Giulia Garcia Lorenzana Giulio Biroli, Ada Altieri

École Normale Supérieure - Université Paris Cité giulia.garcialorenzana@phys.ens.fr

Theoretical Community Ecology

- Ecosystems of many species
 → Statistical physics
- Collective properties shared by different ecosystems
 - ightarrow Universality
- Heterogeneous interactions
 - ightarrow sample randomly

May, Nature (1972).

Theoretical Community Ecology

- Ecosystems of many species
 → Statistical physics
- Collective properties shared by different ecosystems
 - \rightarrow Universality
- Heterogeneous interactions \rightarrow sample **randomly**
- Diversity? Stability? Chaotic dynamics?

May, Nature (1972).

$$\dot{N}_i = N_i (k - N_i - \sum_j lpha_{ij} N_j)$$

 $S o \infty$ species

$$\dot{N}_i = N_i (k - N_i - \sum_j lpha_{ij} N_j)$$

 $S o \infty$ species • Self-regulation

$$\dot{N}_i = N_i (k - N_i - \sum_j \alpha_{ij} N_j)$$

• Self-regulation

• Random inter-species interactions

$$\begin{array}{l} \langle \alpha_{ij} \rangle = \mu/S \\ \langle \alpha_{ij}^2 \rangle_c = \sigma^2/S \\ \langle \alpha_{ij} \alpha_{ji} \rangle_c = \gamma \sigma^2/S \end{array}$$

$$\dot{N}_i = N_i (k - N_i - \sum_j \alpha_{ij} N_j)$$

- Self-regulation
- Random inter-species interactions

$$\langle lpha_{ij}
angle = \mu/S$$

 $\langle lpha_{ij}^2
angle_c = \sigma^2/S$
 $\langle lpha_{ij} lpha_{ji}
angle_c = \gamma \sigma^2/S$

 \longrightarrow Different phases:

Stability, multistability, chaos

Bunin (2017), Biroli et al. (2018), Altieri et al. (2021).

$$\dot{N}_i = N_i (k - N_i - \sum_j \alpha_{ij} N_j)$$

- Self-regulation
- Random inter-species interactions

$$\begin{array}{l} \langle \alpha_{ij} \rangle = \mu/S \\ \langle \alpha_{ij}^2 \rangle_c = \sigma^2/S \\ \langle \alpha_{ij} \alpha_{ji} \rangle_c = \gamma \sigma^2/S \end{array}$$

 \longrightarrow Different phases:

Stability, multistability, chaos

Bunin (2017), Biroli et al. (2018), Altieri et al. (2021).

$$\dot{N}_{i} = N_{i} \left(k - N_{i} - \sum_{j} \alpha_{ij} N_{j} \right) + \eta_{i} \sqrt{N_{i}}$$

- Self-regulation
- Random inter-species interactions
- Demographic fluctuations

$$\langle \eta_i(t)\eta_j(t')\rangle = 2T\delta_{ij}\delta(t-t')$$

Bunin (2017), Biroli et al. (2018), Altieri et al. (2021).

$$\dot{N}_{i} = N_{i} \left(k - N_{i} - \sum_{j} \alpha_{ij} N_{j} \right) + \eta_{i} \sqrt{N_{i}}$$

- Self-regulation
- Random inter-species interactions
- Demographic fluctuations — extinctions

Bunin (2017), Biroli et al. (2018), Altieri et al. (2021).

$$\dot{N}_{i}^{\ u} = N_{i}^{\ u} \left(k - N_{i}^{\ u} - \sum_{j} \alpha_{ij} N_{j}^{\ u}\right) + \eta_{i}^{\ u} \sqrt{N_{i}^{\ u}} + \frac{D}{L} \sum_{v} \left(N_{i}^{v} - N_{i}^{u}\right)$$

$$S \to \infty \text{ species} \qquad \qquad \text{Solf regulation}$$

• Self-regulation

- Random inter-species interactions
- Demographic fluctuations → extinctions
- Diffusion between communities

Bunin (2017), Biroli et al. (2018), Altieri et al. (2021).

Bunin (2017), Biroli et al. (2018), Altieri et al. (2021).

$$\dot{N}_{j}^{u} = N_{j}^{u} (k - N_{j}^{u} - \sum_{j} \alpha_{ij} N_{j}^{u}) + \eta_{i}^{u} (t) \sqrt{N_{i}^{u}} + \frac{D}{L} \sum_{v} (N_{i}^{v} - N_{j}^{u})$$

$$\dot{N}_{i}^{\ u} = N_{i}^{\ u} (k - N_{i}^{\ u} - \sum_{j} \alpha_{ij} N_{j}^{\ u}) + \eta_{i}^{\ u} (t) \sqrt{N_{i}^{\ u}} + \frac{D}{L} \sum_{v} (N_{i}^{\ v} - N_{i}^{\ u})$$
Survival
Extinction

$$\dot{N}_{j}^{u} = N_{j}^{u} (k - N_{j}^{u} - \sum_{i} \alpha_{ij} N_{j}^{u}) + \eta_{j}^{u} (t) \sqrt{N_{j}^{u}} + \frac{D}{L} \sum_{v} (N_{j}^{v} - N_{j}^{u})$$

Continuous phase transition

$$\dot{N}_{i}^{u} = N_{i}^{u} (k - N_{i}^{u} - \sum_{j} \alpha_{ij} N_{j}^{u}) + \eta_{i}^{u} (t) \sqrt{N_{i}^{u}} + \frac{D}{L} \sum_{v} (N_{i}^{v} - N_{i}^{u})$$
Survival
$$\overset{u}{\underbrace{\int_{0.2}^{u} \int_{0.2}^{0.1} \int_{$$

Continuous phase transition

Many coupled DP processes:

$$\dot{N}_{i}^{u} = N_{i}^{u} (k - N_{i}^{u} - \sum_{j} \alpha_{ij} N_{j}^{u}) + \eta_{i}^{u} (t) \sqrt{N_{i}^{u}} + \frac{D}{L} \sum_{v} (N_{i}^{v} - N_{i}^{u})$$
Survival
$$\overset{u}{\underbrace{\int_{0.2}^{u} \int_{0.2}^{0.1} \int_{$$

Continuous phase transition

Many coupled DP processes:

• $\alpha_{ij} = c > 0 \longrightarrow$ same behaviour

$$\dot{N}_{i}^{u} = N_{i}^{u} (k - N_{i}^{u} - \sum_{j} \alpha_{ij} N_{j}^{u}) + \eta_{i}^{u} (t) \sqrt{N_{i}^{u}} + \frac{D}{L} \sum_{v} (N_{i}^{v} - N_{i}^{u})$$
Survival
$$\overset{u}{\underbrace{\int_{0.2}^{u} \int_{0.2}^{0.1} \int_{$$

Continuous phase transition

Many coupled DP processes:

•
$$\alpha_{ij} = c > 0 \longrightarrow$$
 same behaviour

• Random
$$\alpha_{ij}$$
?

$$S \to \infty$$

$$\sum_{j} \alpha_{ij} N_{j,u} \longrightarrow \mu h_u + \sigma \xi_u(t) - \sigma^2 \gamma \int_0^t \sum_{\nu} R_{u\nu}(t,t') N_{\nu}(t') dt'$$

$$S \to \infty$$

$$\sum_{j} \alpha_{ij} N_{j,u} \longrightarrow \mu h_u + \sigma \xi_u(t) - \sigma^2 \gamma \int_0^t \sum_{\nu} R_{u\nu}(t,t') N_{\nu}(t') dt'$$

• Average interaction, $h_u = \mathbb{E}[N_u]$

$$S \to \infty$$

$$\sum_{j} \alpha_{ij} N_{j,u} \longrightarrow \mu h_u + \sigma \xi_u(t) - \sigma^2 \gamma \int_0^t \sum_{\nu} R_{u\nu}(t,t') N_{\nu}(t') dt'$$

- Average interaction, $h_u = \mathbb{E}[N_u]$
- Fluctuations of interaction, $\langle \xi_u(t)\xi_v(t')\rangle = \mathbb{E}[N_u(t)N_v(t')]$

$$S \to \infty$$

$$\sum_{j} \alpha_{ij} N_{j,u} \longrightarrow \mu h_{u} + \sigma \xi_{u}(t) - \sigma^{2} \gamma \int_{0}^{t} \sum_{v} R_{uv}(t,t') N_{v}(t') dt'$$

- Average interaction, $h_u = \mathbb{E}[N_u]$
- Fluctuations of interaction, $\langle \xi_u(t)\xi_v(t')\rangle = \mathbb{E}[N_u(t)N_v(t')]$
- Memory term, $R_{uv}(t,t') = \mathbb{E}\left[\frac{\delta N_u(t)}{\delta \zeta_v(t')}\right]$

$$S \to \infty$$

$$\sum_{j} \alpha_{ij} N_{j,u} \longrightarrow \mu h_{u} + \sigma \xi_{u}(t) - \sigma^{2} \gamma \int_{0}^{t} \sum_{v} R_{uv}(t,t') N_{v}(t') dt'$$

- Average interaction, $h_u = \mathbb{E}[N_u]$
- Fluctuations of interaction, $\langle \xi_u(t)\xi_v(t')\rangle = \mathbb{E}[N_u(t)N_v(t')]$
- Memory term, $R_{uv}(t,t') = \mathbb{E}\left[\frac{\delta N_u(t)}{\delta \zeta_v(t')}\right]$

$$L \to \infty$$

$$\frac{D_{r}}{D_{r}}\sum_{v}(N_{v}-N_{u})\longrightarrow D(N^{*}-N^{u}),$$

 $N^{*}=\langle N \rangle$

$$S \to \infty$$

$$\sum_{j} \alpha_{ij} N_{j,u} \longrightarrow \mu h_{u} + \sigma \xi_{u}(t) - \sigma^{2} \gamma \int_{0}^{t} \sum_{v} R_{uv}(t, t') N_{v}(t') dt'$$

- Average interaction, $h_u = \mathbb{E}[N_u]$
- Fluctuations of interaction, $\langle \xi_u(t)\xi_v(t')\rangle = \mathbb{E}[N_u(t)N_v(t')]$
- Memory term, $R_{uv}(t,t') = \mathbb{E}\left[\frac{\delta N_u(t)}{\delta \zeta_v(t')}\right]$

$$L \rightarrow \infty$$

$$rac{D}{L}\sum_{v}(N_{v}-N_{u})\longrightarrow D(N^{*}-N^{u}),$$

 $N^{*}=\langle N
angle$

Effective dynamics for single species in single site + self-consistency

$$S \to \infty$$

$$\sum_{j} \alpha_{ij} N_{j,u} \longrightarrow \mu h_{u} + \sigma \xi_{u}(t) - \sigma^{2} \gamma \int_{0}^{t} \sum_{v} R_{uv}(t, t') N_{v}(t') dt'$$

- Average interaction, $h_u = \mathbb{E}[N_u]$
- Fluctuations of interaction, $\langle \xi_u(t)\xi_v(t')\rangle = \mathbb{E}[N_u(t)N_v(t')]$
- Memory term, $R_{uv}(t,t') = \mathbb{E}\left[rac{\delta N_u(t)}{\delta \zeta_v(t')}
 ight]$

$$L \rightarrow \infty$$

$$rac{D}{L}\sum_{v}(N_{v}-N_{u})\longrightarrow D(N^{*}-N^{u}),$$

 $N^{*}=\langle N
angle$

Effective dynamics for single species in single site + self-consistency

Symmetric interactions \longrightarrow FDT \longrightarrow $P_{eq} \propto e^{-\beta H_{eff}}$

Phase diagram

New universality $class_{6/10}$

Fragility of the metastable state

Approaching the tipping point (*spinodal*) the response of the abundance to perturbations diverges

Continuous transition

Discontinuous transition

Mutualism

• Similar discontinuous transition with **mutualistic** interactions: collaboration \rightarrow survival in harsh conditions \rightarrow collapse

Mutualism

- Similar discontinuous transition with mutualistic interactions: collaboration → survival in harsh conditions → collapse
- In our case mutualism naturally **emerging** in the surviving community close to extinction

Mutualism

- Similar discontinuous transition with mutualistic interactions: collaboration → survival in harsh conditions → collapse
- In our case mutualism naturally **emerging** in the surviving community close to extinction
- Enables survival, but leads to fragility

Yes!

Yes!

• Heterogeneity \rightarrow emergent **mutualism** \rightarrow survival (but also **fragility**)

Yes!

- Heterogeneity \rightarrow emergent **mutualism** \rightarrow survival (but also **fragility**)
- Transition between self-sustained and extinction state
 - When fluctuations dominate: continuous transition (DP)
 - When heterogeneity dominates: discontinuous transition, hysteresis \rightarrow **New universality class**

Yes!

- Heterogeneity \rightarrow emergent **mutualism** \rightarrow survival (but also **fragility**)
- Transition between self-sustained and extinction state
 - When fluctuations dominate: continuous transition (DP)
 - When heterogeneity dominates: discontinuous transition, hysteresis \rightarrow New universality class

Perspectives:

- Finite dimensional spatial networks
- Strong asymmetry in the interactions
- Strong heterogeneity: multiple equilibria, chaotic dynamics

Thank you for your attention!

Phase diagram

Altieri et al. (2021)

Phase diagram $\rho = 0$

Self-consistent conditions

$$N^{*}(z) = \langle N \rangle = \frac{\int_{0}^{\infty} dNNe^{-\beta H_{eff}}}{\int_{0}^{\infty} dNe^{-\beta H_{eff}}}$$

$$h = \overline{\langle N \rangle} = \int \mathcal{D}z \frac{\int_{0}^{\infty} dNNe^{-\beta H_{eff}}}{\int_{0}^{\infty} dNe^{-\beta H_{eff}}}$$

$$C_{d}^{0} = \overline{\langle N^{2} \rangle} = \int \mathcal{D}z \frac{\int_{0}^{\infty} dNN^{2}e^{-\beta H_{eff}}}{\int_{0}^{\infty} dNe^{-\beta H_{eff}}}$$

$$C_{d}^{\infty} = \overline{\langle N \rangle^{2}} = \int \mathcal{D}z \left(\frac{\int_{0}^{\infty} dNNe^{-\beta H_{eff}}}{\int_{0}^{\infty} dNe^{-\beta H_{eff}}}\right)^{2}$$

$$H_{eff} = \left(1 - \frac{\sigma^{2}}{T} \left(C_{d}^{0} - C_{d}^{\infty}\right)\right) \frac{N^{2}}{2} - \left(k - \mu h - D + D\sigma^{2}N^{*}R_{0}^{int} + z\sqrt{C_{d}^{\infty}}\sigma\right)N + (T - DN^{*})\ln N$$

 $c \propto$

01

Experimental validation

Extensions

- Spatial variation of the interactions $\langle \alpha_{ij}^{u} \alpha_{ij}^{v} \rangle_{c} = \rho \sigma^{2} / S$
- (Small) asymmetry in the interactions $\langle \alpha^u_{ij}\alpha^u_{ji}\rangle_c=\gamma\sigma^2/S$

Extensions

- Spatial variation of the interactions $\langle \alpha_{ij}^{u} \alpha_{ij}^{v} \rangle_{c} = \rho \sigma^{2}/S$
- (Small) asymmetry in the interactions $\langle \alpha^u_{ij} \alpha^u_{ji} \rangle_c = \gamma \sigma^2 / S$
- \longrightarrow Same qualitative behavior

Discontinuous transition

Numerical dynamics

