A discussion on the effects of QGP's electric conductivity on observables in high-energy heavy-ion collisions

Nicholas J. Benoit (PostDoc at Hiroshima Univ.) https://home.hiroshima-u.ac.jp/njbenoit/

SKCM² WPI HIROSHIMA UNIVERSITY

Collaborators [paper soon to be released]:

T. Miyoshi (HU), C. Nonaka (HU, SKCM2, KMI), A. Sakai (HU), and H. R. Takahashi (KU)

Topology and Dynamics of Magneto-Vortical Matter @ YITP 2025/01/20

How to make quark gluon plasma

Non-central collisions have many interesting properties,

- large orbital angular momentum
- strong magnetic field
- etc.

These result in a "global" polarization for particles

An upper limit of the late-stage B-field: B≤10¹³T

T. Niida, West Lake Workshop NP2024

Nicholas J. Benoit | Topology and Dynamics of Magneto-Vortical Matter @ YITP 2025/01/20

7

Quark-gluon plasma (QGP) electric conductivity

• Studied by lattice calculations (~10 papers), pQCD, and kinetic transport theories

Review: G. Aarts and A. Nikolaev; EPJ. A 57, 118 (2021) arXiv:2008.12326 [hep-lat]

Quark-gluon plasma (QGP) electric conductivity

• Studied by lattice calculations (~10 papers), pQCD, and kinetic transport theories

Review: G. Aarts and A. Nikolaev; EPJ. A 57, 118 (2021) arXiv:2008.12326 [hep-lat]

- Uses linear-response theory (Kubo formula)
- Low energy limit electromagnetic spectral function

$$\sigma = \frac{1}{6} \frac{\partial}{\omega} \left(\int d^4 x e^{i\omega t} \langle [j^{\rm em}_{\mu}(t,x), j^{\rm em}_{\mu}(0,0)] \rangle \right) |_{\omega=0}$$

where the EM current depends on # of quark flavors

$$j_{\mu}^{\rm em}(x) = \sum_{f=1}^{N_f} (eq_f) \overline{\psi}^f(x) \gamma_{\mu} \psi^f(x)$$

Quark-gluon plasma (QGP) electric conductivity

• Studied by lattice calculations (~10 papers), pQCD, and kinetic transport theories

Review: G. Aarts and A. Nikolaev; EPJ. A 57, 118 (2021) arXiv:2008.12326 [hep-lat]

- Uses linear-response theory (Kubo formula)
- Low energy limit electromagnetic spectral function

$$\sigma = \frac{1}{6} \frac{\partial}{\omega} \left(\int d^4 x e^{i\omega t} \langle [j^{\rm em}_{\mu}(t,x), j^{\rm em}_{\mu}(0,0)] \rangle \right) |_{\omega=0}$$

where the EM current depends on # of quark flavors $_{N_{f}}$

$$j_{\mu}^{\rm em}(x) = \sum_{f=1}^{J} (eq_f) \overline{\psi}^f(x) \gamma_{\mu} \psi^f(x)$$

- Does not include external magnetic field effects
- Uses approximately realistic pion mass
- General agreement among results using a variety of methods and parameters (see paper)

What observables can we use?

Charged leptons and thermal photons

Dileptons → Y. Akamatsu, H. Hamagaki, T. Hatsuda, and T. Hirano, PRC.85.054903 (2012). Photons → J.-A. Sun and L. Yan, PRC.109.034917 (2024)

Charge dependent directed flow (v₁)

Asymmetic collisions \rightarrow Y. Hirono, M. Hongo, and T. Hirano, PRC.90.021903 (2014) Symmetric collisions \rightarrow U, Gürsoy, D. Kharzeev, and K. Rajagopal PRC.89.054905 (2014)

As some example papers.

What observables can we use?

Charged leptons and thermal photons

Dileptons \rightarrow Y. Akamatsu, H. Hamagaki, T. Hatsuda, and T. Hirano, PRC.85.054903 (2012). Photons \rightarrow J.-A. Sun and L. Yan, PRC.109.034917 (2024)

Charge dependent directed flow (v₁)

Asymmetic collisions \rightarrow Y. Hirono, M. Hongo, and T. Hirano, PRC.90.021903 (2014) Symmetric collisions \rightarrow U, Gürsoy, D. Kharzeev, and K. Rajagopal PRC.89.054905 (2014)

This works focuses on these two

How can we model such a system?

- In medium EM fields evolve at a similar rate as the QGP expansion (QGP is a conductive medium)
- EM fields could modify the collective behavior of charged particles
- Charged currents in the plasma should influence the EM fields

Use relativistic resistive magneto-hydrodynamics

How can we model such a system?

- In medium EM fields evolve at a similar rate as the QGP expansion (QGP is a conductive medium)
- EM fields could modify the collective behavior of charged particles
- Charged currents in the plasma should influence the EM fields

Use relativistic resistive magneto-hydrodynamics

How can we model such a system?

- In medium EM fields evolve at a similar rate as the QGP expansion (QGP is a conductive medium)
- EM fields could modify the collective behavior of charged particles
- Charged currents in the plasma should influence the EM fields

Use relativistic resistive magneto-hydrodynamics

Details of our RRMHD model

- Start from ideal-hydrodynamics + Maxwell equations
- $\begin{array}{ll} \nabla_{\mu}N^{\mu}=0 & \mbox{Continuity equation (i.e., net-baryon current)} & \mbox{Maxwell's equations} \\ \nabla_{\mu}T^{\mu\nu}=0 & \mbox{Total energy-momentum} & \nabla_{\mu}F^{\mu\nu}=-J^{\nu} \\ \nabla_{\mu}S^{\mu}\geq 0 & \mbox{2nd law of thermodynamics} & \mbox{} \nabla_{\mu}^{*}F^{\mu\nu}=0 \end{array}$

$$T^{\mu\nu} = T^{\mu\nu}_{\rm m} + T^{\mu\nu}_{\rm f}$$
$$T^{\mu\nu}_{\rm m} = (\epsilon + p_{\rm gas}) u^{\mu} u^{\nu} + p_{\rm gas} g^{\mu\nu}$$
$$T^{\mu\nu}_{\rm f} = F^{\mu\lambda} F^{\nu}_{\lambda} - \frac{1}{4} g^{\mu\nu} F^{\lambda\delta} F_{\lambda\delta}$$

fluid matter part

EM fields part

$$\nabla_{\mu}T_{\rm m}^{\mu\nu} = -J_{\mu}F^{\mu\nu}$$

EM fields acting on the plasma and vice-versa

Fragment A

Results from our RRMHD model

Fragment B

Time evolution of the magnetic field

Transverse Plane (η=0)

Collision Plane (y=0)

Time evolution of the magnetic field

Our RRMHD model vs. an analytic estimation Tuchin; PRC.88.024911 (2013), arXiv:1305.5806 [hep-ph]

- Captured @ center of grid (collision)
- At early times they agree because the initial conditions are the same
- Late time is different because of different source term in calculation

 $abla _{\mu}F^{\mu
u} = -J^{
u} \operatorname{RRMHD}_{\text{Analytic = only QGP sources}}_{\text{Analytic = only collision spectators}}$ $abla _{\mu}^{*}F^{\mu
u} = 0$

Time evolution of the magnetic field

- Captured @ center of grid (collision) starting from the same initial condition
- A larger electric conductivity means longer field lifetime

Recent STAR experimental result

- New 2024 results from STAR experiment for RHIC @ Phys. Rev X 14, 011028 (2024) arXiv:2304.03430 [hep-ex]
- They measure direct flow of charged hadrons like protons, kaons, and pions
- And they calculate the difference in flow between negatively positively charged hadrons

it | Topology and Dynamics of Magneto-Vortical Matter @ YITP 2025/01/20 المراجعة المحافية المراجعة م

RRMHD Δv_1 results

• Our RRMHD model can reproduce the negative slopes from STAR results

STAR; PRX 14, 011028 (2024), arXiv:2304.03430 [hep-ex]

Nicholas J. Benoit | Topology and Dynamics of Magneto-Vortical Matter @ YITP 2025/01/20

RRMHD Δv_1 results

- Our RRMHD model can reproduce the negative slopes from STAR results
- Value of the negative slope depends on the electric conductivity of QGP STAR; PRX 14, 011028 (2024), arXiv:2304.03430 [hep-ex]

Nicholas J. Benoit | Topology and Dynamics of Magneto-Vortical Matter @ YITP 2025/01/20

RRMHD Δv_1 results

- Our RRMHD model can reproduce the negative slopes from STAR results
- Value of the negative slope depends on the electric conductivity of QGP

• Quark-gluon plasma will radiate photons as it expands and cools

 EM fields can increase the thermal photon production

- Asymmetric collision the QGP thermal photon is similar to symmetric collision
- But, enhancement from the EM fields is much smaller

$$v_2(\gamma) \equiv \frac{v_0 v_2 + v_0^{\rm EM} v_2^{\rm EM}}{v_0 + v_0^{\rm EM}}$$

Summary and Outlook

- We have applied relativistic resistive magneto-hydrodynamics (RRMHD) to studying charged observables in heavy-ion collisions
- Our results show how important EM fields are to those charged observables
- Progress toward a robust calculation of QGP+EM fields

Summary and Outlook

- We have applied relativistic resistive magneto-hydrodynamics (RRMHD) to studying charged observables in heavy-ion collisions
- Our results show how important EM fields are to those charged observables
- Progress toward a robust calculation of QGP+EM fields

- In the future,
 - Non-equilibrium initial state
 - Hadron Gas + EM fields phase
 - Hydrodynamic fluctuations
 - Vortexes + EM fields
 - etc.
- Lots of work and results to come!

Heavy-ion collisions

Heavy-ion collisions study ordinary matter under extreme conditions

Heavy-ion collisions

Why study quark-gluon plasma?

- Better understanding of the Strong force and confinement
- Possible similar conditions as the early universe (high temperature)

What kind of collective motion appears?

- Details of the collective motion are captured in transport parameters
- For QGP we have,

Shear viscosity	η	- Energy-momentum
Bulk viscosity	ζ	
Charm-diffusion coefficient	D	Heavy-flavor quantum numbers
Thermal conductivity	к	Heat via baryon current
Electric conductivity	σ	Electrical charges via the electric current

Stages in relativistic heavy-ion collisions

• Studying QGP is not simple, many phases before experimental measurement

Why model using hydrodynamics?

- Why the hydrodynamics phase?
- Many liberated quarks and gluons, so it becomes a many-body problem

What about kinetic transport models like the Boltzman equation?

• Let's look to experiments for an answer

Why model using hydrodynamics?

Heavy-ion collisions produce a large amount of particles

From: A.P. KALWEIT, PoS (EPS-HEP2023) 027

Nucleus Fragment A

Electromagnetic fields in Heavy-ion collisions

Nucleus Fragment B

What about the protons?

 Using a simple picture, of a point charge moving at a constant velocity in the z-direction

$$E_{x,y} = q\gamma \frac{\vec{x}}{\left[\vec{x}^2 + \gamma^2 (z - vt)^2\right]^{3/2}},$$

$$E_z = q\gamma \frac{z - vt}{\left[\vec{x}^2 + \gamma^2 (z - vt)^2\right]^{3/2}}$$

aka: Lienard-Wiechert Fields for a constant velocity

 $\vec{B} = \vec{v} \times \vec{E}$

Resources: Jackson (1975), Feynman (2010)

What about the protons?

Resources: Jackson (1975), Feynman (2010)

Role of the electromagnetic (EM) fields

• Fragments of the collision play an important role as a source of the EM fields

- E-fields from fragmented protons are squished and stretched
- A strong B-field follows in the wakes of the moving nuclei

These strong fields penetrate the quark-gluon plasma

Role of the electromagnetic (EM) fields

• Fragments of the collision play an important role as a source of the EM fields

Role of the electromagnetic (EM) fields

• Fragments of the collision play an important role as a source of the EM fields

- E-fields from fragmented protons are squished and stretched
- A strong B-field follows in the wakes of the moving nuclei

History of relativistic resistive magneto-hydrodynamics

• We are the first group to apply RRMHD to the study of QGP

Electromagnetic fields inside QGP

• EM fields penetrating QGP drive charge carriers out-of-equilibrium

$$J^{\mu} = q u^{\mu} + \frac{\sigma F^{\mu\nu} u_{\nu}}{\sigma F^{\mu\nu} u_{\nu}}$$

EM current in the QGP medium

First order dissipation from the EM fields

Taking the Boltzmann equation in the relaxation time approximation focus on 2→2 processes,

$$k^{\mu}\partial_{\mu}f_{a} + eQ_{a}F^{\mu\nu}k_{\mu}\frac{\partial f_{a}}{\partial k^{\nu}} = -\frac{k^{\mu}u_{\mu}}{\tau_{R}}\delta f_{a,EM}^{(n)}$$
 J. A. Sun and L. Yan
Phys. Rev. C 109, 034917 (2024)

Vlasov term for the external EM fields

Order "n" corrections to the quark distribution function because of dissipation from the EM fields

Electromagnetic fields inside QGP

• For this calculation we focus on 1st order corrections,

$$k^{\mu}\partial_{\mu}f_{a} + eQ_{a}F^{\mu\nu}k_{\mu}\frac{\partial f_{a}}{\partial k^{\nu}} = -\frac{k^{\mu}u_{\mu}}{\tau_{R}}\delta f_{a,EM}^{(n)}$$
J. A. Sun and L. Yan
Phys. Rev. C 109, 034917 (2024)

$$f_{a} = f_{a,eq} + \delta f_{a,EM}^{(1)} + \delta f_{a,EM}^{(2)} + \delta f_{a,EM}^{(3)} + \cdots$$
Ordered by the EM field strength

$$\delta f_{a,\text{EM}}^{(1)}(X,k) = -\frac{-f_{a,eq}(1-f_{a,eq})}{T\chi_{el}k^{\mu}u_{\mu}}e\sigma Q_{a}e^{\mu}k_{\mu}$$

Electric conductivity of QGP from Landau matching with the current

$$J^{\mu} = q u^{\mu} + \sigma F^{\mu\nu} u_{\nu}$$

EM fields in the fluid rest frame

$$e^{\mu} = \left(\gamma v_k E^k, \quad \gamma E^i + \gamma \epsilon^{ijk} v_j B_k\right)$$

Electromagnetic fields inside QGP

• What we do is calculate the fluid + EM field contributions using hydrodynamics

Temperature and four-velocityElectric conductivity valueValues that come from a
hydrodynamic calculation
$$\delta f_{a,EM}^{(1)}(X,k) = -\frac{-f_{a,eq}(1-f_{a,eq})}{T\chi_{el}k^{\mu}u_{\mu}}e\sigma Q_{a}e^{\mu}k_{\mu}$$
 $e\sigma Q_{a}e^{\mu}k_{\mu}$ Electric susceptibility of QGP $e^{\mu} = (\gamma v_{k}E^{k}, \gamma E^{i} + \gamma \epsilon^{ijk}v_{j}B_{k})$
Spacetime dependent EM fields in
QGP medium $\chi_{a,el} = -\frac{1}{3}\int \frac{d\vec{p}}{(2\pi)^{3}E_{p}}(p^{\sigma}p^{\nu}\Delta_{\sigma\nu})\frac{-f_{a,eq}(1-f_{a,eq})}{p^{\mu}u_{\mu}}$ $e^{\mu} = (\gamma v_{k}E^{k}, \gamma E^{i} + \gamma \epsilon^{ijk}v_{j}B_{k})$
Spacetime dependent EM fields in
QGP medium

Electromagnetic fields inside QGP

- What we do is calculate the fluid + EM field contributions using hydrodynamics
- All of those values can be calculated self-consistently using relativistic resistive magneto-hydrodynamics (RRMHD)

Temperature and four-velocityElectric conductivity valueValues that come from a
hydrodynamic calculation $\delta f_{a,\text{EM}}^{(1)}(X,k) = -\frac{-f_{a,eq}(1-f_{a,eq})}{T\chi_{el}k^{\mu}u_{\mu}}e\sigma Q_{a}e^{\mu}k_{\mu}$ $e\sigma Q_{a}e^{\mu}k_{\mu}$ Electric susceptibility of QGP $e^{\mu} = (\gamma v_{k}E^{k}, \gamma E^{i} + \gamma \epsilon^{ijk}v_{j}B_{k})$
Spacetime dependent EM fields in
QGP medium $\chi_{a,el} = -\frac{1}{3} \int \frac{d\vec{p}}{(2\pi)^{3}E_{p}} (p^{\sigma}p^{\nu}\Delta_{\sigma\nu}) \frac{-f_{a,eq}(1-f_{a,eq})}{p^{\mu}u_{\mu}}$ $e^{\mu} = (\gamma v_{k}E^{k}, \gamma E^{i} + \gamma \epsilon^{ijk}v_{j}B_{k})$
Spacetime dependent EM fields in
QGP medium

 Enhancement of the photon elliptic flow when the EM fields are included

