for his discoveries concerning hormonal treatment of prostatic cancer

1966年生理学・医学ノベル賞受賞

Prof. Charles Brenton Huggins,
Ben May Laboratory for Cancer Research,
University of Chicago, Chicago, Ill., U.S.A.

1966年12月13日 ストックホルム "行ったノベルレッシ（172-180頁）

前立腺癌のホルモン療法で薬物療法の手術法を発見したのは1940年でノベル賞を
1966年です。
CHARLES HUGGINS

Charles Brenton Huggins was born in Halifax, Nova Scotia on 22 September 1901, the elder son of Charles Edward Huggins, pharmacist, and of his wife, Bessie Maria Spencer.

Charles B. Huggins attended the public schools in Halifax; Acadia University (B. A. 1920) Wolfville, N. S.; and Harvard University (M. D. 1924) Boston, Massachusetts.

Charles B. Huggins interned at the University of Michigan Hospital (1924—26); he was Instructor in Surgery, University of Michigan 1926—27. Since 1927 he has been a member of the Faculty of University of Chicago: Instructor in Surgery 1927—29; Assistant Professor 1929—33; Associate Professor 1933—36; Professor of Surgery 1936—62; Director, Ben May Laboratory for Cancer Research 1951—; and William B. Ogden Distinguished Service Professor 1962—.

Charles Huggins was married to Margaret Wellman on 29 July 1927. They have a son, Charles E. Huggins and a daughter, Emily Wellman Huggins Fine.

Honorary Degrees

Awards

Katherine Berkam Judd Prize, 1941; Charles L. Meyer Prize, National Academy of Sciences, 1943; American Urological Society Prize, 1948; Francis Amory Prize, American Academy of Arts and Sciences, 1948; Comfort Crookshank Prize, Middlesex Hospital, London, 1957; Charles
Mickle Fellowship, Toronto University, 1958; Cameron Prize, Edinburgh University, 1958; Valentine Prize, New York Academy of Medicine, 1962; Hunter Award, American Therapeutic Society, 1962; Lasker Prize, 1963; Laurea, University Bologna, 1964; Passano Award, 1965; Guiteras Award, 1966; Gairdner Award, 1966; et cetera.


Member of the National Academy of Sciences; American Philosophical Society; et cetera.
ENDOCRINE-INDUCED REGRESSION OF CANCERS

by

CHARLES HUGGINS,

Ben May Laboratory for Cancer Research, University of Chicago,

Chicago, Ill.

Nobel Lecture, December 13, 1966

The natural course can be utterly different in various sorts of malignant disease. Some tumors grow without any apparent restraint whatever. When man harbors a neoplasm of this kind, an increase in the size of the cancer is readily evident from day to day and death ensues in, say, six weeks. Conversely, some malignant growths disappear spontaneously. Both of these antipodal effects are rare. Mostly, man with cancer lives 1 year or a little longer after the neoplasm becomes manifest, and it would appear that some inhibition of growth of the tumor takes place to produce this protracted course.

The net increment of mass of a cancer is a function of the interaction of the tumor and its soil. Self-control of cancers results from a highly advantageous competition of host with his tumor. There are multiple factors which restrain cancer — enzymatic, nutritional, immunologic, the genotype and others. Prominent among them is the endocrine status, both of tumor and host — the subjects of this discourse.

In hormone-responsive cancers, appropriate endocrine modification results in catastrophic effects on cancers of several kinds (Table 1) in man and animals, even in those in the terminal stages of the disease. Of course, there ensues pari passu improvement in the host’s condition. The results are often spectacular. The benefit can be evident within a few hours after the intervention. The improvement can persist throughout the remainder of the life of the organism; in man regressions lasting more than a decade are not uncommon. There can be complete disappearance of the lesions. But worthwhile benefit ensues only when all or much of the cancer is hormone-respon-

Table 1. Eight hormone-responsive cancers of man and animals

<table>
<thead>
<tr>
<th>Type of cancer</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcinoma of breast</td>
<td>Human: female (17), male (18). Rat (44)</td>
</tr>
<tr>
<td>Carcinoma of prostate</td>
<td>Human (12). Human (52)</td>
</tr>
<tr>
<td>Carcinoma of thyroid</td>
<td>Mouse (48). Human (50)</td>
</tr>
<tr>
<td>Lymphosarcoma, leukemia</td>
<td>Hamster (53). Human (54)</td>
</tr>
<tr>
<td>Carcinoma of kidney</td>
<td>Human (55)</td>
</tr>
<tr>
<td>Carcinoma of endometrium</td>
<td>Human (56)</td>
</tr>
<tr>
<td>Carcinoma of seminal vesicle</td>
<td>Hamster (57). Dog (58)</td>
</tr>
<tr>
<td>Carcinoma of scent-glands</td>
<td></td>
</tr>
</tbody>
</table>

172