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The mean first passage time (MFPT) of random walks is a key quantity characterizing dynamic
processes on disordered media. In a random fractal embedded in the Euclidean space, the MFPT
is known to obey the power law scaling with the distance between a source and a target site with
a universal exponent. We find that the scaling law for the MFPT is not determined solely by the
distance between a source and a target but also by their locations. The role of a site in the first
passage processes is quantified by the random walk centrality. It turns out that the site of highest
random walk centrality, dubbed as a hub, intervenes in first passage processes. We show that the
MFPT from a departure site to a target site is determined by a competition between direct paths
and indirect paths detouring via the hub. Consequently, the MFPT displays a crossover scaling
between a short distance regime, where direct paths are dominant, and a long distance regime,
where indirect paths are dominant. The two regimes are characterized by power laws with different
scaling exponents. The crossover scaling behavior is confirmed by extensive numerical calculations
of the MFPTs on the critical percolation cluster in two dimensional square lattices.

Random walks are fundamental for stochastic pro-
cesses, such as transport, search, and spreading. While
random walks on regular lattices have long been stud-
ied [1], there has been an ever-increasing interest in the
topic incorporating structural disorder of the underlying
substrate [2], geometric confinement [3], stochastic reset-
ting [4], non-Markovian dynamics [5], and many more.

An important quantity characterizing random walks
(RWs) is the first passage time (FPT) distribution and
the mean first passage time (MFPT) [1, 6]. Scaling prop-
erties of the FPT and MFPT reflect the interplay be-
tween the RW-dynamics and geometric properties of the
underlying substrate. For example, on infinite lattices,
the FPT distribution follows a power law with a univer-
sal exponent [1, 6]. Generally, in finite scale-invariant
media, the MFPT T (r) between two sites at a distance
r is known to obey the scaling law [7–9]

T (r) ⇠

8
><

>:

Nrdw�df , for dw > df ,

N ln r, for dw = df ,

N, for dw < df .

, (1)

where N is the total number of sites, df is the fractal
dimension of the medium, and dw is its walk dimension.
It is remarkable that the scaling law is governed by only
one universal exponent, ✓ = dw �df . On the other hand,
on a highly heterogeneous graph, the MFPT displays a
more complex scaling behavior [10–12]. In a scale-free
network characterized by a power-law distribution of lo-
cal connectivity of each site, the FPT and the MFPT
averaged over source sites display a target site depen-
dent scaling behavior [12]. Generally, in heterogeneous

media, the MFPT from site i to j could be very differ-
ent from the MFPT from j to i: for undirected graphs,
one can assign a potential-like quantity, called the RW
centrality (RWC), to each site [13]. Since the MFPT be-
tween two sites in either direction differs by the difference
in their inverse RWCs (see below), a wide distribution of
the RWCs could lead to a source-target specific, or het-
erogeneous, scaling of the MFPT, which is what we will
address in this paper.

To this purpose, we reconsider the scaling law in
Eq. (1) for two-dimensional (2D) critical bond perco-
lation clusters. We will show that despite a homoge-
neous local connectivity distribution, the MFPT displays
a heterogeneous scaling behavior characterized by a site-
dependent scaling exponent and an intriguing crossover
scaling, for which the site with the highest RWC is re-
sponsible. RWs on critical percolation clusters have long
been studied [2, 14–17], but a site-dependent or hetero-
geneous scaling has not been reported yet. Our work also
sheds light on the role of the RWC for RWs in disordered
media.

We consider an undirected graph consisting of N sites,
whose connectivity is represented with a symmetric ad-
jacency matrix A = AT whose matrix elements Aij are
0 or 1 indicating the absence or presence of an edge be-
tween sites i and j [18], respectively. The number of
edges attached to a site i is its degree and is given by
ki =

P
j
Aij . A discrete time RW on the graph is defined

by the transition matrix W = K�1A, where K is a diago-
nal matrix with Kij = �ijki. That is, a random walker at
site i jumps to site j with the probability Wij = Aij/ki
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Random Walks on Fractals

critical percolation cluster

Havlin and Ben-Avraham (2002)

fractal dimension   with  in 2D

random walk dimension  with  in 2D

N ∼ rdf df =
91
48

r ∼ t1/dw dw ≃ 2.87

r

t ∼ rdw

N ∼ rdf



Discrete Time Random Walks on a Finite Graph

i

j

adjacency matrix         

undirected graph           

transition probability     

propagator                 

                 

detailed balance

steady state               

Aij = 1 (edge) or 0
A = AT

Wij =
Aij

ki
ki = ∑

j

Aij

Pij(t) = ⟨i |Wt | j⟩
Pij(t + 1) = ∑

l

Pil(t)Wlj

πi = lim
t→∞

Psi(t) =
ki

∑j kj



First Passage Time

i

j

first passage probability 

           

mean first passage time (MFPT) 

           

where  with 

Fij(t)

Pij(t) = δt0δij +
t

∑
t′ =0

Fij(t′ )Pjj(t − t′ )

Tij ≡
∞

∑
t=0

tFij(t)

Tij =
Rjj − Rij + δij

πj

R = (1 − W)# Rij =
∞

∑
t=0

(Pij(t) − πj)
generalized group inverse [Meyer 1975]
pseudo Green function [Condamin et al 2007]

[Noh and Rieger 2004]



MFPT vs Distance

LETTERS

First-passage times in complex scale-invariant media
S. Condamin1, O. Bénichou1, V. Tejedor1, R. Voituriez1 & J. Klafter2

How long does it take a random walker to reach a given target
point? This quantity, known as a first-passage time (FPT), has
led to a growing number of theoretical investigations over the
past decade1. The importance of FPTs originates from the crucial
role played by first encounter properties in various real situ-
ations, including transport in disordered media2,3, neuron firing
dynamics4, spreading of diseases5 or target search processes6–9.
Most methods of determining FPT properties in confining
domains have been limited to effectively one-dimensional geomet-
ries, or to higher spatial dimensions only in homogeneous media1.
Here we develop a general theory that allows accurate evaluation
of the mean FPT in complex media. Our analytical approach pro-
vides a universal scaling dependence of the mean FPT on both the
volume of the confining domain and the source–target distance.
The analysis is applicable to a broad range of stochastic processes
characterized by length-scale-invariant properties. Our theore-
tical predictions are confirmed by numerical simulations for
several representative models of disordered media10, fractals3,
anomalous diffusion11 and scale-free networks12.

Transport properties are often characterized by the exit time from
a sphere texit, which is the first time a random walker reaches any
point at a distance r from its starting point. This quantity is well
known for brownian motion in euclidean spaces, and has also been
evaluated for finitely ramified deterministic fractals13,14. In these
cases, the length-scale-invariant properties of the walker’s trajectories
have a key role and lead to the scaling form texit / rdw , which defines
the walk dimension3 dw. Interestingly, it has been shown that a large
class of complex scale-free networks are also invariant under the
length scale renormalization scheme defined in ref. 15, even if they
are of ‘small world’ type—that is, if their diameter scales like the
logarithm of the volume. This remarkable property led the authors
of ref. 12 in particular to characterize the mean exit time in this class
of small-world networks by a set of scaling exponents.

However, in many situations, the determining quantity is not texit, but
rather the FPT of a random walk starting from a source point S to a given
target point T. Indeed the FPT is a key quantity to quantify the kinetics
of transport-limited reactions14,16, which encompass not only chemical
or biochemical reactions17,18, but also (at larger scales) interactions
involving more complex organisms, such as a virus infecting a cell19

or animals searching for food6. The relevance of the FPT has also been
recently highlighted in ref. 12 in the context of scale-free networks, such
as social networks20, protein interaction networks21 or metabolic net-
works22. The FPT and the exit time in fact possess very different pro-
perties. Indeed, the exit time is not sensitive to the confinement, as only a
sphere of radius r is explored by the random walker. On the contrary, an
estimation of the time needed to go from one point to another, namely
the FPT, crucially depends on the confining environment—the mean
FPT (MFPT) being actually infinite in unbounded domains.

Consider a random walker moving in a bounded domain of size N.
Let W(r, t jr9) be the propagator (that is, the probability density of
being at site r at time t, starting from site r9 at time 0), and P(r, t jr9)

the probability density that the FPT to reach r, starting from r9, is t.
These two probability densities are known to be related through23

W (rT,t jrS)~

ðt

0

P(rT,t 0jrS)W (rT,t{t 0jrT)dt 0 ð1Þ

where rS and rT denote, respectively, the source and target position.
After integration over t, this equation gives an exact expression for
the MFPT, provided it is finite:

Th i~
H(rTjrT){H(rTjrS)

Wstat(rT)
ð2Þ

where

H(rjr0)~
ð?

0

W (r,t jr0){Wstat(r)ð Þdt ð3Þ

and Wstat is the stationary probability distribution (see Supplemen-
tary Information for details). Equation (2) is an extension of an
analogous form given in ref. 24, for which no quantitative determina-
tion of the MFPT could be proposed. The main problem at this stage
is to determine the unknown function H, which is indeed a compli-
cated task, as it depends both on the walk’s characteristics and on the
shape of the domain. A crucial step that allows us to go further in the
general case is that H turns out to be the pseudo-Green function of
the domain25, which in turn is well suited to a quantitative analysis.
Indeed, we propose approximating H by its infinite-space limit,
which is precisely the usual Green function G0:

H(rjr0)<G0(rjr0)~
ð?

0

W0(r,t jr0)dt ð4Þ

where W0 is the infinite space propagator (Supplementary Infor-
mation). Note that a similar approximation has proven to be satisfactory
in the standard example of regular diffusion26. We stress that when
inserted in equation (2), this form does not lead to a severe infinite space
approximation of the MFPT, because all the dependence on the domain
geometry is now contained in the factor 1/Wstat. This approximation is
the key step of our derivation and, as we proceed to show, captures
extremely well the confining effects on MFPTs in complex media.

We first consider the case of a uniform stationary distribution
Wstat 5 1/N, which is realized as soon as the links of the network
are not directed and the number of connected neighbours of a node,
the degree, is constant. This assumption amounts to symmetrical
transition rates and actually underlies many models of transport in
complex media, with the notable exception of scale-free networks,
which will be tackled later on in this Letter. Following ref. 3, we
assume for W0 the standard scaling:

W0(r,t jr0)!t{df =dw P
jr{r0j
t1=dw

" #
ð5Þ
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t ∼ rdw

N ∼ rdf

 

when  (compact exploration) 

T(r) ∼ Nrdw−df ∼ Ldfrdw−df

dw > df



Random Walk Centrality

i

j

Tij =
Rjj − Rij + δij

πj

             

RWC as a scalar potential  ~ attractiveness

                                [Noh and Rieger, PRL (2004)]

efficient numerical algorithm
                      [Hwang, Lee, and Khang PRE (2014)]

Tij − Tji = (
Rjj

πj
−

Rii

πi ) − (
Rij

πj
−

Rji

πi )
=

Rjj

πj
−

Rii

πi
= C−1

j − C−1
i

Ci =
πi

Rii



critical bond percolation cluster on 1024 x 1024 square lattice



Broad RWC Distribution

hub (H) of highest RWC

marginal site (M) of lowest RWC



Heterogeneous Scaling
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Crossover Scaling
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Implication of the Crossover Scaling
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Origin(?) of Crossover
red bonds

quasi one-dimensional transport 
near the marginal sites

M

blobs

red bonds



Ubiquity

100 101 102

r

106

107

108

109

1010

T
(r

)

µh = 1.20

µm = 0.80

(a)

101 102

L

104

105

106

107

108

T
(r

=
1)

¢h = 2.51

¢m = 2.91

(b)

100 101 102

r

107

108

109

T
n
(r

)

(c)

M

M8

M7

M6

M5

M4

M3

M2

M1

H

3D critical percolation cluster RW trail in 3D 



Summary
• Random walks are highly heterogeneous even on random fractals in the Euclidean 

space.

• Heterogeneous scaling and crossover of the MFPT

• The RWC is a good indicator of the heterogeneity.

• Complex systems

• For more detail, arXiv:2304.14940


