Anisotropic linear waves in spin magnetohydrodynamics

Zhe Fang (Zhejiang), KH, Jin Hu (Fuzhou), <u>2402.18601</u>; <u>2409.07096</u>. Cf. KH, X.-G. Huang, M. Hongo, <u>2207.12794</u> for a review.

Koichi Hattori Zhejiang University

Topology and Dynamics of Magneto-Vortical Matter Jan. 13 - 24, 2025

Plan of this talk

1. Generality I: Quark-gluon plasma and relativistic heavy-ion collisions

2. Generality II: Relativistic hydrodynamics

3-1. Magnetohydrodynamics (MHD) and the linear waves3-2 Chiral MHD and instability3-3 Spin MHD

Generality I: Quark-gluon plasma and relativistic heavy-ion collisions

- QCD phase diagram
- Relativistic heavy-ion collisions
- Magnetic and vortical fields
- Hadron polarization measurement

"QCD phase diagram"

$$\mathcal{L}_{\text{QCD}} = \bar{\psi}(i\not\!\!D - m)\psi - \frac{1}{4}G^{a\mu\nu}G^a_{\mu\nu}$$

Chiral symmetry

Confinement-deconfinement - Asymptotic freedom in QCD

Early ideas of relativistic heavy-ion collisions

Abnormal nuclear states and vacuum excitation*[†]

T. D. Lee

Physics Department, Columbia University, New York, New York 10027

We examine the theoretical possibility that at high densities there may exist a new type of nuclear state in which the nucleon mass is either zero or nearly zero. The related phenomenon of vacuum excitation is also discussed.

<u>T. D. Lee (1975)</u>

RELATIVISTIC HEAVY ION COLLISIONS

T. D. Lee Columbia University, New York, N. Y. 10027

<u>T. D. Lee (1982)</u>

"VEX" = Vacuum Excitation

Quest to the extreme state of matter by the relativistic heavy-ion collisions

Relativistic Heavy Ion Collider (RHIC) Large Hadron Collider (CC):

New York state

"Little bang" Reproducing 10μ sec after the big bang.

-eneva

CMS

Observables in heavy-ion collisions

RHIC STAR collaboration

LHC ALICE collaboration

Hydrodynamics behavior of the quark-gluon plasma

✗ Free-streaming limit?(Asymptotic-free limit)

X Random momentum distribution

Relativistic heavy-ion collisions at RHIC and LHC

✓ Strongly correlated matter
→ Collective flow at RHIC and LHC

✓ Correlated momentum angle distribution

Frequent interactions induce strong correlations (even if the coupling constant is perturbatively small.)

Hydrodynamic expansion

Strong magnetic and vortical fields

Deng, Huang 1201.5108; KH, Huang 1609.00747

Deng, Huang, <u>1603.06117</u>

Strong magnetic fields induced by relativistic heavy-ion collisions

Chiral magnetic effect

Vilenkin (1982)

Nielsen, Ninomiya (1983) Kharzeev, McLerran, Warringa (2007) Kharzeev, Fukushima, Warringa (2008)

Parity-odd environment is provided by the chirality imbalance:

$$\mu_A = (\mu_R - \mu_L)/2$$

Anomalous transport coefficients \propto Anomaly coefficient C_A

$$\sigma_{\rm CME} \propto \mu_A C_A \qquad \partial_\mu j^\mu_A = -e^2 C_A E^\mu B_\mu$$

Chirality-momentum locking

Dirac equation in the chiral representation
→ Chirality-spin-momentum locked in the massless limit

{Chirality, Spin, Momentum}

$$\begin{pmatrix} -m & p_{\mu}\sigma^{\mu} \\ p_{\mu}\bar{\sigma}^{\mu} & -m \end{pmatrix} \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} = 0$$

Spin polarization in B or ω

Chirality-momentum locking

→ Finite currents when one of chirality is favored (via anomaly).

 $\mathbf{\dot{q}}$ $\mathbf{\dot{q}}$ $\mathbf{\ddot{q}}$ $\mathbf{\ddot{q}}$ $\mathbf{\ddot{q}}$ $\mathbf{\vec{q}}$ $\mathbf{\vec{q}}$ $\mathbf{\vec{q}}$ $\mathbf{\vec{q}}$

Chiral magnetic effect in Dirac/Weyl semimetals

Dirac semimetals:

- ZrTe₅ Q. Li, et al (BNL and Stony Brook Univ.) arXiv:**1412.6543**; Nat. Phys., doi:10.1038/NPHYS3648
- Na₃Bi J. Xiong, N. P. Ong et al (Princeton Univ.) arxiv:**1503.08179**; Science 350:413,2015

Cd₃As₂- C. Li et al (Peking Univ. China) arxiv:**1504.07398**; Nat. Commun. 6, 10137 (2015).

Weyl semimetals TaAs $\sqrt{24}_{0,0}$ $\sqrt{24}_{$

Brookhaven Science Associates

- TaAs X. Huang et al (IOP, China) arxiv:1503.01304; Phys. Rev. X 5, 031023
- NbAs X. Yang et al (Zhejiang Univ. China) arxiv:1506.02283
- NbP Z. Wang et al (Zhejiang Univ. China) arxiv:1506.00924
- TaP Shekhar, C. Felser, B. Yang et al (MPI-Dresden) arxiv:1506.06577, Nat. Commun. 7, 11615 (2016).

Borrowed from Li and Kharzeev

Hadron spin measurements

(Received 25 October 2004; published 14 March 2005)

Spin transport theories for QGP

Spin hydrodynamics

Quantum kinetic theory

KH, Hongo, Huang, Matsuo, Taya, <u>1901.06615</u> Fukushima, Pu, <u>2010.01608</u> Li, Stephanov, Yee, 2011.12318 She, Huang, Hou, Liao, 2105.04060 Hongo, Huang, Kaminski, Stephanov, Yee<u>, 2107.14231</u> Biswas, Daher, Das, Florkowski, Ryblewski, <u>2304.01009</u> etc

Weickgenannt, Sheng, Speranza, Wang, Rischke, <u>1902.06513</u> Gao, Liang, <u>1902.06510</u> KH, Hidaka, Yang, <u>1903.01653</u>; <u>2002.02612</u> Liu, Mameda, Huang, <u>2002.03753</u> etc. Generality II: Relativistic hydrodynamics

Magnetic field Chiral anomaly

Spin dof

Magneto-hydrodynamics

Chiral hydrodynamics

Spin hydrodynamics

Collective "hydrodynamic" motion in various systems

Condensed matter systems

Science, Zaanen

Graphene Nature Phys., Levitov & Falkovich

Astrophysics

Hydrodynamics as universal low-energy EFT

Relevant dof. in low energy regime = Gapless modes = Conserved charges surviving in a long spacetime scale.

Hydrodynamics = Universal low-energy EFT based on symmetries

Closing the system of equations

E.g., the simplest case

 $\partial_\mu T^{\mu
u}=0$ Spacetime translational symmetry

of conserved charges = # of equations

To get a closed system of eqs., one needs constitutive eqs.

$$T^{ij}[T^{0\mu}] = \sum_{n=0}^{\infty} \partial^{(n)} T^{0\mu}$$

Derivative expansion works in the long spacetime scale.

Derivation of constitutive equations

See a review, KH, Huang, Hongo (2022)

Simplest case

Translational symmetries

Hydrodynamic variables

$$\partial_{\mu}\Theta^{\mu\nu} = 0$$

 $\{\epsilon, v^i\}$

Thermodynamics

Inverse temperature $\beta \equiv \frac{\partial s}{\partial \epsilon}$ 1st law $Tds = d\epsilon$ - Thermodynamic conjugates (Lagrange multipliers) • 2^{nd} law $\partial_{\mu}s^{\mu} \ge 0$ Fluid velocity: $u^{\mu} = (1, v^i)/\sqrt{1 - |\boldsymbol{v}|^2}$ Co-moving derivative: $D \equiv u^{\mu} \partial_{\mu}$ $\partial_{\mu}s^{\mu} = \partial_{\mu}(su^{\mu} + \delta s^{\mu})$ Derivatives of conserved charges $= s(\partial_{\mu}u^{\mu}) + \beta \mathbf{D}\epsilon + \partial_{\mu}\delta s^{\mu} \ge 0$ \rightarrow Connection to equations of motion

"Entropy-current analysis"

$$D \equiv u^{\mu}\partial_{\mu}$$

$$\Delta^{\mu\nu} = g^{\mu\nu} + u^{\mu}u^{\nu}$$

$$\partial_{\mu}s^{\mu} = s(\partial_{\mu}u^{\mu}) + \beta D\epsilon + \partial_{\mu}\delta s^{\mu} \ge 0$$

$$\Theta^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - p\Delta^{\mu\nu} + \Theta^{\mu\nu}_{(1)}$$
Cf. $\Theta^{\mu\nu} = \begin{pmatrix} \epsilon \\ p \\ p \\ p \end{pmatrix}$
in the rest frame
$$\frac{b^{\mu}}{b^{\mu}} = \beta (Ts - \epsilon - p)\partial_{\mu}u^{\mu}$$

$$-\Theta^{\mu\nu}_{(1)}\partial_{\mu}\beta_{\nu} + \partial_{\mu}(s^{\mu}_{(1)} + \beta u_{\nu}\Theta^{\mu\nu}_{(1)})$$
NLO in derivative
$$-Should be semi-positive$$

Constraints from the second law

LO
NLO
$$p = Ts - \epsilon$$

$$\Theta_{(1)}^{\mu\nu} = [\zeta \Delta^{\mu\nu} \Delta^{\alpha\beta} + \eta (\Delta^{\mu\langle\alpha} \Delta^{\beta\rangle\nu})] \partial_{\alpha} \beta_{\beta}$$

Trace part \rightarrow Bulk viscosity

Traceless part → Shear viscosity

 $-\Theta^{\mu\nu}_{(1)}\partial_{\mu}\beta_{\nu} \ge 0 \text{ if } \zeta, \ \eta \ge 0$

Formulation of magnetohydrodynamics with the entropy-current analysis

<u>KH, Hirono, Yee, Yin (2017)</u> <u>Hongo, KH (2020)</u> for a QFT approach <u>KH, Hongo, Huang (2022)</u> for a review

Fang, KH, Hu, <u>2402.18601</u> for solutions

E(u, B) and j(u, B) are induced at off-equilibrium

Anisotropies in constitutive equations

Anisotropic pressure

$$\Theta^{\mu\nu}_{(0)} = \epsilon u^{\mu}u^{\nu} - p_{\perp}\Xi^{\mu\nu} + p_{\parallel}b^{\mu}b^{\nu}$$

 p_{\perp} and p_{\parallel} are different by the Maxwell stress.

Anisotropic viscosities $\delta \Theta^{(\mu\nu)} = -T\eta^{\mu\nu\rho\sigma}\partial_{(\rho}\beta_{\sigma)}$

Splitting of shear viscosity $\eta \rightarrow \eta_{\parallel,\perp}$ **B** $\downarrow_{u_{\parallel}}$ $\downarrow_{d_{\perp}u_{\parallel}}$ $\downarrow_{d_{\perp}u_{\perp}}$ $\downarrow_{d_{\perp}u_{\perp}}$ $\Xi^{\mu\nu} = g^{\mu\nu} + u^{\mu}u^{\nu} - b^{\mu}b^{\nu}$

2 shear viscosities3 bulk viscosities

See a review, KH, Huang, Hongo (2022)

Solving spin MHD within linear-mode analysis

For numerical methods beyond linear regime, see talk by Benoit

$$e \to e + \delta e(x),$$

 $u^{\mu} \to u^{\mu} + \delta u^{\mu}(x),$
 $B^{\mu} \to B^{\mu} + \delta B^{\mu}(x)$

- Energy density (1)
- Flow velocity (3)
- Magnetic field (2)

Exactly diagonalized with an analytic algorithm.

Fang, KH, Hu, 2402.18601; 2409.07096

An issue in preceding works

- Ideal MHD (well-known)

Alfven waves and Magneto-sonic waves

Magnetic tension and pressure

- First-order MHD (Not known due to strong anisotropy)

Solutions had been known only at $\theta = 0$ or $\pi/2$.

Moreover, there was <u>disagreement</u> between those known solutions at $\theta = \pi/2$.

Grozdanov et al. (2017) Armas and Camilloni (2022)

Hernandez and Kovtun (2017)

"Critical angle"

Fang, KH, Hu, 2402.18601

Solutions at $\theta = 0$ and $\pi/2$ are not smoothly connected.

 \neq

$$\omega = \pm vk - i\Gamma k^2 + O(\frac{k^n}{\cos^n \theta})$$

Small k expansion breaks down due to the anisotropy. \rightarrow Small k and cos θ limit do not commute.

Split of the diffusion rates

Small cosine expansion Without any expansion

Purely diffusive near the transverse direction.

Chiral magnetohydrodynamics

Chirality in dynamical magnetic fields

KH, Hirono, Yee, Yin, arXiv:1711.08450

Conservation laws in chiral MHD

Energy-momentum conservation [Translational symmetry]

$$\partial_{\mu}\Theta^{\mu\nu} = 0$$

Magnetic flux conservation [Magnetic one-form symmetry]

$$\partial_{\mu}\tilde{F}^{\mu\nu} = 0$$

 $\tilde{F}^{\mu\nu} = \begin{pmatrix} 0 & -B_x & -B_y & -B_z \\ B_x & 0 & E_z & -E_y \\ B_y & -E_z & 0 & E_x \end{pmatrix} \qquad \text{Absence of a magnetic monopole}$

$$\begin{bmatrix} B_y & -E_z & 0 & E_x \\ B_z & E_y & -E_x & 0 \end{bmatrix} \quad \partial_\mu \tilde{F}^{\mu 0} = \nabla \cdot \boldsymbol{B} = 0$$

Grozdanov, Hofman, Iqbal KH, Hirono, Yee, Yin

Maxwell equation (Electric lines terminating at charges)

$$\partial_{\mu}F^{\mu\nu} = j^{\mu} \quad \partial_{\mu}F^{\mu0} = \nabla \cdot \boldsymbol{E} = j^{0}$$

Chiral charge (non)-conservation Son, Surowka [Chiral symmetry and its breaking by "quantum anomaly"] $\partial_{\mu}j^{\mu}_{A} = C_{A}E_{\mu}B^{\mu}_{C_{A} = \frac{1}{2\pi^{2}}: \text{ Chiral anomaly cofficient}}$

Chiral hydrodynamics

Son, Surowka (2009)

D. T. Son - Hydrodynamics and quantum anomalies from youtube

- The answer is positive.
- Thermodynamic stability requires induced currents called the chiral magnetic/vortical effect.
- Manifestation of a quantum effect in fluid

 $egin{array}{rcl} oldsymbol{\omega} &=&
abla imes oldsymbol{v} & \ oldsymbol{B} &=&
abla imes oldsymbol{A} & \ oldsymbol{A} & \ oldsymbol{B} &=&
abla imes oldsymbol{A} & \ oldsymbol$

Chiral magnetohydrodynamics in STRONG & DYNAMICAL magnetic fields

- -- Chiral hydrodynamics $n_A \neq 0, \ B^{\mu} \sim \mathcal{O}(\partial^1)$ and external Son & Surowka
- -- Chiral magnetohydrodynamics (MHD) $n_A \neq 0, \ B^{\mu} \sim \mathcal{O}(\partial^0)$ KH, Hirono, Yee, Yin and dynamical

Variables in chiral MHD: $\{\epsilon, u^{\mu}, B^{\mu}, \text{ and } n_A\}$ n_A : # density of axial charge

Axial chemical potential: Lagrange multiplier to n_A

$$\mu_A = -T\frac{\partial s}{\partial n_A}$$

Constitutive eqs. and the entropy production in the first order

$$T^{\mu\nu} = T^{\mu\nu}_{(0)} + T^{\mu\nu}_{(1)}$$

$$\tilde{F}^{\mu\nu} = \tilde{F}^{\mu\nu}_{(0)} - \epsilon^{\mu\nu\alpha\beta} u_{\alpha} E_{(1)\beta}$$

$$j^{\mu}_{A} = j^{\mu}_{A(0)} + j^{\mu}_{A(1)}$$

$$T^{\mu\nu}_{(1)}, E^{\mu}_{(1)}, j^{\mu}_{A(1)} \sim \mathcal{O}(\partial^1)$$

NB)
$$\partial_{\mu} j^{\mu}_{A} = -C_{A} E^{\mu}_{(1)} B_{\mu}$$

Chiral anomaly

Computing the entropy current,

$$\partial_{\mu} \left(su^{\mu} + \mathcal{O}(\partial^{1}) \right) = T^{\mu\nu}_{(1)} \partial_{\mu}(\beta u_{\nu}) - j^{\mu}_{A(1)} \partial_{\mu}(\beta \mu_{A}) + E^{\mu}_{(1)} \left\{ \mu_{A} C_{A} B_{\mu} - \epsilon_{\mu\nu\alpha\beta} u^{\nu} \partial^{\alpha}(\beta H^{\beta}) \right\}$$

Conductivities: CME and dissipative terms

From the constitutive eq. of $E^{\mu}_{(1)}$ and the Maxwell eq., $j^{\nu} = \partial_{\mu} F^{\mu\nu}$

- The CME current is completely fixed by C_A .
- Without the CME, the thermodynamic stability is not insured.

Effects of chirality imbalance

How does the CME modify the waves in the chiral fluid?

$$j^{\mu} = \sigma_{\rm CME} B^{\mu}$$

 \rightarrow Helical waves

"Phase diagram" of the eigenmodes

Three modes propagating in the opposite directions (6 solutions in total)

$$(\omega^2 - x_1)(\omega^4 + b\omega^2 + c) = 0$$
 x_1 : Real solution

Stability of the waves from classification of solutions

real and 2 pure imag. sols.
 real and 2 complex sols.
 real solutions

Alfven and magneto-sonic waves

Helical unstable modes in Chiral MHD

Magnetohydrodynamics

6 stable modes

- Alfven waves
- Magneto-sonic waves

Damping due to dissipation Linear polarizations

+ <u>Chirality imbalance $(n_R \neq n_L)$ </u> \rightarrow "Chiral magnetic effect"

Imaginary part of the solutions

Hattori, Hirono, Yee, Yin (PRD, 2019)

Polarizations on the Poincare sphere with a varying μ_A

Equator: Linear polarizations Upper and lower hemispheres: R and L polarizations (Poles: R and L circular polarizations)

The unstable modes are helical in nature.

New hydrodynamic instability in a chiral fluid

Signs of the imaginary parts (Damping/growing modes in the hydrodynamic time evolution)

Helicity decomposition

 $abla imes oldsymbol{e}_{R/L} = \pm oldsymbol{e}_{R/L}$

(Circular R/L polarizations)

A helicity selection, depending on the sign of μ_A .

Helicity conversions as a topological origin of the instability

Spin hydrodynamics

KH, Hongo, Huang, Matsuo, Taya, <u>1901.06615</u> Fang, KH, Hu, 2409.07096

Spin as a quasi-hydro variable

- Total AM conservation from rotational symmetry :

 $\partial_{\mu}J^{\mu\alpha\beta} = 0$

 $\partial_{\mu} \Sigma^{\mu\alpha\beta} = -\partial_{\mu} L^{\mu\alpha\beta}$ $= -(\Theta^{\alpha\beta} - \Theta^{\beta\alpha})$

- Spin-orbit coupling for relativistic constituents

$$\partial_{\mu} \begin{pmatrix} L^{\mu\alpha\beta} + \Sigma^{\mu\alpha\beta} \end{pmatrix} = 0 \qquad \qquad L^{\mu\alpha\beta} = x^{\alpha} \Theta^{\mu\beta} - x^{\beta} \Theta^{\mu\alpha}$$

Orbital AM Spin

 \rightarrow Spin "non-conservation" equation

No symmetry protecting spin conservation.

Antisymmetric part of
$$\Theta^{\mu\nu}$$

 Θ_{xy}
 $\Theta_{yx} = -\Theta_{xy}$
Torque

Explicit, but weak, symmetry breaking→ Small energy gap

Cf. Hydro+ (Stephanov-Yin) for a long-lived mode due to the critical slowing down.

(kinetic relaxation time) ≤ 1/gap << (spacetime scale of our interest) Momentum transfer rate (randomization of momentum)

Rotational viscosities (Anti-symmetric part)

 $\delta\Theta^{[\mu\nu]} \sim -T\gamma^{\mu\nu\rho\sigma} (\partial_{[\rho}\beta_{\sigma]} - \beta\mu_{\rho\sigma})$

Fang, KH, Hu, 2409.07096

Thermal vorticity Spin potential

"No-slip condition" with the rotational fluid motion

Isotropic limit KH, Hongo, Huang, Matsuo, Taya, <u>1901.06615</u> Spin hydrodynamics KH, Hongo, Huang, Matsuo, Taya, <u>1901.06615</u> Fukushima, Pu, <u>2010.01608</u> Li, Stephanov, Yee, 2011.12318 She, Huang, Hou, Liao, 2105.04060 Hongo, Huang, Kaminski, Stephanov, Yee<u>, 2107.14231</u> Biswas, Daher, Das, Florkowski, Ryblewski, <u>2304.01009</u>

Solving spin MHD within linear-mode analysis

$$e \to e + \delta e(x), \quad u^{\mu} \to u^{\mu} + \delta u^{\mu}(x),$$

 $B^{\mu} \to B^{\mu} + \delta B^{\mu}(x), \quad S^{\mu\nu} \to S^{\mu\nu} + \delta S^{\mu\nu}(x)$

- Energy density (1)
- Flow velocity (3)
- Magnetic field (2)
- Spin (3) 9×9 matrix !!

Still exactly diagonalized with an analytic algorithm.

Fang, KH, Hu, 2402.18601 2409.07096

Alfven modes with spin mixing

From the 4×4 matrix,

$$\omega = \pm v_A k_{\parallel} - \frac{i}{2} \left(\rho_{\perp}' k_{\parallel}^2 + \rho_{\parallel}' k_{\perp}^2 + \frac{(\eta_{\parallel} \gamma_{\parallel} - \xi^2) k_{\parallel}^2 + \eta_{\perp} \gamma_{\parallel} k_{\perp}^2}{h \gamma_{\parallel}} \right),$$

$$\begin{split} \omega &= -i\Gamma_{\perp} - i\frac{\gamma_{\perp}}{h}k_{\perp}^{2} \,, \\ \omega &= -i\Gamma_{\parallel} - i\frac{(\gamma_{\parallel} - \xi)^{2}}{h\gamma_{\parallel}}k_{\parallel}^{2} \end{split}$$

$$\begin{split} \Gamma_{\parallel,\perp} &= \frac{8}{\chi} \gamma_{\parallel,\perp} \\ \text{Spin susceptibility: } S^{\mu\nu} &= \chi \mu^{\mu\nu} \\ \text{Rotational viscosity:} \\ \delta \Theta^{[\mu\nu]} &= -T \gamma^{\mu\nu\rho\sigma} (\partial_{[\rho}\beta_{\sigma]} - \beta \mu_{\rho\sigma}) \end{split}$$

Spins are not conserved \rightarrow Gapped modes at k = 0.

$$\partial_{\mu} \Sigma^{\mu\alpha\beta} = -2\Theta^{[\mu\nu]} \qquad \qquad \omega = -i\Gamma_{\perp}$$
$$\omega = -i\Gamma_{\parallel}$$

All solutions are always damping (stable around the equilibrium)

Magneto-sonic modes with spin mixing

From the 5×5 matrix,

$$egin{array}{rcl} \omega &=& \pm v_1 k - i w_1 k^2 & w_1 &=& -rac{W_1 - v_1^2 W_2}{2(v_1^2 - v_2^2)} \ \omega &=& \pm v_2 k - i w_2 k^2 & w_2 &=& +rac{W_1 - v_2^2 W_2}{2\gamma_{\parallel}(v_1^2 - v_2^2)} \ \omega &=& -i \Gamma_{\parallel} - i w_3 k^2 & w_3 &=& rac{(\gamma_{\parallel}' - \xi')^2}{\gamma_{\parallel}'} rac{1 - v_A^2 \cos^2 heta}{1 - v_A^2} + 4 \xi' rac{\sin^2 heta}{1 - v_A^2} \end{array}$$

Always damping (stable around the equilibrium)

$$W_{1} = \frac{\gamma_{\parallel}' \eta_{\parallel}' - \xi'^{2}}{\gamma_{\parallel}} \left(c_{s}^{2} \cos^{2}(2\theta) + \frac{v_{A}^{2}}{1 - v_{A}^{2}} \sin^{2}\theta \right) + \rho_{\perp}' c_{s}^{2} \left(1 + \frac{v_{A}^{2}}{1 - v_{A}^{2}} \sin^{2}\theta \right) \\ + \cos^{2}\theta \left[\zeta_{\parallel}' \left(\frac{v_{A}^{2}}{1 - v_{A}^{2}} + c_{s}^{2} \sin^{2}\theta \right) + c_{s}^{2} \left(\zeta_{\perp}' + \eta_{\perp}' - 2\zeta_{\times}' \right) \sin^{2}\theta \right] \\ W_{2} = \frac{\gamma_{\parallel}' \eta_{\parallel}' - \xi'^{2}}{\gamma_{\parallel}} \left(1 + \frac{v_{A}^{2}}{1 - v_{A}^{2}} \sin^{2}\theta \right) + \rho_{\perp}' \left(1 + \frac{c_{s}^{2} v_{A}^{2}}{1 - v_{A}^{2}} \sin^{2}\theta \right) \\ + \frac{\zeta_{\parallel}'}{1 - v_{A}^{2}} \cos^{2}\theta + (\zeta_{\perp}' + \eta_{\perp}') \sin^{2}\theta$$

Split of damping spin modes

Spins are not conserved \rightarrow Gapped modes at k = 0. All solutions are always damping.

Summary

- 1. We went though a brief overview of relativistic hydro. for QGP.
- 2. We discussed formulation of MHD with chirality and spin.
- 3. We developed an analytic algorithm for solutions search on an order-by-order basis in derivative.
- 4. We pointed out the breakdown of a small k expansion in anisotropic systems and an instability in chiral systems.

Outlook

Extension to a finite (baryon) charge density for low-energy collisions.

- -- Charge density and E field may be included as quasi-hydro variables.
- -- Spin polarization induced by a magnetic field.

Cancelled in neutral fluid

Back-up slides

Breakdown of a small k expansion in anisotropic systems

Trig. functions serve as another small parameter.

Two limits, $\theta \to \pi/2$ and $k \to 0$, do not commute.

Demonstration with the simplest case: The Alfven mode (w/o spin)

For $|\cos \theta| < \hat{k}:$ Split of diffusive modes
from an alternative expansion

$$\omega_{+} = -ik^{2}\rho_{\parallel}' - i\left((\rho_{\perp}' - \rho_{\parallel}')k^{2} + \frac{v_{A}^{2}}{\eta_{\perp}' - \rho_{\parallel}'}\right)\cos^{2}\theta + \mathcal{O}(\cos^{4}\theta),$$

$$\omega_{-} = -ik^{2}\eta_{\perp}' - i\left((\eta_{\parallel}' - \eta_{\perp}')k^{2} - \frac{v_{A}^{2}}{\eta_{\perp}' - \rho_{\parallel}'}\right)\cos^{2}\theta + \mathcal{O}(\cos^{4}\theta),$$

Causality and artificial instability

Stability against perturbation on an equilibrium state

Stability (expectation) Artificial instability despites dissipation, depending on Lorentz frames

Hiscock & Lindblom (1983-1987)

 $\boldsymbol{\mathcal{X}}$

ഗ്രാ

• Dissipative currents are acausal. Systems need finite time to develop dissipative currents.

$$\boldsymbol{j} = -D \nabla \cdot \boldsymbol{n} \qquad \partial_t \boldsymbol{n} = -\nabla \cdot \boldsymbol{j} \qquad \boldsymbol{\uparrow} \quad \boldsymbol{t}$$

- Chronicle order can be different for spatially separated observers.
 X Stability becomes an observer-dependent concept.
- Causality is necessary for stability.
 → Israel-Stewart theory, etc.
 Gavassino (2022)

MHD from the global symmetries of QED

We argued that E is screened in the equilibrium, but B is not. \rightarrow MHD = fluid dynamics + magnetic flux

Q1: Can we understand MHD from any symmetry of the underlying microscopic theory?

Grozdanov et al. Hongo, KH

Q2: How is MHD derived from a microscopic theory?

Gaiotto et al.

Conventional (0-form) symmetry

Conservation of point-like charges in a box

<u>"MHD from QED" a talk at "Spin and Hydrodynamics in Relativistic Nuclear</u> <u>Collisions"</u>

Constitutive equations to the first order (in a parity-even environment)

Available tensors

$$\begin{array}{ccc}g^{\mu\nu}&u^{\mu}&b^{\mu}=B^{\mu}/\sqrt{B^{\nu}B_{\nu}}\\\epsilon^{\mu\nu\alpha\beta}&&u_{\mu}\Xi^{\mu\nu}=0=b_{\mu}\Xi^{\mu\nu}\end{array}$$

$$\begin{split} \Theta^{\mu\nu} &= e u^{\mu} u^{\nu} + p_{\perp} \Xi^{\mu\nu} + p_{\parallel} b^{\mu} b^{\nu} + \delta \Theta^{\mu\nu} \\ \Sigma^{\mu\nu\rho} &= \epsilon^{\mu\nu\rho\lambda} (\sigma_{\lambda} + u_{\lambda} \delta \sigma) \\ \tilde{F}^{\mu\nu} &= (B^{\mu} u^{\nu} - B^{\nu} u^{\mu}) + \delta \tilde{F}^{\mu\nu} \qquad \sigma^{\mu} \equiv \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} u_{\nu} \sigma_{\rho\sigma} \end{split}$$

• Totally anti-symmetric spin tensor $\sum \mu \nu \rho$ (motivated by Dirac fermions)

$$\partial_{\mu} \Sigma^{\mu\alpha\beta} = -\partial_{\mu} L^{\mu\alpha\beta} = -2\Theta^{[\mu\nu]} L^{\mu\alpha\beta} = x^{\alpha}\Theta^{\mu\beta} - x^{\beta}\Theta^{\mu\alpha}$$

Number of dof

 $e, n, and three components for \sigma_{\nu\rho}$

For a totally anti-symmetric $\Sigma^{\mu\nu\rho}$, $\sigma_{\nu\rho} = -\sigma_{\rho\nu}$ and $0 = u_{\mu}u^{\nu}\Sigma^{\mu}{}_{\nu\rho} = -u^{\nu}\sigma_{\nu\rho}$

Constraint equation (no temporal derivative)

$$u^{\rho} \left(\partial_{\mu} \Sigma^{\mu}_{\ \nu\rho} + 2\Theta_{[\nu\rho]} \right) = 0$$

Both # of dof and EoM are reduced by 3.

Throwing away the redundancy

$$\sigma^{\mu} \equiv \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} u_{\nu} \sigma_{\rho\sigma} \qquad \sigma^{\mu} u_{\mu} = 0$$

Divergence of the entropy current

$$\partial_{\mu}s^{\mu} = s\theta + \beta De - \frac{1}{2}\beta\mu^{\nu\rho}D\sigma_{\nu\rho} - \beta H_{\mu}DB^{\mu} + \partial_{\mu}\delta s^{\mu}$$
$$D \equiv u^{\mu}\partial_{\mu}$$
Equations of motion

Leading order (ideal fluid) $\partial_{\mu}s^{\mu} = s\partial_{\mu}u^{\mu} + Ds + \partial_{\mu}s^{\mu}_{(1)}$ - Should be vanishing $= \begin{bmatrix} \beta (Ts - \epsilon - p_{\perp} + \omega_{\alpha\beta} S^{\alpha\beta} + H_{\mu} B^{\mu}) \partial_{\mu} u^{\mu} \\ -\beta [(p_{\parallel} - p_{\perp}) b^{\mu} b^{\nu} + B b^{\mu} H^{\nu} + 2S^{\mu\alpha} \omega^{\nu}{}_{\alpha}] \partial_{\mu} u_{\nu} \end{bmatrix}$ $-\Theta^{\mu\nu}_{(1)}(\partial_{\mu}\beta_{\nu}-2\beta\omega_{\mu\nu})$ NLO in derivative $-\Sigma^{\mu\alpha\beta}_{(1)}\partial_{\mu}(\beta\omega_{\alpha\beta}) + \tilde{F}^{\mu\nu}_{(1)}\partial_{\mu}(\beta H_{\nu}) - \frac{Should}{\beta} be semi-positive$ $+\partial_{\mu}(s^{\mu}_{(1)}+\beta u_{\nu}\Theta^{\mu\nu}_{(1)}+\beta\omega_{\alpha\beta}\Sigma^{\mu\alpha\beta}_{(1)}-\beta H_{\nu}\tilde{F}^{\mu\nu}_{(1)})$

First-order corrections

$$\partial_{\mu}s^{\mu} = -\delta\Theta^{(\mu\nu)}\partial_{(\mu}\beta_{\nu)} - \delta\Theta^{[\mu\nu]}(\partial_{[\mu}\beta_{\nu]} - \beta\mu_{\mu\nu}) + \delta\tilde{F}^{\mu\nu}\partial_{\mu}(\beta H_{\nu})$$

$$\geq 0 \qquad \text{Symmetric part} \qquad \text{Anti-symmetric part} \qquad \text{Induced EM field}$$

$$\text{(Shear)} \qquad \text{(Torque, vorticity)}$$

The entropy production stops when the spin potential equals the thermal vorticity.

$$\beta\mu_{\mu\nu} = \partial_{[\mu}\beta_{\nu]}$$

Semi-positivity is ensured by bilinear forms

Becattini

$$\delta \Theta^{\mu\nu} = -T \begin{pmatrix} \eta^{\mu\nu\rho\sigma} & \xi^{\mu\nu\rho\sigma} \\ \xi'^{\mu\nu\rho\sigma} & \gamma^{\mu\nu\rho\sigma} \end{pmatrix} \begin{pmatrix} \partial_{(\rho}\beta_{\sigma)} \\ \partial_{[\rho}\beta_{\sigma]} - \beta\mu_{\rho\sigma} \end{pmatrix}$$
$$\delta \tilde{F}^{\mu\nu} = -T \rho^{\mu\nu\rho\sigma} \partial_{[\rho} (\beta H_{\sigma]}) \qquad \qquad \text{Viscous tensors}$$

Resistivity tensor

The off-diagonal component $\xi^{\mu\nu\alpha\beta}$ converts symmetric shear to a torque and antisymmetric vorticity to a shear deformation.

Cross viscosities Shear-Torque conversion

$$\delta\Theta^{\mu\nu} = -T \begin{pmatrix} \eta^{\mu\nu\rho\sigma} & \boldsymbol{\xi}^{\mu\nu\rho\sigma} \\ \boldsymbol{\xi}^{\prime\,\mu\nu\rho\sigma} & \gamma^{\mu\nu\rho\sigma} \end{pmatrix} \begin{pmatrix} \partial_{(\rho}\beta_{\sigma)} \\ \partial_{[\rho}\beta_{\sigma]} - \beta\mu_{\rho\sigma} \end{pmatrix}$$

$$\xi^{\mu\nu\rho\sigma} = 2\xi (b^{\mu}\Xi^{\nu[\rho}b^{\sigma]} + b^{\nu}\Xi^{\mu[\rho}b^{\sigma]} + b^{\mu}\Xi^{\nu(\rho}b^{\sigma)} - b^{\nu}\Xi^{\mu(\rho}b^{\sigma)})$$

Onsager's reciprocal relations from time-reversal symmetry $\eta^{\mu\nu\rho\sigma}(b) = \eta^{\rho\sigma\mu\nu}(-b), \ \gamma^{\mu\nu\rho\sigma}(b) = \gamma^{\rho\sigma\mu\nu}(-b),$ $\xi^{\mu\nu\rho\sigma}(b) = \xi^{\rho\sigma\mu\nu}(-b), \ \xi'^{\mu\nu\rho\sigma}(b) = \xi^{\rho\sigma\mu\nu}(-b)$

Short summary

Spin MHD is formulated based on

- Energy-momentum conservation
- Spin (non-)conservation
- Magnetic flux conservation

 $\partial_{\mu}\Theta^{\mu\nu} = 0$ $\partial_{\mu}\Sigma^{\mu\nu\rho} = -2\Theta^{[\mu\nu]}$ $\partial_{\mu}\tilde{F}^{\mu\nu} = 0$

5 shear and bulk viscosities 2 rotational viscosities 1 cross viscosity 2 resistivity

$$\begin{split} \eta^{\mu\nu\rho\sigma} &= \left(b^{\mu}b^{\nu} \ \Xi^{\mu\nu}\right) \begin{pmatrix} \zeta_{\parallel} & \zeta_{\times} \\ \zeta_{\times}' & \zeta_{\perp} \end{pmatrix} \begin{pmatrix} b^{\rho}b^{\sigma} \\ \Xi^{\rho\sigma} \end{pmatrix} \\ &+ 2\eta_{\parallel} (b^{\mu}\Xi^{\nu(\rho}b^{\sigma)} + b^{\nu}\Xi^{\mu(\rho}b^{\sigma)}) \\ &+ \eta_{\perp} (\Xi^{\mu\rho}\Xi^{\nu\sigma} + \Xi^{\mu\sigma}\Xi^{\nu\rho} + \Xi^{\mu\nu}\Xi^{\rho\sigma}), \\ \gamma^{\mu\nu\rho\sigma} &= \gamma_{\perp} (\Xi^{\mu\rho}\Xi^{\nu\sigma} - \Xi^{\mu\sigma}\Xi^{\nu\rho}) - 2\gamma_{\parallel} (b^{\mu}\Xi^{\nu[\rho}b^{\sigma]} - b^{\nu}\Xi^{\mu[\rho}b^{\sigma]}), \\ \xi^{\mu\nu\rho\sigma} &= 2\xi (b^{\mu}\Xi^{\nu[\rho}b^{\sigma]} + b^{\nu}\Xi^{\mu[\rho}b^{\sigma]} + b^{\mu}\Xi^{\nu(\rho}b^{\sigma)} - b^{\nu}\Xi^{\mu(\rho}b^{\sigma)}), \\ \rho^{\mu\nu\rho\sigma} &= -2\rho_{\perp} (b^{\mu}\Xi^{\nu[\rho}b^{\sigma]} - b^{\nu}\Xi^{\mu[\rho}b^{\sigma]}) + 2\rho_{\parallel}\Xi^{\mu[\rho}\Xi^{\sigma]\nu} \end{split}$$

Inequalities for semi-positivity

$$\begin{aligned} \zeta_{\perp,\parallel} &\geq 0, \quad \eta_{\perp,\parallel} \geq 0, \quad \gamma_{\perp,\parallel} \geq 0, \quad \rho_{\perp,\parallel} \geq 0, \\ \zeta_{\perp}\zeta_{\parallel} - \zeta_{\times}^2 &\geq 0, \quad \eta_{\parallel}\gamma_{\parallel} - \xi^2 \geq 0 \quad (\text{Matrix} \geq 0) \end{aligned}$$

Solving the hydrodynamic equations

Linear-mode analysis

Linearized equation in a matrix form \rightarrow Secular equation (det = 0) \rightarrow Dispersion relations

- Spin(3)

We found an analytic algorithm for the solution search.

Spinless case (usual MHD) $\rho_{\parallel,\perp}' = \rho_{\parallel,\perp}/\mu_m$ $\begin{pmatrix} \omega + i(\rho_{\perp}'k_{\parallel}^2 + \rho_{\parallel}'k_{\perp}^2)/\mu_m & Bk_{\parallel} \\ h\frac{v_A^2}{B}k_{\parallel} & h\omega + i(\eta_{\parallel}k_{\parallel}^2 + \eta_{\perp}k_{\perp}^2) \end{pmatrix} \begin{pmatrix} \delta u_y \\ \delta B_y \end{pmatrix} = 0$ $\begin{pmatrix} -i\frac{B/h}{1-v_A^2}\rho'_{\perp}c_s^2k_{\perp}^2 & -k_{\perp}B & 0 & -i\rho'_{\perp}k_{\parallel}k_{\perp} & \omega + i\rho'_{\perp}k_{\perp}^2 \\ i\frac{B/h}{1-v_A^2}\rho'_{\perp}c_s^2k_{\perp}k_{\parallel} & k_{\parallel}B & 0 & \omega + i\rho'_{\perp}k_{\parallel}^2 & -i\rho'_{\perp}k_{\perp}k_{\parallel} \\ \omega & -hk_{\perp} & -h(1-v_A^2)k_{\parallel} & 0 & \frac{h}{B}v_A^2\omega \\ -c_s^2k_{\perp} & h\omega + i[(\zeta_{\perp}+\eta_{\perp})k_{\perp}^2+\eta_{\parallel}k_{\parallel}^2] & i(\zeta_{\times}+\eta_{\parallel})k_{\perp}k_{\parallel} & \frac{h}{B}v_A^2k_{\parallel} & -\frac{h}{B}v_A^2k_{\perp} \\ -c_s^2k_{\parallel} & +i(\zeta_{\times}+\eta_{\parallel})k_{\perp}k_{\parallel} & \bar{h}(1-v_A^2)\omega + i(\zeta_{\parallel}k_{\parallel}^2+\eta_{\parallel}k_{\perp}^2) & 0 & 0 \end{pmatrix} \begin{pmatrix} \delta e \\ \delta u_x \\ \delta u_z \\ \delta B_z \\ \delta B_z \end{pmatrix} = 0$ $(\nabla \cdot \boldsymbol{B} = 0)$

Alfven waves (Transverse waves)

Secular equation for the 2*2 matrix
$$v_A^2 k_{\parallel}^2 - (\omega + i\tilde{\rho}k^2)(\omega + i\tilde{\eta}k^2) = 0$$

Dispersion relation for the Alfven waves

$$\omega = \pm v_A k_{\parallel} - \frac{i}{2} (\tilde{\rho} + \tilde{\eta}) k^2 + \mathcal{O}(k^3)$$

Alfven velocity: $v_A^2 = \frac{B^2}{\mu_m h}$

$$\tilde{\rho} = (\rho_{\perp} \cos^2 \theta + \rho_{\parallel} \sin^2 \theta) / \mu_m$$
$$\tilde{\eta} = (\eta_{\parallel} \cos^2 \theta + \eta_{\perp} \sin^2 \theta) / h.$$

Spinless case continued (usual MHD)

Magneto-sonic waves (Longitudinal waves)

Secular equation <u>w/o dissipative corrections</u> (the lowest order in k)

$$(\omega^2)^2 - \mathcal{V}^2 k^2 \omega^2 + v_A^2 c_s^2 k^2 k_{\parallel}^2 = 0$$

Modifications of the sound velocity due to the magnetic pressure.

$$\omega = \pm v_1 k, \quad \omega = \pm v_2 k$$
$$v_{1,2} = \frac{1}{\sqrt{2}} \sqrt{\mathcal{V}^2 \pm \sqrt{\mathcal{V}^4 - 4v_A^2 c_s^2 \cos^2 \theta}}$$

Fast and slow magneto-sonic waves

Magneto-sonic waves with dissipative corrections - Solutions <u>have not been known</u> in the literature

- Oth order solutions:
 Pairs of waves propagating in opposite directions
- 1st order dissipative corrections: Pairs of waves damping at the same rate (w/o parity breaking effects)

The same magnitudes of velocities and damping rates

Ansatz for the four solutions

$$\omega = \pm v_1 k - i w_1 k^2, \quad \omega = \pm v_2 k - i w_2 k^2$$

 $w_{1,2}$: Unkown damping rates to be determined $v_{1,2}$: Velocities already determined at the LO.

Analytic solutions: Damping rates

$$w_1 = -\frac{W_1 - v_1^2 W_2}{2(v_1^2 - v_2^2)}, \quad w_2 = +\frac{W_1 - v_2^2 W_2}{2(v_1^2 - v_2^2)}$$

$$W_{1} = \eta'_{\parallel} \left(c_{s}^{2} \cos^{2}(2\theta) + \frac{v_{A}^{2} \sin^{2}\theta}{1 - v_{A}^{2}} \right) + \rho'_{\perp} c_{s}^{2} \frac{1 - v_{A}^{2} \cos^{2}\theta}{1 - v_{A}^{2}} + \cos^{2}\theta \left[\zeta'_{\parallel} \frac{v_{A}^{2}}{1 - v_{A}^{2}} + \left(\zeta'_{\parallel} + \zeta'_{\perp} + \eta'_{\perp} - 2\zeta'_{\times} \right) c_{s}^{2} \sin^{2}\theta \right],$$
$$W_{2} = \eta'_{\parallel} \left(1 + \frac{v_{A}^{2}}{1 - v_{A}^{2}} \sin^{2}\theta \right) + \rho'_{\perp} \left(1 + \frac{v_{A}^{2} c_{s}^{2}}{1 - v_{A}^{2}} \sin^{2}\theta \right) + \frac{\zeta'_{\parallel}}{1 - v_{A}^{2}} \cos^{2}\theta + \left(\zeta'_{\perp} + \eta'_{\perp} \right) \sin^{2}\theta$$

One can show that $W_{1,2} \ge 0$.

All solutions are always damping (stable around the equilibrium)

$$\begin{array}{c} \textbf{Linearized spin MHD} \\ \textbf{4} \times \textbf{4} \\ \begin{pmatrix} A_{(0)} + iA_{(1)} \end{pmatrix} \begin{pmatrix} \delta u_y \\ \delta B_y \\ \delta S_x \\ \delta S_z \end{pmatrix} = 0 \qquad A_{(0)} = \begin{pmatrix} Bk_{\parallel} & \omega & 0 & 0 \\ h\omega & \frac{1}{\mu_m} Bk_{\parallel} & 0 & 0 \\ 0 & 0 & \omega & 0 \\ 0 & 0 & \omega & 0 \\ 0 & 0 & 0 & \omega \end{pmatrix} \\ A_{(1)} = \begin{pmatrix} 0 & \rho'_{\perp} k_{\parallel}^2 + \rho'_{\parallel} k_{\perp}^2 & 0 & 0 \\ (\eta_{\parallel} - 2\xi + \gamma_{\parallel})k_{\parallel}^2 + (\eta_{\perp} + \gamma_{\perp})k_{\perp}^2 & 0 & -\frac{4i}{\chi}(\xi - \gamma_{\parallel})k_{\parallel} & -\frac{4i}{\chi}\gamma_{\perp}k_x \\ -i2(\gamma_{\parallel} - \xi)k_{\parallel} & 0 & \Gamma_{\parallel} & 0 \\ i2\gamma_{\perp}k_x & 0 & 0 & \Gamma_{\perp} \end{pmatrix} \end{array}$$

Sweeping trashes away

Our goal: Solutions at $\mathcal{O}(k^2)$.

(Higher orders do not mean anything for the first-order hydro.)

Determinant should be factorized with ansatz

$$\det M_{4\times 4} = \{\omega - (v_1k - iw_1k^2)\}\{\omega - (-v_1k - iw_1k^2)\} \\ \times \{\omega - (v_2k - iw_2k^2)\}\{\omega - (-v_2k - iw_2k^2)\} \\ + \mathcal{O}(\omega^3k^3) + \mathcal{O}(\omega^2k^4) + \mathcal{O}(\omega^1k^5) + \mathcal{O}(\omega^0k^6)\}$$

However, actual determinant contains higher orders in k.

Greatly simplified if unnecessary higher orders are identified and thrown away appropriately at this stage.

Alfven modes with spin mixing

From the 4×4 matrix,

$$\omega = \pm v_A k_{\parallel} - \frac{i}{2} \left(\rho_{\perp}' k_{\parallel}^2 + \rho_{\parallel}' k_{\perp}^2 + \frac{(\eta_{\parallel} \gamma_{\parallel} - \xi^2) k_{\parallel}^2 + \eta_{\perp} \gamma_{\parallel} k_{\perp}^2}{h \gamma_{\parallel}} \right),$$

$$\begin{split} \omega &= -i\Gamma_{\perp} - i\frac{\gamma_{\perp}}{h}k_{\perp}^{2} \,, \\ \omega &= -i\Gamma_{\parallel} - i\frac{(\gamma_{\parallel} - \xi)^{2}}{h\gamma_{\parallel}}k_{\parallel}^{2} \end{split}$$

 $\Gamma_{\parallel,\perp} = \frac{8}{\chi} \gamma_{\parallel,\perp}$ Spin susceptibility: $S^{\mu\nu} = \chi \mu^{\mu\nu}$ Rotational viscosity: $\delta \Theta^{[\mu\nu]} = -T \gamma^{\mu\nu\rho\sigma} (\partial_{[\rho}\beta_{\sigma]} - \beta \mu_{\rho\sigma})$

Spins are not conserved \rightarrow Gapped modes at k = 0.

$$\partial_{\mu} \Sigma^{\mu\alpha\beta} = -2\Theta^{[\mu\nu]} \qquad \qquad \omega = -i\Gamma_{\perp}$$
$$\omega = -i\Gamma_{\parallel}$$

All solutions are always damping (stable around the equilibrium)

Magneto-sonic modes with spin mixing

From the 5×5 matrix,

TT7

Always damping (stable around the equilibrium)

$$W_{1} = \frac{\gamma_{\parallel}' \eta_{\parallel}' - \xi'^{2}}{\gamma_{\parallel}} \left(c_{s}^{2} \cos^{2}(2\theta) + \frac{v_{A}^{2}}{1 - v_{A}^{2}} \sin^{2}\theta \right) + \rho_{\perp}' c_{s}^{2} \left(1 + \frac{v_{A}^{2}}{1 - v_{A}^{2}} \sin^{2}\theta \right) \\ + \cos^{2}\theta \left[\zeta_{\parallel}' \left(\frac{v_{A}^{2}}{1 - v_{A}^{2}} + c_{s}^{2} \sin^{2}\theta \right) + c_{s}^{2} \left(\zeta_{\perp}' + \eta_{\perp}' - 2\zeta_{\times}' \right) \sin^{2}\theta \right] \\ W_{2} = \frac{\gamma_{\parallel}' \eta_{\parallel}' - \xi'^{2}}{\gamma_{\parallel}} \left(1 + \frac{v_{A}^{2}}{1 - v_{A}^{2}} \sin^{2}\theta \right) + \rho_{\perp}' \left(1 + \frac{c_{s}^{2} v_{A}^{2}}{1 - v_{A}^{2}} \sin^{2}\theta \right) \\ + \frac{\zeta_{\parallel}'}{1 - v_{A}^{2}} \cos^{2}\theta + (\zeta_{\perp}' + \eta_{\perp}') \sin^{2}\theta$$
The analytic solutions tell us that

- 1. All the phase velocities are subluminal.
- 2. All the imaginary parts act as damping effects <u>in the fluid rest frame</u>.

This is, however, not sufficient to insure causality and stability in arbitrary Lorentz frame (see a back-up slide).