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* Also check Yongjae’s poster @ STATPHYS28:
[PSb-19] Efficiency at maximum power of fuel-consuming active heat en
gine: a thermodynamically consistent picture
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Krishnamurthy et al., Nat. Phys. (2016)

Colloidal engine powered by active particles

State point 3:
Koae = 18.7 pN pm™!
T, = 313K
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State point 2:
Kmae = 18.7 pN pm!
T.=290K
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* Apparent engine efficiency can surpass the
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Passive heat engine operated
under similar conditions

State point 4:
Ky = .5 pN pm!
T,=313K
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State point 4:
Kowx =115 pN pm™!
Tc=290K
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thermodynamic details are obscure.
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Carnot efficiency, but



Active-bath approaches
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* Models often leave out thermodynamic details of self-propulsion.

X=—sV'X+v, v=—=v+n, @QOnE))=38t—t)

Active Ornstein—Uhlenbeck Process (AOUP)



Parity issues

Janus colloidal particles (even-parity) Helical magnetic nanoswimmers (odd-parity)

G. Volpe et al., Soft Matter (2011) P. Mandal et al., Acc. Chem. Res. (2018)

- Self-propulsion force may keep or change its sign under time
reversal, whose thermodynamic effects are yet to be addressed.



Our goals

» Construct a minimal thermodynamically consistent model of fuel-
driven active engines, which reduces to the AOUP if the chemical
degree of freedom is integrated out.

* Using the apparatus of stochastic thermodynamics, find a clear
energetic interpretation of the engine’s thermodynamic limitations.

- Explore how the parity of self-propulsion affects the engine
performance, especially the efficiency at maximum power.
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A recipe for equilibrating systems

» Consider a Langevin system with the free energy A(r) in contact
with a thermal reservoir at temperature T.

- Parity: under time reversal, r; — €;1;.

- Gibbsean steady-state distribution: P,(r) o e #AM:

Dissipative Reactive
response response
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D;j(r) = €;€;D;j(er) = Dj;(r)
R;j(r) = —€;€jR;j(er) = —R;;(r) (n;(©On; (")) = 2TD;;(r)6(t — t)

Onsager Fluctuation-dissipation relation

Dissipative/reactive . .
reciprocity



Dissipative Reactive Force

Even-panty d|mer response response
» Free energy: A(X,x,c) = V(X) + %kx2 + F(c) W
. : Chemical Wo =)
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Dissipative Reactive Force

Odd'pa rlty dlmer response response
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* Free energy: A(X,x,c) =V(X) + S—m + F(c) Fff‘"* W A
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Active dimers

* Replacing F'(c¢) with a constant chemical driving Au, the engine
becomes active.

Even parity £ Odd parity p=mx -
,__, popolsion = * propulsion
34)4}1( : AU A ’ 5 /
oy Qi Samp o0 T9F
Q;;:} — O K}:JO—/@*O
aanly Fue! propulsian
L |
: 1 X . 1 ’
X =—= V'(X)+C—A/1+77X = = V’(X)+(—pA,u+77X
I I [ I
=l 4
x=——kx+n AOUP-ike P =—=—p+
14 g dynamics . m 2l

2,42 X , {'p
@=_<K+CF )Au+%V'(X)+77c ¢ = b === V) + e

These signs contain the parity information



Assumption of tight coupling

* By setting k = 0, we remove background chemical reactions which
do not contribute to the dimer propulsion.
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Final model

- By setting k = 0, we only consider the chemical reactions directly
driving the dimer.
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Fuel is consumed through dissipatlve interaction with the surrounding



1st law of thermodynamics

» Even-parity case: from Hy(X,x) = V3 (X) + %kxz,

Wr A} v o X 4 kaos

dc o1 T xex
0/1/1+( [X +Tny)oX + (—yx +yny) o % — Auc
= _Wout = Q = Wchem

» Odd-parity case: from Hy(X,p,c) = V(X) + %’
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2"d law of thermodynamics

Even-parity case: the reservoir entropy production is given by

PylX, x] __Jdt[V’(X)—(xA,u . kx ] Q
=

AS,es =1 o X +—ox
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Odd-parity case: the reservoir entropy production is given by

PlX, p] Vi) (. d'p p D Q
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In both cases, the entropy production satisfies the Clausius formula.

For the periodic/steady state, the 2nd |aw of thermodynamics is
obtained as the Clausius inequality (AS,.s) = — [ dt Q/T = 0.



Energetically interpretable efficiency

» Consider a cyclic engine which operates between two reservoirs at
temperatures T; > T,. For convenience, we leave out the notation
(---) for the ensemble average. Then, in the periodic state,

Ql QZ Ql out Ql chem

I T I T
1 T,
- T_2 lwout (1 _ T_l) Ql chem] >0

» Thus, we identify the efficiency bounded from above:
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Carnot efficiency
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Questions

- How does the self-propulsion parity affect the efficiency at

maximum power (EMP)?

- Can the active engine achieve a higher EMP than the passive

engine?
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Brownian gyrator
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* A particle simultaneously exchanges heat with two reservoirs near a
potential minimum (harmonic confining potentials).
* Work is extracted via a fixed nonconservative force field.

* The steady state of the model is exactly solvable.



Brownian gyrator with an active dimer

Even-parity case Odd-parity case
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Nonconservative forces Noises from hot reservoir Noises from cold reservoir
(as long as € + 6)

« For simplicity, the active component is placed in contact with reservoir 1
(the hot reservoir).

* The efficiency of the engine, bounded from above by 1, can be defined in
the same way as in the case of a single active dimer.



Maximization of power

- Reparameterization of force coefficients: {¢,5} to {r = €/6, ¢ = b€}

[2p2

* An active particle of typical velocity v moves in an area —-—.

* For a given engine size (fixed c), we may choose r that maximizes
the power.

 The EMP is then obtained as: v
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Apparent efficiency

* The apparent efficiency considered in Lee, Park, and Park (2020) is
equivalent to
W, 5
Nappr = 75 ( out> =1--

(Ql) + (Wchem> €

* The apparent EMP is obtained as
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- The apparent EMP is always larger than the passive EMP

Nca=1—y1-—1nc.



Active vs. passive EMP

TA=0.5, c=2 h=0.6

Apparent EMP

tA=1.5, ¢c=10/3, h=0.7

EMP

- The apparent EMP is always larger than the passive EMP

Nnca=1—-+1—1c.

- The EMP is larger in the active engine when the chemical driving

Is sufficiently strong.



Parity dependence of the EMP
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- The even-parity (odd-parity) engine is more efficient when the
engine size is smaller (larger) than the run length.



Summary Phys. Rev. E 108, 024602 (2023)

 We constructed a thermodynamically consistent model of active
engines driven by fuel consumption.

* The dissipation of this engine has a clear energetic interpretation
involving the amount of fuel consumed.

- We find the engine efficiency with a concrete upper bound
originating from the second law of thermodynamics.

* While the apparent EMP is always higher in an active engine than in
a passive engine, the EMP is higher in an active engine only when
self-propulsion is sufficiently strong.

 The even-parity (odd-parity) self-propulsion achieves higher EMP
when the engine size is smaller (larger) than the run length.
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