YITP Workshop "Exploring Extreme Transients: Emerging Frontiers and Challenges"

キロノバのスペクトルにおけるトリウムの同定可能性

土本菜々恵 (東北大学)

和南城伸也 (AEI)、田中雅臣 (東北大学)、加藤太治 (NIFS)、仏坂健太 (東京大学)

2024/08/09 Domoto et al., submitted

Kilonova

Radioactively-powered thermal emission from neutron star merger

e.g., Lattimer & Schramm 74, Eichler+89, Li & Paczynski 98, Freiburghaus+99, Metzger+10, Goriely+11, Roberts+11, Tanaka & Hotokezaka 13...

Implications of elements in GW170817

Spectral features = direct evidence of individual elements

Sr II Watson+19, Gillanders+21, Domoto+21, 22, Vieira+23
Y II Sneppen & Watson 23
La III Domoto+22, Gillanders+23
Ce III Domoto+22, 23, Tanaka+23, Gillanders+23
Te III Hotokezaka+23

see also...

- Call Domoto+21
- Rb I Pognan+23
- Zr II Domoto+22, Gillanders+22, Vieira+23

Important elements and atomic properties

Motivation of this work

Simple expectation

Systematic investigation of strength of lines

1. Collect the data of bound transitions for Ra II, Ac III, Th III

2. Calculate Sobolev optical depths (under LTE)

Ra II (Z=88) is not promising

Analogous atomic structure/transitions to Ca II, Sr II

Mass fraction of Ra ~10⁻⁵ \leftrightarrow Ca, Sr ~ 10⁻²

Ra II lines cannot compete with lines of lanthanides w/ similar mass fractions

Ac III (Z=89) is not promising

NOT analogous atomic structure/transitions to La III

Ac III does not have NIR (E1) lines from low energy levels

Th III (Z=90) is the most promising

Dense low-lying energy levels (compared to Ce III)

Th III can produce strong transitions (comparable to e.g., Ce III)

line forming region: T ~ 7000 K (v=0.13c)

T ~ 3700 K (v=0.37c)

Temperature dependence of Th III lines

Larger amount of lanthanides (w/ homogeneous abundance distribution)

- → high opacity
- \rightarrow photosphere goes outward where T is lower

The feature would be even stronger if the condition that photospheric
 T=5000-7000 K w/ a larger mass fraction of lanthanides and Th were realized

Conditions to find Th features *homogeneous abundance distribution

Uncertainties in Th features

Transition probabilities of NIR lines are estimated by "relative intensities"

Should be derived by experiments, or provided by serious theoretical calculations

Summary

Th is the most promising candidate to find in the kilonova spectra (~1.8 um)

- Dense energy levels and relatively large transition probabilities
- Could be indirect evidence of production of Pt, Au

Condition

- X(lan) <~ 6 x 10⁻⁴: bulk of high-Ye (> 0.3) ejecta

w/ a small fraction of neutron-rich component in the line-forming region

- BH-NS or unequal mass BNS?

Observation

- Should be done with no or little atmosphere... from space or high-altitude sites

Uncertainties

- Transition probabilities of NIR Th III lines should be determined by experiments