: radial profiles

- angle-averaged profiles of density, 4velocity, pressure, and kinetic energy density
- almost free expansion (v=r/t)
- density structure is remarkably universal ullet
- power-law function of radial velocity with index -5: $\rho \propto v^{-5} \propto r^{-5}$

- a fraction of CSM is swept by the shock driven by the jet
- mass and energy of ejecta accelerated • beyond v=0.1c: - M(v>0.1c) ~ (0.05-0.12)M_{sun}
 - $E_{kin}(v>0.1c) \sim (1-5)x10^{51}erg$
- weak dependence on the CSM properties (M_{csm} and R_{csm})

EM emission modelings

EM emission from mildly relativistic ejecta

- jet deceleration = energy dissipation
- the jet energy goes into kinetic and thermal energies of expanding CSM
- a small fraction of the thermal energy goes into CRs and ν
- remaining part goes into thermal radiation

- IIGRBs and SN Ic-BL 2020bvc

- IIGRBs and SN Ic-BL 2020bvc

- IIGRBs and SN Ic-BL 2020bvc

The case of GRB 060218/SN 2006aj

- GRB 060218/SN 2006aj: LC fitting looks quite good
- discrepancy in early optical LCs (<10⁴) sec)
- early UV emission is a good probe of the total energy of the mildly ejecta (and thus the dissipated jet energy)
- constrained parameters are isotropic equivalent values
- non-spherical effects?

SN 2006aj

0

-	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	
						•		•	•		
1											
:											
	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	
j											
	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	
1	•	•	•	•	•	•	•	•	•	•	
1											
	•	•	•	•	•	•	•	•	•	•	
	•	•		•	•	•		•		•	
	•	•		•	-	•		•		•	
	•	· · ·			•	·	· · ·	·	· ·	· · ·	
		· · ·	·			· · ·	·	· · ·	-	· · ·	
	· · ·	· · ·	-	· · ·		· ·	-		-	· · ·	
	· · · ·	· · · ·	-	· · ·		· · · · · ·		· · · ·	-	· · · ·	
	· · · ·	· · · ·		· · · ·	-				-		
	· · · ·	- - -		· · · ·	-	· · · · · · · · · · · · · · · · · · ·		· · · ·			
	- - -	· · · · ·		· · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · ·			
	· · · · ·	· · · · ·		· · · · ·		· · · · · · · · · · · · · · · · · · ·				· · · · ·	
	· · · · ·	· · · · · ·		· · · · · ·		· · · · · · · · · · · · · · · · · · ·				· · · · ·	
	- - - -	· · · · · ·		· · · · · ·							
				· · · · · ·		· · · · · · · · · · · · · · · · · · ·					
				· · · · · ·							

The case of GRB 171205A/SN 2017iuk

- GRB 060218/SN 2006aj: LC fitting looks quite good
- discrepancy in early optical LCs (<10⁴) sec)
- early UV emission is a good probe of the total energy of the mildly ejecta (and thus the dissipated jet energy)
- constrained parameters are isotropic equivalent values
- non-spherical effects?

-UVW2(193nm) -20 M_{AB} -18-16-20UVM2(225nm) M_{AB} -18-16-20 UVW1(260nm) M_{AB} -18-16-U(356nm) -20-18-20 -B(445nm) M_{AB} -18ejecta parameters: -16• R0=50[Rsun] -20 - V(551nm M_{AB} -18• $E_{rel}=1 \times 10^{51}[erg]$ -16• $\Gamma \beta \max = 0.7$ -14-20 -r(616nm M_{AB} • $\rho \propto (\Gamma \beta)^{-5}$ -18-16• $E_{sn} = 10 \times 10^{51} [erg]$ -20 • Mej=2.5Msun $\begin{bmatrix} 9 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} -18 \\ -16 \end{bmatrix}$ • Mni=0.38Msun -14 10^{-2} 10-3 10^{-1} 10^{0} 10^{1} 10² free expansion, v=r/t t [days]

AS+ in prep 34

				•						-		
			•	•	•	•	•	-	•	-	•	
				-			•	-	•	-	•	
	1	•	•		•		•		•		•	1
										-		
	•	•		•	•	•	•	•	•	-	•	
•		•	•	•	•	•	•	-	•	-	•	
	1											ļ
•				-		-	•	-	•	-	•	
		•		•	•	-	•	-	•	•	•	
	:											ļ
	1		•	-	•	•	•	-	•	-	•	ļ
	;	1		1						1		ĺ
				•	•	-	•	-	•	•	•	
					•	-	•	-	•	•	•	1
								_				
	i	•	•	•	•	-	•	-	•	•	•	1
	i											1
•		•	•	•	•	•	•	-	•	•	•	
					•	-	•	-	•	•	•	1
								-				
	1	•	•	•	•	•	•	-	•	•	•	ĺ
	;											1
•		•	•	•	•	-	•	-	•	•	•	1
				•	•	-	•	-	•	-	•	
								-		-		
	1		•	-	•	-	•	-	•	-	•	ļ
				,						,		
	*****		-									
			•	•	•	•	•	•	•	•	•	
	1					-	•	-	•	-	•	J
	;											Ĵ
•		•	•	•	•	-	•	-	•	•	•	
•				•	•	-	•	-	•	•	•	
	**********							-	•			,
	1	•	•		•	•	•	•	•		•	ĺ

SN 2017iuk

0

Volumetric rate summary

- long GRB rate: RIGRB ~ 1 [events/Gpc³/yr] •
- IIGRB rate: RIIGRB ~ 100-1000 [events/Gpc³/yr] ? •
- CCSNe: R_{CCSN} ~10⁵[events/Gpc³/yr] •
- broad-lined Ic SNe: R_{IC-BL} ~ 2-3% of R_{CCSN} ~ (2-3)x10³ [events/Gpc³/yr]
- <u>double-peaked</u> Ic-BL SNe: 1/6 or 2/6 of R_{Ic-BL} ~ 300-1000 [events/Gpc³/yr] ?

e.g., 230+490-190 Gpc-3 yr-1 (Soderberg+ 2006), 100-1800 Gpc-3 yr-1 (Guetta&Della Valle 2007) Einstein probe, SVOM Assuming a jet dissipation energy Ediss and event rate R, the energy injection rate is $\dot{E}_{\rm inj} \simeq 3 \times 10^{45} \left(\frac{E_{\rm diss}}{3 \times 10^{51} \,[{\rm erg}]}\right) \left(\frac{R_{\rm lIGRBs}}{1000 \,[{\rm Gpc}^{-3} {\rm yr}^{-1}]}\right) [{\rm erg} \,{\rm Mpc}^{-3} \,{\rm yr}^{-1}]$ UV-opt follow-up (ULTRASAT,UVEX) + LC model grid cf.) $\dot{E}_{\nu.\text{PeV}} \sim \dot{E}_{\text{UHECRs}} \sim 10^{44} - 10^{45} [\text{erg Mpc}^{-3} \text{ yr}^{-1}]$

Early spectral evolution of GRB-SNe

- (low-luminosity) GRB 171205A/ SN 2017iuk at D=163Mpc
- optical spectroscopy as early as 0.06 days after GRB trigger
- Eiso~2.2x10⁴⁹[erg], T₉₀~190[s]

Izzo+ (2019, Nature) including K. Maeda & AS

Early spectral evolution of GRB-SNe

- (low-luminosity) GRB 171205A/ SN 2017iuk at D=163Mpc
- optical spectroscopy as early as 0.06 days after GRB trigger
- blue-shifted absorption features with $v=10^{5}$ km/s~0.3c
- Fe,Co,Ni well mixed into the fast component (X~0.01)
- density profile $\rho \propto V^{-6}$

Izzo+ (2019, Nature) including K. Maeda & AS

Velocity [104km/s]

Chemical abundance distribution used for the spectral modeling with the TARDIS code

Early spectral evolution of GRB-SNe

- (low-luminosity) GRB 171205A/ SN 2017iuk at D=163Mpc •
- optical spectroscopy as early as 0.06 days after GRB trigger ullet
- blue-shifted absorption features with $v=10^{5}$ km/s~0.3c
- Fe,Co,Ni well mixed into the fast component (X~0.01) •
- density profile $\rho \propto v^{-6}$ •

Maeda, **AS**, & Izzo (2023)

Models with different profile (CO138 or pow) and maximum velocities

9000

Summary

Summary: IIGRBs in multi-messenger era

- jet deceleration in massive CSM = energy dissipation
- jet energy goes into kinetic and thermal energies of expanding ejectal
- a small fraction of the thermal energy channeled into CRs and ν
- ULTRASAT, UVEX thermal radiation as a probe of the dissipated energy +Chronos with UV? Einstein probe, SVOM 4. Ejecta expansion $\epsilon_{\rm rad} E_{\rm internal} \simeq E_{\rm rad}$ +hiZ-GUNDAM? EM obs. $E_{\rm jet} \rightarrow E_{\rm kinetic}, E_{\rm internal}$

5. particle acceleration

IceCUBE (gen2?)

but, not always (e.g, radiation condition,

 $\epsilon_{\rm acc} E_{\rm internal} \simeq E_{\rm CR} + E_{\nu} {}^{\rm Murase\&loka\ 2013,\ Senno+2016)} {}_{\rm CR,\ \nu\ obs.}$

Summary: IIGRBs in multi-messenger era

- jet deceleration in massive CSM = energy dissipation
- jet energy goes into kinetic and thermal energies of expanding ejectal
- a small fraction of the thermal energy channeled into CRs and ν

Backup slides

Iow-luminosity GRB as off-axis GRB?

- nearby GRBs (< a few 100Mpc) are low-luminosity • GRB
- smaller $L_{\gamma,iso}$ and $E_{\gamma,iso}$ by a few orders of magnitudes •
- outliers in Epeak-Eiso relation •
- what are they?

SN 2020bvc: an optically-selected off-axis GRB-SN?

- ZTF discovery
- ATLAS non-detection
- follow-up spectroscopic obs. 0.8 days
- early spectrum dominated by blue continuum
- late-time X-ray and radio detection: similar • to SN 2017iuk.

Izzo+ (2020)

Ho+ (2020)

SN 2020bvc: an optically-selected off-axis GRB-SN?

- ZTF discovery
- ATLAS non-detection
- follow-up spectroscopic obs. 0.8 days
- early spectrum dominated by blue continuum
- late-time X-ray and radio detection: similar to SN 2017iuk.

Ho+ (2020)

SN 2020bvc: an optically-selected off-axis GRB-SN?

- ZTF discovery
- ATLAS non-detection
- follow-up spectroscopic obs. 0.8 days
- early spectrum dominated by blue • continuum
- late-time X-ray and radio detection: similar • to SN 2017iuk.
- 1 or 2 out of 6 SNe lc-BL(z<0.06) are accompanied by early bright emission: 20-30% of SNe Ic-BL show jet signature?

Ho+ (2020)

low-luminosity GRBs

- nearby GRBs (< a few 100Mpc) are low-luminosity GRB
- smaller $L_{\gamma,iso}$ and $E_{\gamma,iso}$ by 5-6 orders of magnitudes
- outliers in Epeak-Eiso relation
- what are they? 1.0 **(C) Relative probability** 0.8 0.6 0.4 0.2 0.0 (a) HL-GR Bs 0⁵⁰ erg s⁻¹ Log L/1 0312030 3σ 980425 LL-GRBs ★ -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 0.0 -3.0

e.g., 230⁺⁴⁹⁰-190 Gpc⁻³ yr⁻¹ (Soderberg+ 2006), 100-1800 Gpc⁻³ yr⁻¹ (Guetta&Della Valle 2007)

X-ray transient missions: Now and Future

- Swift BAT(2004-) :can miss soft X-ray-dominated transients like IIGRBs
- **Einstein Probe**: launched in 2024/1 and now in the commissioning phase •
- **SVOM** (Space-based multi-band astronomical Variable Objects Monitor) mission: launched in 2024/6

https://irfu.cea.fr/Projets/SVOM/payload_complete.html

dependence on energy and initial radius (Erel or Mrel, Ro)

Universal density profile v⁻⁵ or r⁻⁵?

2D simulation: Pais+(2023)

3D simulation: **AS** & Maeda (2022)

Universal density profile v⁻⁵ or r⁻⁵?

2D simulation: Eisenberg+(2022)

3D simulation: **AS** & Maeda (2022)

