YITP workshop

Exploring Extreme Transients: Emerging Frontiers and Challenges

Relativistic modeling for soft X-ray pulses of magnetars

マグネター表面の定常放射モデル

Speaker: Chushu Qu (屈楚舒)

Collaborator : Y. Suwa, T. Enoto

University of Tokyo (Komaba) D1

Magnetars (SGR/AXP)

- $L_X \sim 10^{33} 10^{35} \text{ erg/s} > \dot{E}_{rot}$
- Long period & Fast decay
 P ~ 2 12s
 P ~ 10⁻¹³ 10⁻¹⁰ s/s
- Strong magnetic field $B_{surf} \sim 10^{14} \, G 10^{15} \, G$
- 30+ confirmed
 Intervent of the second s

Soft Gamma-ray Repeater

Anomalous X-ray Pulsar

Magnetars (SGR/AXP)

Soft Gamma-ray Repeater

Pulse profile

How to explain the offset?

Takahashi +2014

Modulation + Offset

Offset could be explained by GR

Credits: NASA NICER Group

Pulse profile of SGR 1833-0832

Newtonian

Relativistic

Spectrum of SGR 1833-0832

Single blackbody fits well

Relativistic Hot spot only

More natural

Parameter estimation

Hot spot size: 1E 1048.1–5937

Timing R

Spectral R

もしこのような結果が出たら...

Results with 1 σ error

まとめ

Motivation

soft X-ray emissionはマグネターを理解する重要な切口

Method & Assumption

Soft X-ray の観測解析 + ホットスポットによるパルス波形の再現 放射領域は円状、放射はisotropic、全ての星に適用するGR効果は同じ ~1.4*M*_o~12 km

有限サイズ) 一般相対論近似 号時系列解析+分光解析 (相対論修正)

Future work

放射領域の温度構造

放射領域の形状

コンパクトネスをフリーパラメータにする

Multi-peak pulse profile

Distance of magnetars

Cordes +2017

Estimate the size of hot spot

$$\omega_{P} = \frac{2\pi}{T_{P}} \qquad \vec{u} = \begin{pmatrix} -\cos(\omega_{P}t + \phi) \\ -\sin(\omega_{P}t + \phi) \\ 0 \end{pmatrix}$$
$$\overrightarrow{M}_{R} = \begin{pmatrix} 1 & & \\ & 1 \\ & & 1 \end{pmatrix} \cos \theta_{P} + \\ \begin{pmatrix} 0 & -u_{z} & u_{y} \\ u_{z} & 0 & -u_{x} \\ u_{z} & 0 & -u_{x} \\ -u_{y} & u_{x} & 0 \end{pmatrix} \sin \theta_{P} + \\ \begin{pmatrix} u_{x}^{2} & u_{x}u_{y} & u_{x}u_{z} \\ u_{y}u_{x} & u_{y}^{2} & u_{y}u_{z} \\ u_{z}u_{x} & u_{z}u_{y} & u_{z}^{2} \end{pmatrix} (1 - \cos \theta_{P})$$

Component	Parameter	Unit	Value	
TBabs	nH	10^{22}	0.415224	+/- 2.54227E-02
bbodyrad	kT	keV	0.592422	+/-7.76394E-03
bbodyrad	norm		10.4616	(-0.633666, 0.681573)

Component	Parameter	Unit	Value	
TBabs	nH	10^{22}	2.60107	+/- 0.117590
bbodyrad	kT	keV	0.652883	+/- 1.66112E-02
bbodyrad	norm		9.08002	(-1.16442, 1.35952)

-4

1

^{0.01} $keV^2~(Photons~cm^{-2}~s^{-1}~keV^1)$ 10⁻³ 10-4 10⁻⁵ 10⁻⁸ (data-model)/error 2 ٥ -2

Unfolded Spectrum

Component	Parameter	Unit	Value	
TBabs	nH	10^{22}	0.522468	+/- 3.67344E-02
bbodyrad	kT	keV	0.315604	+/- 1.57237E-02
bbodyrad	norm		9.34077	(-22.0933, 29.4895)
bbodyrad	kT	keV	0.707795	+/- 1.77547E-02
bbodyrad	norm		4.99888	(-0.722572, 0.73365)

Unfolded Spectrum

おまけ

Assuming dipolar magnetic field:

$$\epsilon = \frac{2}{3} \frac{B^2 R^6 \omega^4}{c^3} = \frac{32\pi^4}{3} \frac{B^2 R^6}{P^4 c^3}$$
$${}^{E_{rot} = \frac{1}{2} I (\frac{2\pi}{P})^2} \dot{E}_{rot} = \frac{dE_{rot}}{dt} = -4\pi^2 I \frac{\dot{P}}{P^3}$$
$$\epsilon = \dot{E}_{rot} \rightarrow B_{surf} \propto \sqrt{P\dot{P}}$$

Evolution of the magnetic field in magnetars Numerical MHD Braithwaite & Spruit 2006

観測方向: 赤道に近い 左回り回転

G. Schonherr+ 2007

ard X-ray Component (HXC)

Source: hyperphysics.phy-astr.gsu.edu

*ħ*ω ~ m_e c^2 ω: ローレンツ運動の頻率

gradient descent fitting

 $E_{rot} = \frac{1}{2}I\omega^2 = \frac{1}{2}I(\frac{2\pi}{P})^2$

 $\dot{E}_{rot} = \frac{dE_{rot}}{dt} = -4\pi^2 I \frac{\dot{P}}{P^3}$

Quiescent emissign 長期的なlight curve

average counts rate

Folded light curve of quiescent emission

Folded light curve of quiescent emission

						=====					
Model	TBabs	<1>*bbodyra	d<2> Source	No.: 1	Active/On						
Model	Model	Component	Parameter	Unit	Value						
par	comp										
1	1	TBabs	nH	10^22	0.481820	+/-	1.55807E-02				
2	2	bbodyrad	kT	keV	0.566435	+/-	6.07963E-03				
3	2	bbodyrad	norm		12.6060	+/-	0.614127				
zsh`.											
HT2080											
Fit st	tatist	ic : Chi-S	quared		483.80	usi	ng 439 bins.				
Test s	Test statistic : Chi-Squared 483.80 using 439 bins.										
Null hypothesis probability of 5.64e-02 with 436 degrees of freedom											
XSPEC:	12>plo [.]	t oga cpria : ~/									
XSPEC:	12>plo	t eeuf			Lacub Chi C DO	Jupyi	Ler_notebook				

スペクトル解析

$$A(E) = \frac{K \times 1.0344 \times 10^{-3} E^2 dE}{\exp(E/kT) - 1}$$

par1= kT norm= K temperature keV

 R_{km}^2/D_{10}^2 , where R_{km} is the source radius in km and D_{10} is the distance to the source in units of 10 kpc.

Name	Р	dP/dt	B _{surf}	dE/dt	Tau _c	N _H	PL Index	BB Temp	Unabs F _x {a}	Distance	L _x {b}	Assoc?	Opt/IR?	Bands? <mark>{c}</mark>	Activity?	RA, Dec
	(s)	(10 ⁻¹¹ s/s)	(10 ¹⁴ G)	(10 ³³ erg/s)	(kyr)	$(10^{22} \text{ cm}^{-2})$		(keV)	(10 ⁻¹² erg/s/cm ²)	(kpc)	(10 ³³ erg/s)					(J2000)
CXOU J010043.1-721134	8.020392(9) [mgr+05]	1.88(8) [mgr+05]	3.9	1.4	6.8	0.063 ^{+0.020} _0.016 [*] [tem08]		0.30(2) + 0.68 ^{+0.09} 0.07 [*] [tem08]	0.14* [tem08]	62.4(1.6) [hgd12b]	65	SMC [lfmp02]	maybe	X 0?		01 ^h 00 ^m 43.14 ^s , -72°11'33.8" [lfmp02]
4U 0142+61	8.68869249(5) [dk14]	0.2022(4) [dk14]	1.3	0.12	68	1.00(1)* [rni+07]	3.88(1)* [rni+07]	0.410 ^{+0.004} -0.002 [*] [rni+07]	67.9* [rni+07]	3.6(4)* [dv06b]	105		yes	нхоі	bursts, glitches	01 ^h 46 ^m 22.407 ^s +61°45′03.19″ [hvk04]
SGR 0418+5729	9.07838822(5) [rip+13]	0.0004(1) [rip+13]	0.061	0.00021	36000	0.115(6) [rip+13]		0.32(5) [rip+13]	0.0020 ^{+0.0014} -0.0010 [0.012(1) (0.5–10 keV)] [rip+13]	~2 [vck+10]	0.00096		no	x	bursts, transient magnetar	04 ^h 18 ^m 33.867 ^s +57°32′22.91″ [vck+10]
SGR 0501+4516	5.7620695(1) [cpr+14]	0.594(2) [cpr+14]	1.9	1.2	15	0.88(1)* [cpr+14]	3.84(6)* [cpr+14]	0.50(2)* [cpr+14]	1.7 [19(1) (0.5–10 keV)]* [cpr+14]	~2 [lkb+11]	0.81	SNR HB 9? [GCN8149]	yes	нхо	bursts	05 ^h 01 ^m 06.76 ^s , +45°16′33.92″ [gwk+10]
SGR 0526-66	8.0544(2)* [tem+09]	3.8(1)* [tem+09]	5.6	2.9	3.4	0.604 ^{+0.058} -0.059 [*] [phs+12]	2.50 ^{+0.11} -0.12 [*] [phs+12]	0.44(2)* [phs+12]	0.55 [1.58 ^{+0.13} -0.20 (0.5–10 keV)]* [phs+12]	53.6(1.2) [hgd12a]	189	LMC, SNR N49?, SL 463 (young star cluster) [khg+04]	no	x	bursts, giant flare	05 ^h 26 ^m 00.89 ^s , -66°04'36.3″ [kkm+03]
1E 1048.1-5937	6.457875(3) [dkg09]	2.25* [dkg09]	3.9	3.3	4.5	0.97(1)* [tgd+08]	3.14(11)* [tgd+08]	0.56(1)* [tgd+08]	5.1(1)* [tgd+08]	9.0(1.7)* [dv06b]	49	GSH 288.3-0.5-28? (stellar wind bubble) [gmo+05]	yes	нхо	bursts, glitches	10 ^h 50 ^m 07.14 ^s , -59°53′21.4″ [wc02]
1E 1547.0-5408	2.0721255(1)* [dksg12]	4.77* [dksg12]	3.2	210	0.69	3.2(2)* [bis+11]	4.0(2)* [bis+11]	0.43(3)* [bis+11]	0.54 [0.37 ^{+0.01} _{-0.03} (0.5–10 keV)]* [bis+11]	4.5(5)* [tve+10]	1.3	SNR G327.24-0.13 [gg07]	maybe	H X O? R	bursts, transient magnetar	15 ^h 50 ^m 54.124 ^s -54°18′24.11″ [dcrh12]
PSR J1622-4950	4.3261(1) [lbb+10]	1.7(1)* [lbb+10]	2.7	8.3	4.0	5.4 ^{+1.6} -1.4 [ags+12]		0.5(1) [ags+12]	0.045 ^{+0.063} -0.028 [0.11 ^{+0.09} -0.04 (0.3 -10 keV)] [ags+12]	~ 9 [lbb+10]	0.44	SNR G333.9+0.0 [ags+12]	no	XR		16 ^h 22 ^m 44.89 ^s , -49°50'52.7" [ags+12]
SGR 1627-41	2.594578(6) [etm+09]	1.9(4) [ebp+09]	2.2	43	2.2	10(2)* [eiz+08]	2.9(8)* [akt+12]		0.25 ^{+0.17} -0.10 [*] [akt+12]	11.0(3)* [ccdd99]	3.6	CTB 33 (radio complex), MC -71, SNR G337.0-0.1 [ccdd99]	no	x	bursts, transient magnetar	16 ^h 35 ^m 51.844 ^s -47°35′23.31″ [wpk+04]
CXOU J164710.2-455216	10.610644(17)* [akac13]	<0.04* [akac13]	<0.66	<0.013	>420	2.39(5) [akac13]	3.86(22) [akac13]	0.59(6) [akac13]	0.25(4) [akac13]	3.9(7)* [kd07]	0.45	Westerlund 1 (massive star cluster) [mcc+06]	no	x	bursts, transient magnetar	16 ^h 47 ^m 10.20 ^s , -45°52′16.90″ [mcc+06]

How GR effect works on pulse profile

R: magnetar radius r_g : Schwarzschild radius

1833-08	904006010	$3.8\substack{+0.1\\-0.1}$	17.6(4.5)	$7.9\substack{+0.3\\-0.2}$	$35.6^{+9.3}_{-8.8}$	9.6(5)	1.08(4)	0.7		-0.38(40)	1.37 (167)
---------	-----------	----------------------------	-----------	----------------------------	----------------------	--------	---------	-----	--	-----------	------------

しかし...

そもそもフィッティングは reliable なのか?

