Rigidity and Flow Near Jamming

Bulbul Chakraborty Brandeis University

Rigidity and Flow Near Jamming

Bulbul Chakraborty Brandeis University

Jishnu Nampoothiri, Michael D'Eon (Brandeis) Subhro Bhattacharya, Kabir Ramola, Itai Cohen, Jeffrey Morris (Collaborators)

Rigidity and Flow Near Jamming

Bulbul Chakraborty Brandeis University

Jishnu Nampoothiri, Michael D'Eon (Brandeis) Subhro Bhattacharya, Kabir Ramola, Itai Cohen, Jeffrey Morris (Collaborators)

With eternal gratitude to Bob Behringer

Non-Brownian, no underlying Boltzmann distribution

Phase space explored ONLY via external driving

Non-Brownian, no underlying Boltzmann distribution

Phase space explored ONLY via external driving

What is the Non-equilibrium Statistical Mechanics Framework ?

Non-Brownian, no underlying Boltzmann distribution

Phase space explored ONLY via external driving

What is the Non-equilibrium Statistical Mechanics Framework ?

How do we construct field theories for the collective behavior of such systems ?

Non-Brownian, no underlying Boltzmann distribution

Phase space explored ONLY via external driving

What is the Non-equilibrium Statistical Mechanics Framework?

How do we construct field theories for the collective behavior of such systems ?

Phase Transitions and Critical Behavior: Universality & Scaling

Non-Brownian, no underlying Boltzmann distribution

Phase space explored ONLY via external driving

What is the Non-equilibrium Statistical Mechanics Framework?

How do we construct field theories for the collective behavior of such systems ? Phase Transitions and Critical Behavior: Universality & Scaling

Systems navigate a "constraint landscape" rather than a free-energy landscape

Non-Brownian, no underlying Boltzmann distribution

Phase space explored ONLY via external driving

What is the Non-equilibrium Statistical Mechanics Framework?

How do we construct field theories for the collective behavior of such systems ? Phase Transitions and Critical Behavior: Universality & Scaling

Systems navigate a "constraint landscape" rather than a free-energy landscape

Emergent Theories exhibit conserved quantities

Non-Brownian, no underlying Boltzmann distribution

Phase space explored ONLY via external driving

What is the Non-equilibrium Statistical Mechanics Framework?

How do we construct field theories for the collective behavior of such systems ? Phase Transitions and Critical Behavior: Universality & Scaling

Systems navigate a "constraint landscape" rather than a free-energy landscape

Emergent Theories exhibit conserved quantities

Experimental results from Meera Ramaswamy (Cornell Collaboration)

Wyart & Cates *PRL* 2014 **Key Idea: stress controls fraction of frictional contacts**

Viscosity of stress independent states

Controlled by geometrical $\eta_r(\phi) = \alpha(\phi_I - \phi)^{-2}$ Controlled by geometrical constraints: depends only on density

Key idea: interpolate jamming fraction

$$\phi_J(\sigma) = f(\sigma)\phi_\mu + (1-f)\phi_0$$

Friction introduces a different type of constraint and shifts the critical point to a different packing fraction

Discontinuous shear thickening arises from a "crossover" between these two different critical points

Wyart & Cates PRL 2014 **Key Idea: stress controls fraction of frictional contacts**

Viscosity of stress independent states

Controlled by geometrical $\eta_r(\phi) = \alpha(\phi_I - \phi)^{-2}$ Controlled by geometrical constraints: depends only on density

Key idea: interpolate jamming fraction

$$\phi_J(\sigma) = f(\sigma)\phi_\mu + (1-f)\phi_0$$

Friction introduces a different type of constraint and shifts the critical point to a different packing fraction

Discontinuous shear thickening arises from a "crossover" between these two different critical points

Wyart & Cates PRL 2014 **Key Idea: stress controls fraction of frictional contacts**

Viscosity of stress independent states

Controlled by geometrical $\eta_r(\phi) = \alpha(\phi_I - \phi)^{-2}$ Controlled by geometrical constraints: depends only on density

Key idea: interpolate jamming fraction

$$\phi_J(\sigma) = f(\sigma)\phi_\mu + (1-f)\phi_0$$

Friction introduces a different type of constraint and shifts the critical point to a different packing fraction

Discontinuous shear thickening arises from a "crossover" between these two different critical points

f is a measure of a "distance" from the frictionless, isotropic jamming point

Wyart & Cates PRL 2014 **Key Idea: stress controls fraction of frictional contacts**

Viscosity of stress independent states

 $\eta_r(\phi) = \alpha(\phi_I - \phi)^{-2}$ Controlled by geometrical constraints: depends only on density

Key idea: interpolate jamming fraction

 $\phi_J(\sigma) = f(\sigma)\phi_\mu + (1-f)\phi_0$

Friction introduces a different type of constraint and shifts the critical point to a different packing fraction

Discontinuous shear thickening arises from a "crossover" between these two different critical points

f is a measure of a "distance" from the frictionless, isotropic jamming point

In addition to a shift, the nature of the critical point can change

Wyart & Cates PRL 2014 **Key Idea: stress controls fraction of frictional contacts**

Viscosity of stress independent states

 $\eta_r(\phi) = \alpha(\phi_I - \phi)^{-2}$ Controlled by geometrical constraints: depends only on density

Key idea: interpolate jamming fraction

 $\phi_J(\sigma) = f(\sigma)\phi_\mu + (1-f)\phi_0$

Friction introduces a different type of constraint and shifts the critical point to a different packing fraction

Discontinuous shear thickening arises from a "crossover" between these two different critical points

f is a measure of a "distance" from the frictionless, isotropic jamming point

In addition to a shift, the nature of the critical point can change

Rate-dependent Viscosity is a signature of Crossover Scaling

Multiple, different critical points lead to complex phase behavior in equilibrium systems

Example: Magnetic Systems

Multiple, different critical points lead to complex phase behavior in equilibrium systems

Example: Magnetic Systems

"New" interactions move the system away from a known critical point

Multiple, different critical points lead to complex phase behavior in equilibrium systems

Example: Magnetic Systems

"New" interactions move the system away from a known critical point

Heisenberg: magnetic moments have isotropic interactions

Multiple, different critical points lead to complex phase behavior in equilibrium systems

Example: Magnetic Systems

"New" interactions move the system away from a known critical point

Heisenberg: magnetic moments have isotropic interactions

Add an uniaxial anisotropy, p: changes the symmetry and therefore the nature of the critical points

Multiple, different critical points lead to complex phase behavior in equilibrium systems

Example: Magnetic Systems

"New" interactions move the system away from a known critical point

Heisenberg: magnetic moments have isotropic interactions

Add an uniaxial anisotropy, p: changes the symmetry and therefore the nature of the critical points

Multiple, different critical points lead to complex phase behavior in equilibrium systems

Example: Magnetic Systems

"New" interactions move the system away from a known critical point

Heisenberg: magnetic moments have isotropic interactions

Add an uniaxial anisotropy, p: changes the symmetry and therefore the nature of the critical points

Multiple, different critical points lead to complex phase behavior in equilibrium systems

Example: Magnetic Systems

"New" interactions move the system away from a known critical point

Heisenberg: magnetic moments have isotropic interactions

Add an uniaxial anisotropy, p: changes the symmetry and therefore the nature of the critical points

$$\chi(T,p) \propto (T-T_H)^{-\gamma_H} \, \mathcal{F}(\frac{g(T,p)}{(T-T_H)^\Delta})$$

 $\mathcal{F}(x) \approx \text{constant } x \to 0$

$$\mathscr{F} \approx \frac{1}{(x_c - x)^{-\gamma_I}}$$

Multiple, different critical points lead to complex phase behavior in equilibrium systems

Example: Magnetic Systems

"New" interactions move the system away from a known critical point

Heisenberg: magnetic moments have isotropic interactions

Add an uniaxial anisotropy, p: changes the symmetry and therefore the nature of the critical points

$$\chi(T,p) \propto (T-T_H)^{-\gamma_H} \, \mathcal{F}(\frac{g(T,p)}{(T-T_H)^{\Delta}})$$

 $\mathcal{F}(x) \approx \text{constant } x \to 0$

$$\mathscr{F} \approx \frac{1}{(x_c - x)^{-\gamma_I}}$$

Multiple, different critical points lead to complex phase behavior in equilibrium systems

Example: Magnetic Systems

"New" interactions move the system away from a known critical point

Heisenberg: magnetic moments have isotropic interactions

Add an uniaxial anisotropy, p: changes the symmetry and therefore the nature of the critical points

$$\chi(T,p) \propto (T-T_H)^{-\gamma_H} \, \mathcal{F}(\frac{g(T,p)}{(T-T_H)^\Delta})$$

 $\mathcal{F}(x) \approx \text{constant } x \to 0$

$$\mathscr{F} \approx \frac{1}{(x_c - x)^{-\gamma_I}}$$

Multiple, different critical points lead to complex phase behavior in equilibrium systems

Example: Magnetic Systems

"New" interactions move the system away from a known critical point

Heisenberg: magnetic moments have isotropic interactions

Add an uniaxial anisotropy, p: changes the symmetry and therefore the nature of the critical points

$$\chi(T,p) \propto (T-T_H)^{-\gamma_H} \, \mathcal{F}(\frac{g(T,p)}{(T-T_H)^\Delta})$$

 $\mathcal{F}(x) \approx \text{constant } x \to 0$

$$\mathscr{F} \approx \frac{1}{(x_c - x)^{-\gamma_l}}$$

Anisotropy (p)

Note: Controlling p is not the same as controlling g or the distance x.

$$\eta(\phi, \sigma) \propto (\phi_0 - \phi)^{-2} \mathscr{F}(\frac{g(\phi, \sigma)}{(\phi_0 - \phi)^{\Delta}})$$
$$\mathscr{F}(x) \approx \text{constant } \mathbf{x} \to 0$$

Frictionless isotropic jamming

$$\begin{split} \chi(T,p) \propto (T-T_H)^{-\gamma_H} \, \mathcal{F}(\frac{g(T,p)}{(T-T_H)^{\Delta}}) \\ \mathcal{F}(x) \approx \text{constant } \mathbf{x} \to 0 \\ \mathcal{F} \approx \frac{1}{(x_c - x)^{-\gamma_I}} \end{split}$$

$$\eta(\phi,\sigma) \propto (\phi_0 - \phi)^{-2} \mathcal{F}(\frac{g(\phi,\sigma)}{(\phi_0 - \phi)^{\Delta}})$$

 $\mathscr{F}(x) \approx \text{constant } \mathbf{x} \to \mathbf{0}$

Frictionless isotropic jamming

$$\mathcal{F} \approx \frac{1}{(x_c - x)^{-\delta}}$$

 $x \rightarrow x_c$ Stress-activated Jamming

$$\begin{split} \chi(T,p) \propto (T-T_H)^{-\gamma_H} \, \mathcal{F}(\frac{g(T,p)}{(T-T_H)^{\Delta}}) \\ \mathcal{F}(x) \approx \text{constant } \mathbf{x} \to 0 \\ \mathcal{F} \approx \frac{1}{(x_c - x)^{-\gamma_I}} \end{split}$$

$$\eta(\phi, \sigma) \propto (\phi_0 - \phi)^{-2} \mathscr{F}(\frac{g(\phi, \sigma)}{(\phi_0 - \phi)^{\Delta}})$$
$$\mathscr{F}(x) \approx \text{constant } \mathbf{x} \to 0$$

Frictionless isotropic jamming

$$\mathscr{F} \approx \frac{1}{(x_c - x)^{-\delta}}$$

 $x \to x_c$ Stress-activated Jamming

Wyart-Cates Theory is a special case

$$\mathcal{F}_{WC} = \left(\frac{1}{\phi_0 - \phi_\mu} - \frac{f(\sigma)}{\phi_0 - \phi}\right)^{-2}$$

$$\chi(T,p) \propto (T - T_H)^{-\gamma_H} \mathscr{F}(\frac{g(T,p)}{(T - T_H)^{\Delta}})$$
$$\mathscr{F}(x) \approx \text{constant } x \to 0$$
$$\mathscr{F} \approx \frac{1}{(x_c - x)^{-\gamma_I}}$$

$$\eta(\phi, \sigma) \propto (\phi_0 - \phi)^{-2} \mathcal{F}(\frac{g(\phi, \sigma)}{(\phi_0 - \phi)^{\Delta}})$$
$$\mathcal{F}(x) \approx \text{constant } \mathbf{x} \to 0$$

Frictionless isotropic jamming

$$\mathscr{F} \approx \frac{1}{(x_c - x)^{-\delta}}$$

 $x \to x_c$ Stress-activated Jamming

$$\begin{split} \chi(T,p) \propto (T-T_H)^{-\gamma_H} \, \mathcal{F}(\frac{g(T,p)}{(T-T_H)^{\Delta}}) \\ \mathcal{F}(x) \approx \text{constant } \mathbf{x} \to 0 \\ \mathcal{F} \approx \frac{1}{(x_c - x)^{-\gamma_I}} \end{split}$$

Wyart-Cates Theory is a special case

$$\mathscr{F}_{WC} = \left(\frac{1}{\phi_0 - \phi_\mu} - \frac{f(\sigma)}{\phi_0 - \phi}\right)^{-2}$$

Does it work ?

Crossover Scaling in Shear Thickening

$$\eta(\phi,\sigma) \propto (\phi_0-\phi)^{-2} \mathcal{F}(\frac{g(\phi,\sigma)}{(\phi_0-\phi)^{\Delta}})$$

Crossover Scaling in Shear Thickening

Crossover Scaling in Shear Thickening

Orthogonal Shear

A Universal Scaling Framework for Tunable Shear Thickening

(arXiv: 2205.02184 and 2107.13338)

Jamming Phase Diagram from Scaling

Shadows of a Equilibrium Transition

Shadows of a Equilibrium Transition

 $NP = 2000 \quad \phi = 0.75 \quad t^* = 1.0 \quad \gamma = 0.46$

Pebble Game identifies rigid clusters (Silke Henkes)

 $NP = 2000 \quad \phi = 0.75 \quad t^* = 1.0 \quad \gamma = 0.46$

 $NP = 2000 \quad \phi = 0.75 \quad t^* = 1.0 \quad \gamma = 0.46$

 $NP = 2000 \quad \phi = 0.75 \quad t^* = 1.0 \quad \gamma = 0.46$

Clusters of Rigid Particles

Constraints and Conservation Laws

- Lattice "fluxes" add up to zero at every vertex: divergence free condition satisfied • by electric/magnetic fluxes
- Total "flux" in any direction is conserved
- Many microscopic configurations give the same total flux
- Appropriate coarse-graining variable: E field •

 $\nabla \cdot E = 0$

Force & Torque Balance: Boundary forces

 $\sum_{c \in g} \vec{f}_{g,c} = 0$ $= \vec{f}_{body}$ $\sum_{c \in g} \vec{r}_{g,c} \times \vec{f}_{g,c} = 0$ $c \in g$

 $\frac{\text{Coarse-grained Stress Tensor}}{\hat{\sigma}(\vec{r})} = \frac{1}{\Omega_r} \sum_{g,c \in \Omega_r} \vec{r}_{g,c} \otimes \vec{f}_{g,c}$

Mapping to Vector-charge U(1) Gauge Theory

M. Pretko (2018)

Gauss's Law:
$$\partial_i E_{ij} =
ho_j$$

 E_{ij} and A_{ij} are conjugate variables

$$A_{ij} = A_{ij} + \partial_i \phi_j + \partial_j \phi_i$$

Charge and Charge angular momentum are conserved

Maxwell's Equations in Vacuum

$$\partial_i E_{ij} = \rho_j$$

$$\partial_i B_{ij} = \tilde{\rho}_j$$

$$\epsilon_{iab} \epsilon_{jcd} \partial_a \partial_c E_{bd} = -\partial_t B_{ij} - \tilde{J}_{ij}$$

$$\epsilon_{iab} \epsilon_{jcd} \partial_a \partial_c B_{bd} = \partial_t E_{ij} + J_{ij}$$

Mapping to Vector-charge U(1) Gauge Theory

Gauss's Law: $\partial_i E_{ij} = \rho_j$

 E_{ij} and A_{ij} are conjugate variables

$$A_{ij} = A_{ij} + \partial_i \phi_j + \partial_j \phi_i$$

Charge and Charge angular momentum are conserved

Maxwell's Equations in Vacuum

$$\partial_i E_{ij} = \rho_j$$
$$\partial_i B_{ij} = \tilde{\rho}_j$$
$$\epsilon_{iab} \epsilon_{jcd} \partial_a \partial_c E_{bd} = -\partial_t B_{ij} - \tilde{J}_{ij}$$

 $\epsilon_{iab}\epsilon_{jcd}\partial_a\partial_c B_{bd} = \partial_t E_{ij} + J_{ij}$

Mapping to Vector-charge U(1) Gauge Theory

Gauss's Law: $\partial_i E_{ij} = \rho_j$

 E_{ij} and A_{ij} are conjugate variables

$$A_{ij} = A_{ij} + \partial_i \phi_j + \partial_j \phi_i$$

Charge and Charge angular momentum are conserved

Maxwell's Equations in Vacuum

$$\partial_{i}E_{ij} = \rho_{j}$$
$$\partial_{i}B_{ij} = \tilde{\rho}_{j}$$
$$\epsilon_{iab}\epsilon_{jcd}\partial_{a}\partial_{c}E_{bd} = -\partial_{t}B_{ij} - \tilde{J}_{ij}$$
$$\epsilon_{iab}\epsilon_{jcd}\partial_{a}\partial_{c}B_{bd} = \partial_{t}E_{ij} + J_{ij}$$

Theory
M. Pretko (2018)
Dielectric
Dielectric
Electrostatics in a Dielectric

$$\partial_i E_{ij} = \rho_j^{free} + \rho_j^{bound}$$

 $\epsilon_{iab}\epsilon_{jcd}\partial_a\partial_c E_{bd} = 0$
 $\partial_i D_{ij} = \rho_j^{free}$
 $D_{ij} = \chi_{ijkl}E_{kl}$

Vectorial "free" Charges/ Tensorial, Symmetric E field

Gauss's Law: $\partial_i E_{ij} = \rho_j$

Stress-only Formulation of the Elasticity of Jammed States

$$\partial_i \sigma_{ij} = f_j^{\text{external}}$$
$$E_{ij} = \frac{1}{2} (\partial_i \phi_j + \partial_j \phi_i) \implies \epsilon_{iab} \epsilon_{jcd} \partial_a \partial_c E_{bd} = 0$$
$$\sigma_{ij} = K_{ijkl} E_{kl}$$

J. Nampoothiri et al PRL (2021), PRE (2023)

Crucial Differences from Classical Elasticity:

- Rigidity is a consequence of constraints not broken symmetry
- Instead of physical displacement fields defining a strain tensor, there are gauge potentials defining a field that looks like the strain tensor
- The elastic moduli are not material properties but emerge from properties of the network created by external stresses (does not have the usual symmetries)
- The elastic moduli do not have to satisfy the symmetry requirements coming from a free-energy.

Stress-only Formulation of the Elasticity of Jammed States

$$\partial_i \sigma_{ij} = f_j^{\text{external}}$$
$$E_{ij} = \frac{1}{2} (\partial_i \phi_j + \partial_j \phi_i) \implies \epsilon_{iab} \epsilon_{jcd} \partial_a \partial_c E_{bd} = 0$$
$$\sigma_{ij} = K_{ijkl} E_{kl}$$

Crucial Differences from Classical Elasticity:

- Rigidity is a consequence of constraints not broken symmetry
- Instead of physical displacement fields defining a strain tensor, there are <u>gauge potentials</u> defining a field that looks like the strain tensor
- The elastic moduli are not material properties but emerge from properties of the network created by external stresses (does not have the usual symmetries)
- The elastic moduli do not have to satisfy the symmetry requirements coming from a free-energy.

J. Nampoothiri et al PRL (2021), PRE (2023)

> Total flux of stress components is conserved Bi et al:Annual Reviews of Condensed Matter (2015)

$$\frac{dP_{\alpha}(t)}{dt} = \sum_{\beta} W(\alpha|\beta) P_{\beta}(t) - W(\beta|\alpha) P_{\alpha}(t)$$

If dynamics conserves some quantity (U), then $P_{\alpha} = f_{\alpha}/Z_{\mu}(U)$ $Z_{\mu}(U) = \sum_{\alpha} f_{\alpha} \delta(U_{\alpha} - U)$

Intensive Variables can be defined

$$\frac{dP_{\alpha}(t)}{dt} = \sum_{\beta} W(\alpha|\beta) P_{\beta}(t) - W(\beta|\alpha) P_{\alpha}(t)$$

If dynamics conserves some quantity (U), then $P_{\alpha} = f_{\alpha}/Z_{\mu}(U)$ $Z_{\mu}(U) = \sum_{\alpha} f_{\alpha} \delta(U_{\alpha} - U)$

Intensive Variables can be defined Bi et al: A

Bertin et al: Phys. Rev. E (2007) Bi et al: Annual Reviews of Condensed Matter (2015)

$$\frac{dP_{\alpha}(t)}{dt} = \sum_{\beta} W(\alpha|\beta) P_{\beta}(t) - W(\beta|\alpha) P_{\alpha}(t)$$

If dynamics conserves some quantity (U), then $P_{\alpha} = f_{\alpha}/Z_{\mu}(U)$

$$Z_{\mu}(U) = \sum_{\alpha} f_{\alpha} \delta(U_{\alpha} - U)$$

Bertin et al: Phys. Rev. E (2007) Bi et al: Annual Reviews of Condensed Matter (2015)

Intensive Variables can be defined

- Analogs of Microcanonical and Canonical Ensembles
- Edwards "Thermodynamics"
- Field Theories are Emergent Gauge Theories (due to constraints)
- Effective Hamiltonians ==> Universality and Scaling ?