A nonlinear fluctuation – dissipation test for Markovian systems

Phys. Rev. X 13, 021034 (2023)

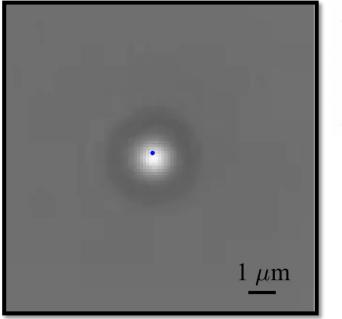
DIMA BORISKOVSKY, ROICHMAN LAB, TAU.

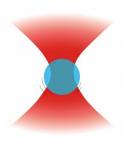
YSF – YITP 2023

The Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University

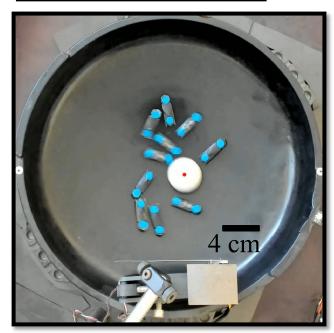
Thermal or active forces?

Thermal fluctuations:



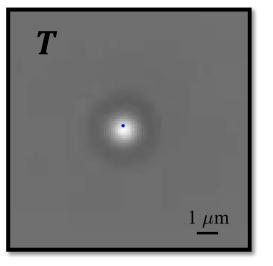


Active fluctuations:



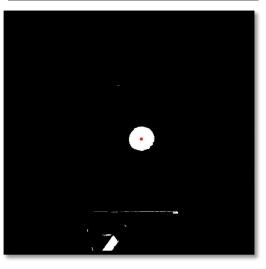
Thermal or active forces?

Thermal fluctuations:



Markovian dynamics.Equilibrium FDT: temperature.

Active fluctuations:



Non-Markovian dynamics?Generalized FDR?

□ Effective temperature?

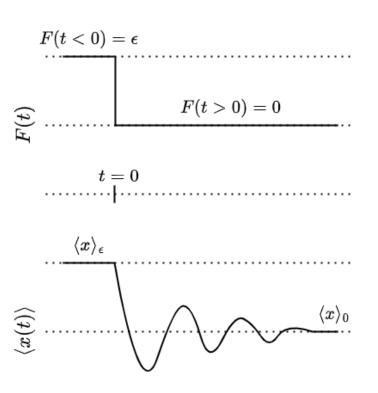
Fluctuation – Dissipation Theorem: a test for equilibrium

 \Box A step-stimulus: $F(t) = \epsilon \cdot \Theta(-t)$

□ The Fluctuation – Dissipation Relation (FDR):

$$\langle x(t>0)\rangle = \frac{\epsilon}{k_B T} \langle x(t')x(t'+t)\rangle_0 \equiv \frac{\epsilon}{k_B T} C_{xx}(t)$$

□ <u>If violated: the system operates out-of-equilibrium.</u>



Generalized (linear) FDR: a test for Markovianity

□ A step – stimulus: $F(t) = \epsilon \cdot \Theta(-t)$

Generalized (linear) FDR:

$$z_L(x(t)) \equiv \epsilon \cdot \frac{\partial}{\partial \epsilon} \ln P_{\epsilon}(x) \Big|_{\epsilon=0}$$

 $\langle z_L(t>0)\rangle = C_{zz}(t)$

If violated: the coordinate $\{x\}$ **is non-Markovian.**

Restricted to linear-response: extensive amount of trials.

Nonlinear FDR an efficient test for Markovianity

□ A step – stimulus: $F(t) = \epsilon \cdot \Theta(-t)$

Nonlinear FDR:

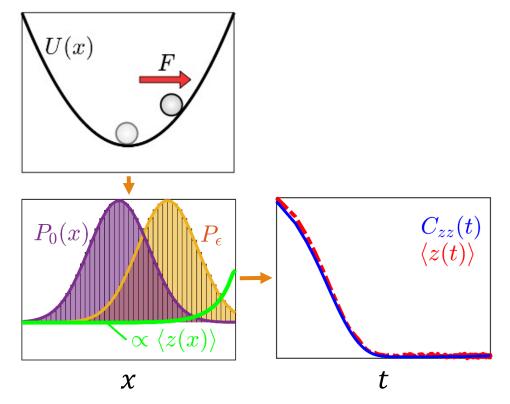
$$z_{NL}(x(t)) \equiv \frac{P_{\epsilon}(x)}{P_{0}(x)} - 1$$

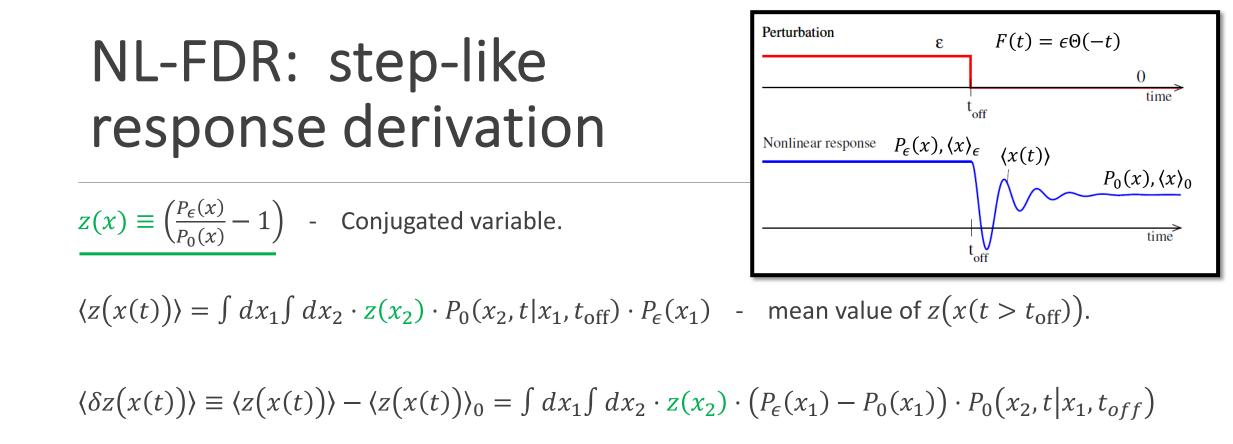
 $\langle z_{NL}(t>0)\rangle = C_{zz}(t)$

If violated: the coordinate $\{x\}$ is non-Markovian.

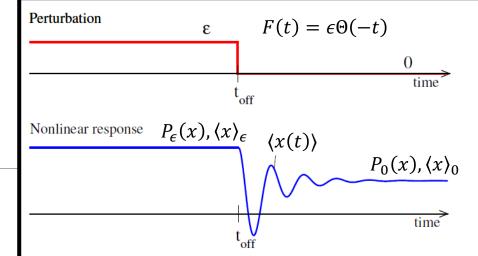
□ Not restricted to weak perturbations: requires less averaging.

 $\left[\dot{x} = -\mu kx + f(t) + \sqrt{2\mu k_B T} \xi_{th}(t)\right]$



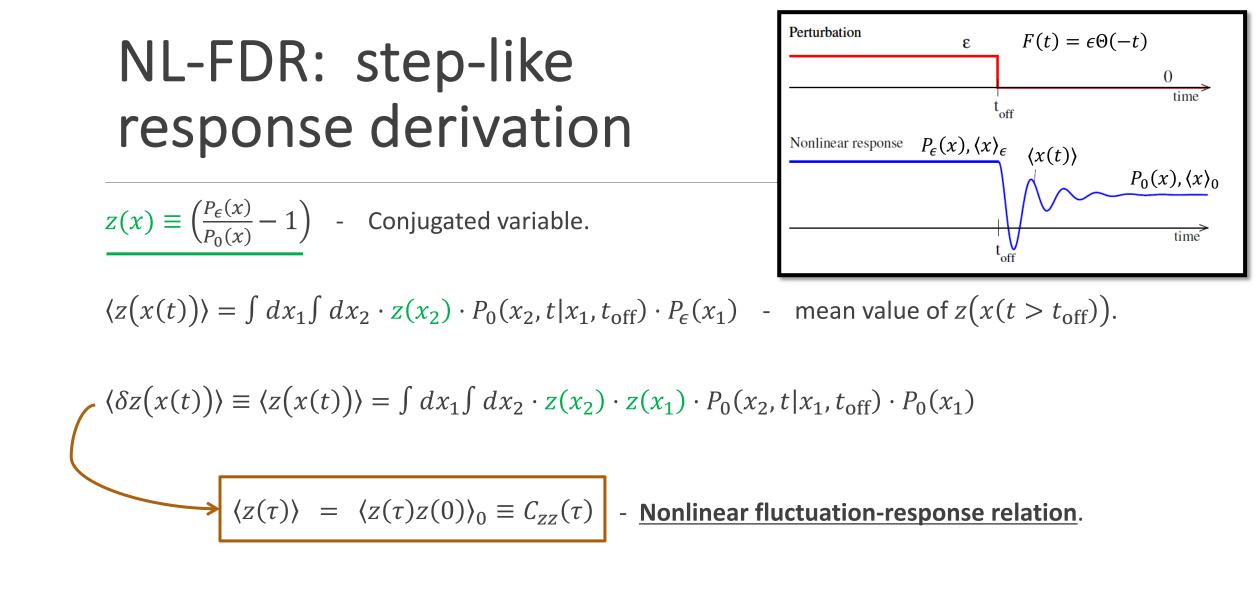






 $\langle z(x(t)) \rangle = \int dx_1 \int dx_2 \cdot z(x_2) \cdot P_0(x_2, t | x_1, t_{\text{off}}) \cdot P_{\epsilon}(x_1) \quad - \text{ mean value of } z(x(t > t_{\text{off}})).$

$$\langle \delta z \big(x(t) \big) \rangle \equiv \langle z \big(x(t) \big) \rangle - \langle z \big(x(t) \big) \rangle_0 = \int dx_1 \int dx_2 \cdot z(x_2) \cdot \Big(\frac{P_{\epsilon}(x_1)}{P_0(x_1)} - 1 \Big) \cdot P_0(x_2, t | x_1, t_{\text{off}}) \cdot P_0(x_1)$$
$$= 0$$



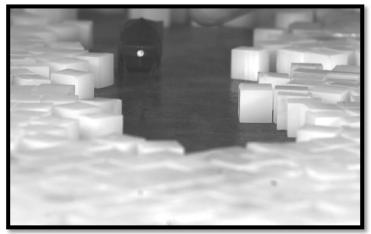
The system: mechanical perturbation

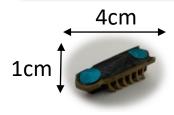
□ The amplitude of the perturbation is controlled by the fan voltage.

A shutter is added to simulate a step – stimulus.

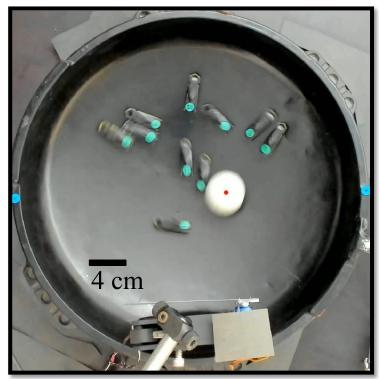
The system: bristlebots

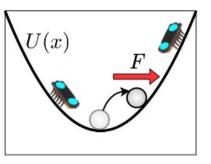
Self-propelled bristlebots:





Bristlebots in a harmonic trap



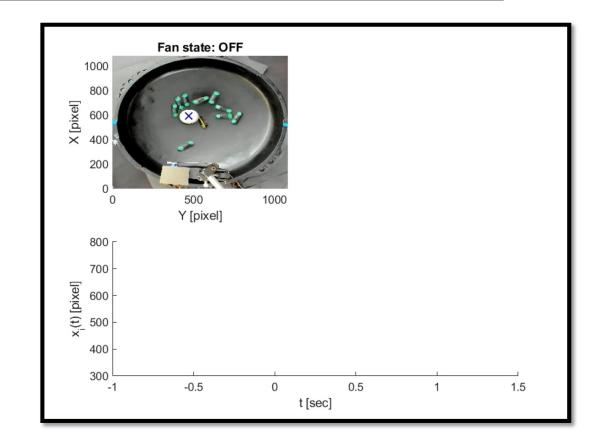


fluctuation-response protocol: passive tracer in a bristle-bot bath

• Time sequences $x_i(t)$ are recorded during a time window $T = 2 \min (1 \min \text{ force on/off})$.

• M = 375 trials are averaged.

• The steady-state densities and the nonlinear conjugated variable z(x(t)) are obtained.

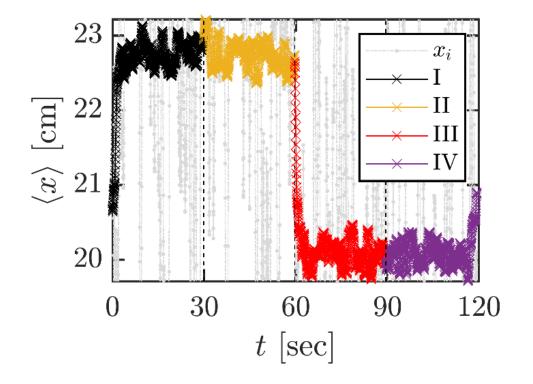


fluctuation-response protocol: passive tracer in a bristle-bot bath

• Time sequences $x_i(t)$ are recorded during a time window $T = 2 \min (1 \min \text{ force on/off})$.

• M = 375 trials are averaged.

• The steady-state densities and the nonlinear conjugated variable z(x(t)) are obtained.



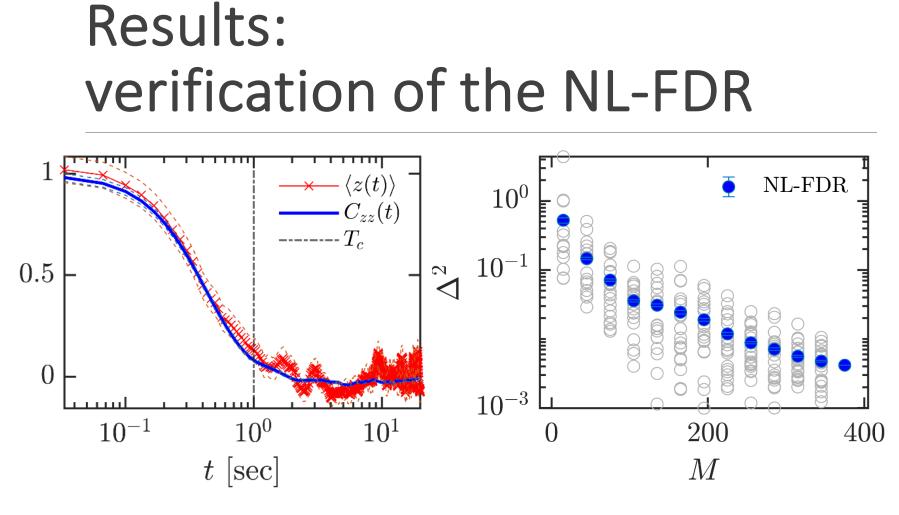
fluctuation-response protocol: passive tracer in a bristle-bot bath

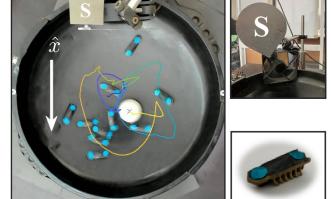
• Time sequences $x_i(t)$ are recorded during a time window $T = 2 \min (1 \min \text{ force on/off})$.

• M = 375 trials are averaged.

• The steady-state densities and the nonlinear conjugated variable z(x(t)) are obtained.





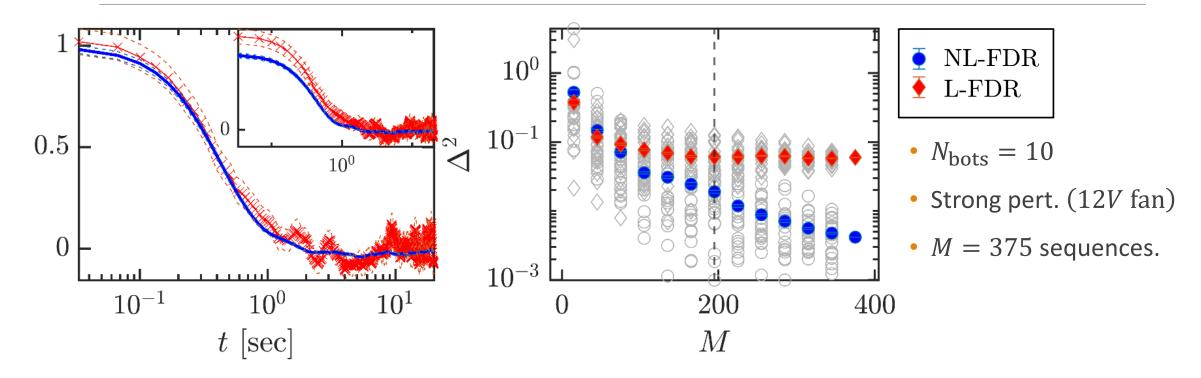


- $N_{\rm bots} = 10$
- Strong pert. (12V fan)
- M = 375 sequences.

 $\langle z(t) \rangle = \langle z(t+\tau)z(t) \rangle_0$

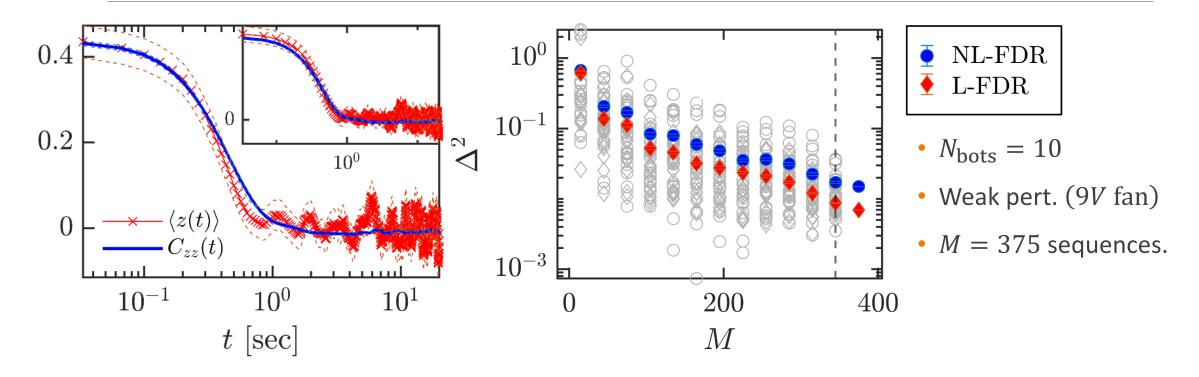
 Δ^2 - relative squared deviations

Results: convergence in the nonlinear regime



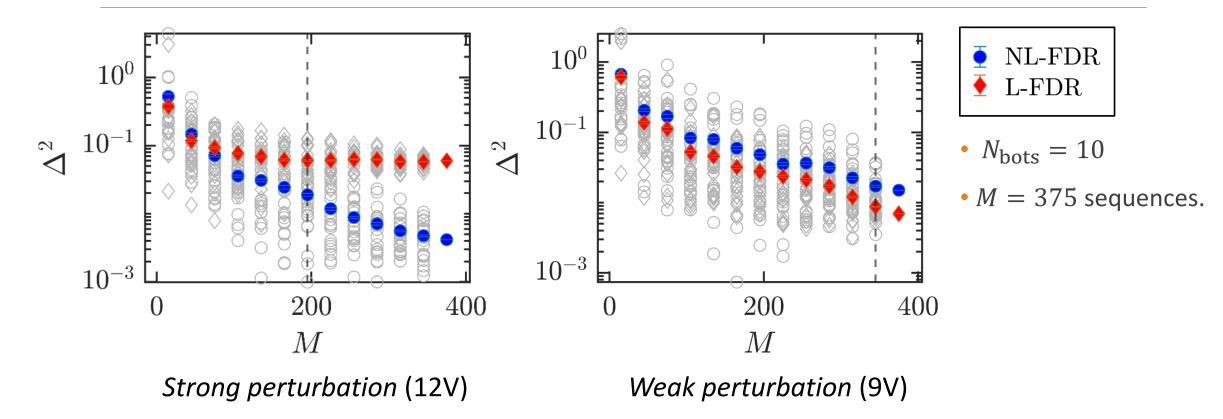
Inset: linear FDR violation for a strong perturbation.

Results: both relations verified in the linear regime

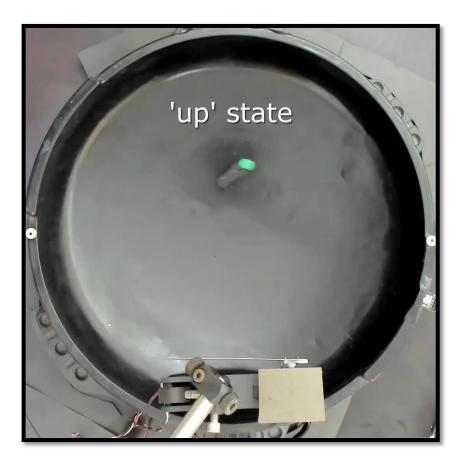


Inset: linear FDR verified for a weak perturbation.

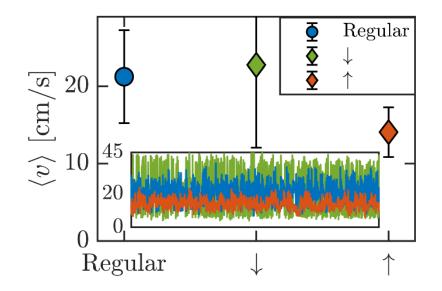
Results: relative-squared-deviation



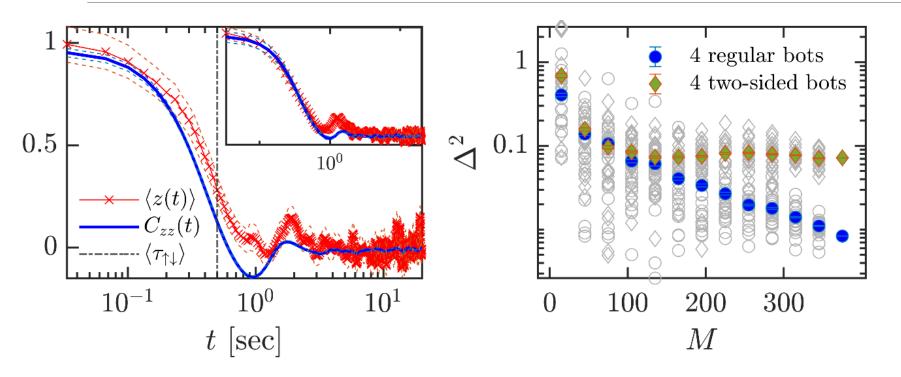
Non-Markovian setup: violation of the NL-FDR

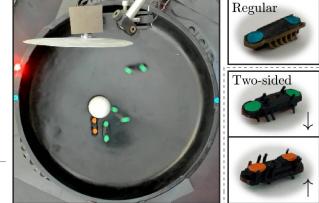


- All green 'states' \rightarrow 'uniform' system state.
- Otherwise (green & orange) \rightarrow 'mixed' system state.



Non-Markovian setup: violation of the NL-FDR





- $N_{\text{bots}} = 4$ two-sided.
- Strong pert. (12V fan)
- M = 375 sequences.

Inset: 4 'regular' bots NL-FDR.

Conclusions: non-linear FDR for Markovian systems

- We presented the NL-FDR as a model-free tool to exclude Markovianity.
- The NL-FDR was experimentally verified in the nonlinear force regime. Requiring significantly less data then the linear FDR.
- We witnessed a violation of the NL-FDR in a non-Markovian system.
- The NL-FDR is an experimentally accessible tool to exclude Markovianity.

A nonlinear fluctuations – dissipation test for Markovian systems Phys. Rev. X 13, 021034 (2023)

Kirstein Engbring^{3*}, DB^{1*}, Prof. Yael Roichman^{1,2}, Prof. Benjamin Lindner⁴.

- ¹ School of Physics & Astronomy, Tel Aviv University, Israel.
- ² School of Chemistry, Tel Aviv University, Israel.
- ³ Physics Department of Humboldt University Berlin, Germany.
- ⁴ Bernstein Center for Computational Neuroscience Berlin, Germany.

