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QCD phase transition
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QGP phase <Yy >=0 Chiral symmetry restoration

Hardronic phase < EIIJ >#0  Chiral symmetry breaking

Critical Point Y. —
Kadron Gas \ ; ] In recent years, we have focused not only on the
S”pe'7°"d”°t°' phase transition in the T-p plane, but also paid
Ntir  Nouson Stus close attention to the phase structure under
various conditions, such as magnetic fields,
Baryon Chemical Potential rotation, and acceleration.

The Hot QCD White Paper (2015)



Model calculations for rotation
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Model calculations indicate that real rotation suppresses the chiral condensate
and lowers the critical temperature, meaning rotation leads to chiral symmetry
restoration.



Lattice result for rotation
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Lattice’s results suggest that imaginary rotation promotes chiral symmetry restoration,
which naively implies that real rotation promotes chiral symmetry breaking.



Rotation puzzle

Thus, there is a puzzle in the QCD phase
transition under rotation.

The answer to this puzzle remains unknown.

The serious calculation in QCD is still required.

This puzzle is not the main stuff for today’s talk, let’s
go to acceleration

S Lattice

favor confinement

Some Models

favor deconfinement

Effective Models

> W

Form Pengfei Zhuang’s talk in 2024



NJL model in general spacetime
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Unruh effect

The famous effect induced from acceleration is Unruh effect.

The Hawking-Unruh effect predicts that the accelerated observer sees Minkowski vacuum
state as a thermal bath of particles with temperature T = a/2m.

Define the creation and annihilation
operator in acceleration frame: ag(w)and

at(w)

We have a|0)z=0, where |0) is Rindler vacuum

According to the Unruh effect we have

M(0|a£aR |0)p~ (exp (an) — 1)_1

a



Unruh effect in heavy ion
collisions

Acceleration will provide a temperature T = a/2m. Temperature will surely affect the QCD
phase transition

So is it important in heavy-ion collisions?
May be Yes

According to Dmitri’s work[1], the Unruh effect under strong color fields should be observable.

It said that the strength of the color-electric field E~QZ/g , where Qq is the saturation
scale and g is the strong coupling and the typical acceleration it provided is a~Qs~1GeV

(T = --~200MeV > T, = 150MeV)

[1] Kharzeev D, Tuchin K. From color glass condensate to quark—gluon plasma through the
event horizon[J]. Nuclear Physics A, 2005, 753(3-4): 316-334.



Uniform acceleration in relativity case

The equation of motion for a uniform acceleration
particle:

at
() = .
z(t) =a? (m — 1)
d %
TN

a =

The trajectory is hyperbola in Minkowski coordinates :

1", 1
z+-) -2 ==
a a

RN 5 o
-0.5¢
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Taken from Kharzeev D, Tuchin K. Nuclear
Physics A, 2005, 753(3-4): 316-334.
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Rindler spacetime

Minkowski coordinates (T,X,Y,Z)
ds* = —dT? +dX* +dY? + dZ°

Coordinates transformation :

T = xsinh(t) ,X=xcosh(t),Y =y,Z =2z
Rindler coordinates (t,x,y,z)
ds? = —x*dt? + dx? + dy?* + dz*

For a uniform acceleration particle,

the world line in Minkowski coordinates:

T = x sinh(at) ,X = xcosh(ar)
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the world line in Rindler coordinates:

1
XxX=-—,t=ar
a
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Euclidean Rindler coordinate

T = & sinh(t) — Tr = & sin(tg)
Z = & cosh(t) ZE= & cos(tg)

If we define a field in Euclidean coordinate: ¢ = ¢(Tg, Z)

Because we did not apply any period condition to this field, it can be regarded as a
fleld in a zero-temperature background.

It is readily that ¢ gets a period in Euclidean Rindler coordinate which is ¢(tg, &) = ¢(tg + 21, &)

Remember the relation between Rindler time and uniform acceleration particle’s
proper time is t = a T, whichmeans ¢ (¢ &) = ¢(7 + i 21/a, &)

If we naively regard this period of proper time as the temperature of an accelerated observer

. a
feels, we will have T = =

12



Euclidean Rindler coordinate

te :
Ty = ¢ sin(tg)
If we identify the hypersurface t; = 0 and tz = af Z = ¢ cos(tg)
The manifold it represented will become a .
cone with an angle deficit 2r(1 —v™1)  \Wherev = 2L = T/T), /
a
§
T
AN

In previous studies, this temperature was always set to Ty which is the
Unruh effect suggests.

If a particle moves in a finite temperature background, it may feel a temperature large than

Ty. Thus, we are interested in a phase diagram in T — a plane.
13



Scalar under acceleration

The explicit form of the KG equation 182 82 18 & o2 ,
in Rindler coordinate is (—5—2 o o2 Vo Ta2 Tz " )¢ =0
_ ] 1 1 [2wsinh7w | iwttikex
The eigenfunctions ¢ = m%\/ 3 Ki,(mi§)e
. - . 2
K,, is the modified Bessel function 424 ;ZZ(Z) n ZdK;l/Z(Z) = (22 +v2) K, (2)

satisfying the equation:

The Green function:

/ dw ko piwn (T—7")+ik-(x1—%2) 90, sinh 7w
I]_, I E
' Tg) w2 + w? 2

Kiw(mi1 6K, (m &)



Scalar under acceleration

The Green function:

dw d2k eiwn(T—7)+ik(x1—%2) 9, inh 7w
G,B LBy IL) Zf /8 (271' w%—l—wg 2 iw(rrlJ_é-)Kiw(Ter_éf)f

The trace of Green function in massless limit:

1 o0 T2
trG(x, 2’ |m = 0) = _/ dw( ) mw
0

273 2tanh wr

122
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2 N
InNLo model o2 = fZ — "
T €2 4872 Critical temperature 7. = a&

The accelerated observerison é = 1/a




Spinor under acceleration

The explicit form of the Dirac equation in Rindler coordinate is

70 L 53 ;
€ (z’@o + 5'}/0’}/3) + 'O —m| =0

Directly solving the Dirac equation might be challenging. Thus, we define the Green’s
function:

. 1
(D — 9) S(x,y;s) = \/—__9(5(:153y)3
(f) + ‘ST) G(x,y;s) = S(z,y;s),
. 1
2 i Do) —
(D S 9) G(z,y;s) —\/__9(5(:1:, Y)



Spinor under acceleration

The explicit form of the Dirac equation’s square is

A R 2
(i . 0 bt i 1
= (z(z@o) — |+ o+

Compared to the case of a scalar field, there is only an additional shift in the energy
part. The eigenfunctions is

ﬁ_iwtﬁik'xK_ M (m_L"S)

TwW— )

The function contains y°y° obeyed  f(7"7?) = P f(1) + P~ f(—1)

4+ 144%97
Where, P= = 5



Spinor under acceleration

The Green’s function G is

d?k sinh(Bw/2 — w|r — 7'|) sinh 7(w + i7y%93/2)
B ok ST K s K ais )

.r,k(xl —Xg)

Gﬁ(ﬂ??m’) = / dw
J0

If we apply the NJL model calculation with the massless limit

w
,ﬂ-2£2

1 > 2
S 1—
m2E? /n =)

We can obtain the critical temperature is
1. = H{\/

TrGg(m=0) = /‘DD dw tanh(fw/2)
Jo

3A2 6

2 G

. 1 :
It is trivial in & = ~ again.



Spinor under acceleration

T Phase diagram of gluon plasma under acceleration
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It’s frustrating that acceleration does not seem to affect the critical temperature.

This temperature is defined by the accelerated observer’s proper time. This result means the
phase transition only depends on the temperature the observer feels.

The relationship between temperature in an accelerated frame(T) and inertial frame(T))
remains unknown. The diagram in T; — a plane may be non-trivial.

For now, we only know T(a=0) =T;and T = % -T;=0



Under rotation and acceleration
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NJL model action in rotation and acceleration frame:
i
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Where ¢ =1+a-x
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Dirac equation

The Dirac equation:

(l]/“@ +ia - xy'0; + S y+y w-]J )1/) 0
_m -_
¢

To simplify the formalism, acceleration and angular velocity are chosen along the z-direction.

Thus, the Dirac equation’s square is

, 1 O3 2 1 1 a [. O3 . ) )
D =32 [lao (2+L> ] - +63+¢a63+y 57! [lao+(7+LZ>w]+al+az

Similarly, it can be seen that compared to the non-rotating case, there is only an additional
shift in the energy part due to rotation.
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Gap equation

When my = 0, we can set T condensate ™ =0

m
E =itr(S)

When T = % ,,Mmg = 0, the gap equation become

3 Z jdﬂ 1 1 —is;cosh(mQ/a) canh Q — wj + tanh O+ wj
" 4 2nNZ, 2a 2 T e W er
S ’

X Kéﬂ 1(6143)[]12 (pl,kr) +]lz+1(pl,k7”)]
a °12

If we ignore the boundary, set ¢ = 1, and take the non-rotation limit, we have

d*p, —i sinh(mQ/a) (. ~
1= G/(JS / !z - ;2 / {I&%Jr% () — Ii‘f?g_% ((:1{)}

Where,a = [p”‘zm ]
a

which is consistent with previous work.
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Result
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= both acceleration and rotation restore the chiral symmetry



Massless limit

When m — 0, the gap equation become:
— =0 — r=0.7(GeV)"" — r=1(GeV) !

a/GeV

c AN ad?(rte*+ 1) —rPw* + 3w?
212 2412 (r2w? — 1)2

- w/GeV
07

The critical acceleration (a.) decreases as the angular velocity increases.
The effects of rotation become increasingly significant with increasing radius.
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Summary

= We develop the formulism under rotation and acceleration.
=The critical temperature is independent of acceleration

= Both the acceleration and rotation restore the chiral
symmetry.

= A phase diagram in a — w plane are obtained.

Outlook

*=The relationship between temperature in acceleration frame(T)
and inertial frame(T;) remains unclear. AT; — a diagram may
non-trivial.






	幻灯片 1: Chiral phase transition under acceleration and rotation
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26: Thanks！

