# Information Scrambling and Recovery in Inhomogeneous Quenches: An Exploration in 2d CFTs <br> Mao Tian Tan 

Asia Pacific Center for Theoretical Physics

Based on Goto, Nozaki, Tamaoka, Tan, Ryu, arXiv: 2112.14388 and Goto, Nozaki, Ryu, Tamaoka, Tan, arXiv: 2302.08009

## Inhomogeneous Quench in 1+1d CFT

- Analytically tractable models of non-equilibrium dynamics
- Consider 2d Free Fermion CFT (integrable) and holographic CFTs (chaotic)
- First Part: Inhomogeneous Quench of Thermal State
- Second Part: Information scrambling of Inhomogeneous Quenches.


## Inhomogeneous Quench in 1+1d CFT

- Let $h(x)$ be the energy density so that

$$
H_{0}=\int_{0}^{L} d x h(x)
$$

- The spatially inhomogeneous sine-squared deformed (SSD) Hamiltonian:

$$
H_{S S D}=\int_{0}^{L} d x 2 \sin ^{2}\left(\frac{\pi x}{L}\right) h(x)
$$

- SSD envelope vanishes at 0 and maximum at $\frac{L}{2}$



## Quench of Thermal State

- Quench the uniform thermal state with inhomogeneous Hamiltonian in 1+1d CFT

$$
\rho(t)=e^{-i H_{S S D} t} \frac{e^{-\beta H_{0}}}{Z} e^{i H_{S S D} t}
$$

- At late times

$$
\rho \approx \rho_{\mathcal{V}} \otimes \operatorname{Tr}_{\mathcal{V}}(|0\rangle\langle 0|)
$$

where $\mathcal{V}$ is a subsystem that includes the origin, and the von Neumann entropy is the thermal entropy of the total system

- Away from origin, cooled to ground state
- "Black hole-like" excitations at the origin that
 carry the total thermal entropy


## Entanglement Entropy during Quench <br> t <br>  <br> - Holographic CFT and free fermion CFT similar <br> 

- When subsystem is away from origin, entanglement entropy goes from thermal entropy of subsystem to ground state entanglement entropy
- When subsystem contains the origin, entanglement entropy goes from thermal value to thermal entropy of the total system


## Quasiparticle Picture For Free Fermions

- Quasiparticle = quanta of information
- Thermal State = Uniformly distributed quasiparticles
- Half are left-moving, half are right-moving
- Inhomogeneous Quench $\Rightarrow$ Quasiparticles move with spatially dependent speed

$$
\mathrm{v}(\mathrm{x})=2 \sin ^{2}\left(\frac{\pi x}{L}\right)
$$

- Entanglement Entropy ~No. of quasiparticles in A

000000000000
0 L
Time Evolve
A
0000000000
0

## Quasiparticle Picture For Free Fermions

- Quasiparticles conserved so density obeys continuity equation



## Gravitational dual for Holographic CFTs

- In holographic systems, the bulk horizon gets deformed with two spikes appearing
- For SSD, when $t \rightarrow \infty$, the spikes merge and touch the asymptotic boundary



## Operator Entanglement

- Think of operators as states in the operator Hilbert space

$$
\begin{aligned}
\widehat{Q}=\sum_{n, m}\langle n| \widehat{Q}|m\rangle|n\rangle\langle m| \rightarrow|\widehat{Q}\rangle & =\sum_{n, m}\langle n| \widehat{Q}|m\rangle|n\rangle \otimes|m\rangle^{*} \\
& =(\widehat{Q} \otimes \mathbb{I}) \sum_{m}|m\rangle \otimes|m\rangle^{*}
\end{aligned}
$$



## Operator Entanglement

- Study the entanglement entropy of these states.
(Zanardi, Prosen, Pižorn, ...)

- Bipartite Operator Mutual Information (BOMI) measures the correlation between subregions A and B

$$
I(A, B)=S_{A}+S_{B}-S_{A \cup B} \geq 0
$$

## Tripartite Operator Mutual Information (TOMI)



- $I_{3}\left(A, B, B^{c}\right)=I(A, B)+I\left(A, B^{c}\right)-I\left(A, B \cup B^{c}\right)$ Local Local Non-local
- Scrambling is the delocalization of information
- Non-local > Local $\Rightarrow I_{3}\left(A, B, B^{c}\right)<0$
- We will use tripartite mutual information to study information scrambling (Hosur et. al.)


## Quasiparticle Picture For Free Fermions

- Generic Operator state:

$$
|U\rangle=U \otimes \mathbb{I} \prod_{x}|B e l l\rangle_{x}
$$

- Operator Entanglement for free fermions well-described by motion of bell pairs
- One end of each Bell pair moves with speed $\mathrm{f}(\mathrm{x})=2 \sin ^{2}\left(\frac{\pi x}{L}\right)$
- I(A,B) ~No. of Bell Pairs shared between A and B



## Operator Mutual Information in Free Fermions

- A and B centered about origin.
- $I_{3}\left(A, B, B^{c}\right)=0$



## Information Scrambling in Holographic CFTs




- Lower bound for tripartite $I_{3}\left(A, B_{1}, B_{2}\right) \geq-2 S_{A}$
- Uniform Hamiltonian $\Rightarrow$ saturates at most negative value $\Rightarrow$ maximal information scrambling
- $\quad$ SSD Hamiltonian $\Rightarrow$ Information scrambling eliminated at late times
- Consistent with formation of localized black hole-like excitations


## Genuine Tripartite Mutual Information

$$
U=e^{-i H_{0} t_{0}} e^{-i H_{S S D} t_{1}}
$$

- Evolve with SSD first to create a black hole-like excitation then evolve with uniform Hamiltonian
- Mutual information non-zero only if subsystem B contains both black hole-like excitations

Example 1


A


A


15

## Conclusion

- Studied inhomogeneous quenches in free fermion and holographic CFTs
- Information gets concentrated around a fixed point, cooling the rest of the system.
- Genuine tripartite mutual information produced in holographic CFTs
- Future direction: Study other systems, other driving protocols, other physical quantities.

Recovery of Quantum Information

$$
U=e^{-i H_{S S D} t_{1}} e^{-i H_{0} t_{0}}
$$




A


## Inhomogeneous Quench in 1+1d CFT

Wen Wu $2018 \quad v(x)$

$$
\theta=0
$$

- Let $h(x)$ be the energy density so that

$$
H_{0}=\int_{0}^{L} d x h(x) \quad \theta=\infty
$$

- The spatially inhomogeneous Hamiltonian:


$$
H_{\theta}=\int_{0}^{L} d x v(x) h(x) \text { where } v(x)=1-\tanh 2 \theta \cos \frac{2 \pi x}{L}
$$

- The sine-squared deformation (SSD) limit is

$$
H_{\theta \rightarrow \infty}=\int_{0}^{L} d x 2 \sin ^{2}\left(\frac{\pi x}{L}\right) h(x) \equiv H_{S S D}
$$

- SSD envelope vanishes at 0 and maximum at $\frac{L}{2}$
- $\theta=0$ (uniform) $\rightarrow \theta=\infty$ (sine-squared deformed)


## Entanglement Entropy during Quench



- Holographic CFT and free fermion CFT similar
- In the SSD limit, when subsystem is away from origin, entanglement entropy goes from thermal entropy of subsystem to ground state entanglement entropy
- For finite $\theta$, observe oscillations with period $L \cosh 2 \theta$


## Entanglement Entropy during Quench



When subsystem contains the origin, entanglement entropy goes from thermal value to thermal entropy of the total system

## Mutual Information

- The mutual information $I(A, B)=S_{A}+S_{B}-S_{A B}$ approaches the ground state value


- Mutual information for holographic CFTs also approaches the ground state value


## Inhomogeneous Quench of Thermal State

- Quench the uniform thermal state with Möbius Hamiltonian in 1+1d CFT
- $\rho(t)=e^{-i H_{\theta} t} \frac{e^{-\beta H_{0}}}{Z} e^{i H_{\theta} t}=Z^{-1} e^{-\beta H_{0}(t)}$ with $Z=\operatorname{Tr} e^{-\beta H_{0}}$
- $H_{0}(t)$ and hence $\rho(t)$ is periodic with period $L \cosh 2 \theta$
- For $x \neq 0, \lim _{\theta \rightarrow \infty} \rho(t) \sim e^{-\frac{\beta \pi^{2} t^{2}}{L^{2}} H_{S S D}}$
- If the ground state of $H_{S S D}$ is the same as $H_{0}, \rho(t)$ in the SSD limit at late times is approximately the uniform ground state
- Away from $x=0$, system "reverse thermalized"



## Quasiparticle Picture For Free Fermions

- Purify the thermal state to thermofield double state

$$
|T F D\rangle \sim \sum_{E} e^{-\beta E / 2}|E\rangle_{\mathcal{H}_{1}}|E\rangle_{\mathcal{H}_{2}} \Rightarrow e^{-\beta H}=\operatorname{Tr}_{\mathcal{H}_{2}}|T F D\rangle\langle T F D|
$$

- In real space, when $\beta \rightarrow 0$, TFD looks like a product of Bell pairs

- One end of each Bell pair moves with speed $\mathrm{f}(\mathrm{x})=1-\tanh 2 \theta \cos \frac{2 \pi x}{L}$
- Entanglement Entropy ~ No. of Bell Pairs in A


## Information Scrambling in Holographic CFTs




- Lower bound for tripartite $I_{3}\left(A, B_{1}, B_{2}\right) \geq-2 S_{A}$
- Uniform Hamiltonian $\Rightarrow$ saturates at most negative value $\Rightarrow$ maximal information scrambling
- $\quad$ SSD Hamiltonian $\Rightarrow$ Information scrambling eliminated at late times
- Consistent with formation of localized black hole-like excitations

Simple Examples


## Operator Mutual Information in Holographic CFTs



Quasiparticle description does not work well for Holographic CFTs.

