Collapses of rotating supermassive stars and associating transient

Sho Fujibayashi (藤林 翔)

in collaboration with C. Jockel, K. Kawaguchi, and M. Shibata

Extreme 2024, 9.8.2024, YITP, Kyoto

(東北大学)

Outline

- Collapse and explosion of supermassive stars (~I0^5Msun)
 - Introduction
 - Numerical setup
 - Results
- Collapse of usual massive star (~IOMsun)

Supermassive star

- . Hypothetical very massive ($\gtrsim 10^4 M_{\odot}$) star
- High-s, $P_{\rm rad}$ -dominant ($\Gamma \approx 4/3$)
- Dies likely by GR instability

Supermassive star

- . Hypothetical very massive ($\gtrsim 10^4 M_{\odot})$ star
- High-s, $P_{\rm rad}$ -dominant ($\Gamma \approx 4/3$)
- Dies likely by GR instability

$$\rho_{\rm crit} \approx 1.994 \times 10^{18} \left(\frac{0.5}{\mu}\right)^3 \left(\frac{M_{\odot}}{M}\right)^{7/2} \text{ g cm}^{-3}$$
$$\approx 4 \text{ g/cm}^3 (M/10^5 M_{\odot})^{-3.5} (\mu/0.59)^{-3}$$

(Shapiro-Teukolsky 83, Fuller+86)

SMBHs in early universe

Distant (high-z) SMBH with $M \sim 10^9 M_{\odot}$ How are they formed?

Basic idea: $\dot{M} \lesssim \dot{M}_{\rm Edd} \propto M$. (Super/hyper-Eddington accretion may be possible)

Keeping a high Eddington ratio $\dot{M}/\dot{M}_{\rm Edd}$ from $10^2 M_{\odot}$ to $10^9 M_{\odot}$ may not be easy

Initial high mass of BH may make it easier!

Direct collapse scenario for SMBHs in early universe

Inayoshi+20, see also Rees 1978

Explosion of supermassive stars: thermonuclear case

Isotope	$^{1}\mathbf{H}$ (M_{\odot})	⁴ He (M_{\odot})	^{12}C (M_{\odot})	¹⁶ O (<i>M</i> ⊙)	20 Ne (M_{\odot})	24 Mg (M_{\odot})	²⁸ Si (M _☉)
Before	8336	24902	922	7972	5110	7748	515
After	8335	24145	919	6856	4819	8943	1485
ΔM	-1	-757	-3	-1116	-291	1195	970

Nagele+20, 22

Effects of rotation: bounce-induced explosion

Method: Numerical setup

General relativistic gravity

Hydrodynamics with nuclear reaction $H \rightarrow He \rightarrow C$ (Only forward reaction) CNO cycle triple- α

Equation of state

Neutrino radiation

Only for neutrinos emitted by CNO cycle ~8% of heating rate

Composite of ions(H, He, C), photons, electrons and positrons

Method: Initial supermassive star models

Marginally stable SMS with rotation.

model	$M_0~(M_\odot)$	$R_{\rm e0}~({\rm cm})$	$T_{ m kin}/ W $	$lpha_{ m c,0}$	$\gamma_{ m c,0}-4/3$	Â
H1	$2.1 imes10^5$	$1.7 imes 10^{13}$	0.002	0.992	0.0026	∞
H2	$3.2 imes10^5$	$2.3 imes 10^{13}$	0.004	0.990	0.0021	∞
H3	$4.3 imes10^5$	$2.7 imes 10^{13}$	0.006	0.988	0.0018	∞
H4	$6.9 imes10^5$	4.4×10^{13}	0.009	0.985	0.0014	∞
Hdif1	$9.2 imes10^5$	$5.0 imes10^{13}$	0.011	0.983	0.0012	2
Hdif2	1.1×10^{6}	$5.3 imes 10^{13}$	0.013	0.981	0.0012	1.5
Hdif3	$1.9 imes10^6$	$7.4 imes10^{13}$	0.018	0.976	0.0009	1.0
He1	$5.0 imes10^4$	$4.3 imes10^{12}$	0.002	0.992	0.0023	∞
He2	$7.1 imes 10^4$	5.1×10^{12}	0.004	0.990	0.0019	∞
He3	$9.6 imes10^4$	$6.1 imes 10^{12}$	0.006	0.988	0.0016	∞
He4	$1.6 imes 10^5$	$1.0 imes 10^{13}$	0.009	0.985	0.0013	∞

Primordial composition X(H)=0.25, X(He)=0.75 Purely He star X(He) = I

Method: Initial supermassive star models

Caution: here are only the isentropic "core" of SMS

Realistic SMS may have inflated envelope

Method: Initial supermassive star models

Marginally stable SMS with rotation.

rotation

			A STATE OF THE STA		A PRIME TO SHOW THE REAL	
model	$M_0~(M_\odot)$	$R_{ m e0}~(m cm)$	$T_{ m kin}/ W $	$lpha_{ ext{c},0}$	$\gamma_{ m c,0}-4/3$	Â
H1	$2.1 imes10^5$	$1.7 imes 10^{13}$	0.002	0.992	0.0026	∞
H2	$3.2 imes10^5$	$2.3 imes 10^{13}$	0.004	0.990	0.0021	∞
H3	$4.3 imes10^5$	$2.7 imes 10^{13}$	0.006	0.988	0.0018	∞
H4	$6.9 imes10^5$	4.4×10^{13}	0.009	0.985	0.0014	∞
Hdif1	$9.2 imes10^5$	$5.0 imes10^{13}$	0.011	0.983	0.0012	2
Hdif2	1.1×10^{6}	$5.3 imes 10^{13}$	0.013	0.981	0.0012	1.5
Hdif3	$1.9 imes10^6$	$7.4 imes 10^{13}$	0.018	0.976	0.0009	1.0
He1	$5.0 imes10^4$	$4.3 imes10^{12}$	0.002	0.992	0.0023	∞
He2	$7.1 imes 10^4$	5.1×10^{12}	0.004	0.990	0.0019	∞
He3	$9.6 imes10^4$	$6.1 imes 10^{12}$	0.006	0.988	0.0016	∞
He4	$1.6 imes10^5$	$1.0 imes 10^{13}$	0.009	0.985	0.0013	∞
					Contraction of the second second	

More massive - more radiation-dominant $\gamma \gamma \rightarrow 4/3$

More rapid rotation - more stable larger mass for being unstable

Result: Outline of evolution

Primordial composition, mass-shedding case

Collapsing motion is ~ coherent (characteristic of GR instability)

Result: Outline of evolution

5/3

3/2 Collapse proceeds 4/3 ⊐ outside pair-unstable region. → GR instability

Result: Bounce-shock-induced ejecta

Density snapshots around torus formation time.

Sudden formation of centrifugally supported torus induces its bounce

Result: Properties of ejecta

- Ejecta mass ~ 1% of initial SMS mass

Result: Viscous evolution of the disk

Accretion timescale ~ I 0^4 s Upto ~ $10M_{\odot}/s \sim 10^{13}\dot{M}_{\rm Edd}$ (Hyper-Eddington)

Result: Viscous evolution of the disk

- Viscosity-driven ejecta (with different prescription & strength)
 - Ejecta mass can be ~3× bounce-driven ejecta
 - Velocity ~0.05 c ≈I/4×bounce-driven ejecta →effect is minor in kinetic energy

Discussion: Realistic environment

SMS core (convectively mixed, ~I0^5Msun)

SMS inflated envelope

Infalling gas cloud (>0.1 Msun/yr, $>10^{5}$ Msun)

Proto-galaxy halo

Only the collapse of SMS core is simulated.

- Envelope
- Atomic cooling cloud ~ SMS mass

Total ejecta mass ~ 10^5 Msun

Viscosity-driven ejecta does not contribute much to total ejecta property

Discussion: Realistic environment

Only the collapse of SMS core is simulated.

Envelope ~10% of mass of SMS

Luminous H-rich SN (IIP)

Discussion: Possible outcome of the explosion

Long duration (10-100 yrs), red object.

Jockel, SF+ in prep.

 \rightarrow obs. time (yr)

Discussion: Realistic environment

SMS core (convectively mixed, ~I0^5Msun)

SMS inflated envelope

Infalling gas cloud (>0.1 Msun/yr, $>10^{5}$ Msun)

Proto-galaxy halo

Only the collapse of SMS core is simulated.

- Envelope
- Atomic cooling cloud ~ SMS mass

Total ejecta mass ~ 10^5 Msun

Viscosity-driven ejecta does not contribute much to total ejecta property

Discussion: Realistic environment

- The ejecta have to sweep inflated envelope.
- ...breaks out the SMS surface (photosphere)
- The ejecta then sweeps up the infalling gas cloud, with photon radiation. photosphere may locate at the shock front.
- ~ CSM-interacting supernova (with $E \sim 1e55 - 1e56 erg$, $M_CSM \sim 10^{5}Msun$)

Discussion: Jet driven by BH-disk

Discussion: Jet driven by BH-disk

Prospects: Lower-mass SMS

- Lower-mass SMS: higher density, temperature at the collapse
- They may be more subject to pair-instability (thermal creation of. e-e+ pairs)
- Nuclear burning and neutrino energy loss become more significant
- Effect of rotation on pair-unstable collapse?

Can SMS fast rotate?

Balance of radiation pressure, gravitational and centrifugal force:

$$\frac{\kappa}{c} \frac{L}{4\pi R^2} = \frac{GM}{R^2} - R\Omega_{\rm crit}^2$$

$$\frac{GM}{R^2}(1 - \Gamma_{\rm Edd}) = R\Omega_{\rm crit}^2, \text{ where } \Gamma_{\rm Edd} = \frac{L}{L_{\rm Edd}}$$

Allowed rotation is limited for $L \sim L_{\rm Edd}$

$$\Omega_{\rm crit} = \sqrt{\frac{GM}{R^3}} \sqrt{1 - \Gamma_{\rm Edd}}$$

"SMSs are slow rotators" Haemmerlé+2018

Core-collapse supernovae: neutrino-driven scenario

Shock developed \rightarrow stall

Successful breakout \rightarrow observed as SN

> Figures taken from Janka (2012) (layers not drown to scale)

BH formation

e.g., those with too compact cores

Collapse of iron core

Shock developed \rightarrow stall

Black hole formation No transient?

Collapse of <u>rotating</u> star

e.g., those with too compact cores

Collapse of iron core

Shock developed \rightarrow stall

If the star has sufficient rotation...

Accretion disk formed around the BH. Further activities possible.

BH-disk activities

• Gamma-ray bursts (GRBs)

BH-disk is one of the promising central engines

Energy liberated by viscous accretion:

 $GM_{\rm BH}M_{\rm disk}/r_{\rm disk} \approx 3 \times 10^{52} \, {\rm erg} \left(\frac{M_{\rm BH}}{10M_{\odot}}\right) \left(\frac{M_{\rm disk}}{0.1M_{\odot}}\right) \left(\frac{r_{\rm disk}}{10^7 {\rm cm}}\right)^{-1}$

It can drive an energetic outflow from disk.

(at least some) long GRBs are accompanied by energetic SNe

- Explosion energy $E_{\rm K} = (0.8 4.4) \times 10^{52} \,{\rm erg}$
- ⁵⁶Ni mass

Viscosity-driven outflow from disk would naturally explain such SNe

(e.g., Woosley et al. 1993...)

Neutrino cooling vs viscous heating

For high temperatures, $(kT \gtrsim 1 \text{ MeV})$ neutrino emission cools down the disk. Neutrino emission timescale : $t_{\text{weak}} \sim 1 \, \text{s} \left(\frac{kT}{1 \, \text{MeV}} \right)^{-5}$

 $t_{\text{weak}} \leq t_{\text{vis}}$ (NDAF) phase: weak/no outflow

performed simulations of the post-merger remnant with

- GR gravity
- Neutrino cooling
- Viscous angular momentum transport

- $t_{\text{weak}} \gg t_{\text{vis}}$ phase: strong outflow would be driven

Disk formation \rightarrow NDAF \rightarrow Outflow

Nucleosynthesis calculation in the ejecta $\rightarrow M_{\rm Ni} \gtrsim 0.1 M_{\odot}$ BH-disk can be an engine of the energetic explosion.

MHD models for GRB jets

Shibata, SF+24

MHD models for GRB jets

Spin down of BH by the feedback of energy extraction is numerically observed(!)

Summary

Kinetic energy ~ $10^{55} - 10^{56}$ erg Bounce-shock-induced ejecta with mass up to 1% of initial star, v~0.2c

- It can drive a jet (\leftarrow MHD model with an ideal config.)
- No significant r-process in the ejecta

Numerical-relativity simulations of the collapses of rotating supermassive stars Bounce-shock-induced ejecta with mass up to 1% of initial star, v~0.2c

(Mass is likely dominated by the swept-up cloud surrounding the star)

Numerical relativity simulations of collapses of rotating massive stars:

• It can explode with $E \sim 10^{52}$ erg driven by disk outflow (\leftarrow viscous model) • It can synthesize sufficient amount $(\geq 0.1M_{\odot})$ of ⁵⁶Ni (\leftarrow viscous model)

