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Inhomogeneous Quench in 1+1d CFT

• Analytically tractable models of non-equilibrium dynamics
• Consider 2d Free Fermion CFT (integrable) and holographic CFTs 

(chaotic)
• First Part: Inhomogeneous Quench of Thermal State
• Second Part: Information scrambling of Inhomogeneous Quenches.



Inhomogeneous Quench in 1+1d CFT

• Let  be the energy density so that

 

• The spatially inhomogeneous sine-squared deformed (SSD) Hamiltonian: 

• SSD envelope vanishes at  and maximum at 
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Quench of Thermal State
• Quench the uniform thermal state with 

inhomogeneous Hamiltonian in 1+1d CFT

 
 

• At late times
 

where  is a subsystem that includes the origin, 
and the von Neumann entropy is the thermal 
entropy of the total system
• Away from origin, cooled to ground state
• “Black hole-like” excitations at the origin that 

carry the total thermal entropy

LL/20

𝑣(𝑥)

4

0

Black hole-like 
excitations

L/2



LL/20

Thermal Entropy 𝑆 /𝑐 =
𝜋

6𝜖

Total entropy 𝑆 /𝑐 =
𝜋𝐿

6𝜖

Entanglement Entropy during Quench

• Holographic CFT and free fermion CFT similar  
• When subsystem is away from origin, entanglement entropy goes from thermal entropy 

of subsystem to ground state entanglement entropy
• When subsystem contains the origin, entanglement entropy goes from thermal value to 

thermal entropy of the total system 
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• Quasiparticle = quanta of information
• Thermal State = Uniformly distributed 

quasiparticles
• Half are left-moving, half are right-moving
• Inhomogeneous Quench  Quasiparticles 

move with spatially dependent speed 

• Entanglement Entropy  No. of 
quasiparticles in A

Quasiparticle Picture For Free Fermions
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• Quasiparticles conserved so density obeys continuity equation

Quasiparticle Picture For Free Fermions
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Gravitational dual for Holographic CFTs
• In holographic systems, the bulk 

horizon gets deformed with two 
spikes appearing 

• For SSD, when , the spikes 
merge and touch the asymptotic 
boundary



Operator Entanglement
• Think of operators as states in the operator Hilbert space
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Operator Entanglement 

• Study the entanglement 
entropy of these states. 

(Zanardi, Prosen, Pižorn, …)
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B A

• Bipartite Operator Mutual Information (BOMI) measures the 
correlation between subregions A and B



Tripartite Operator Mutual Information (TOMI)

•

• Scrambling is the delocalization of information
• Non-local Local   < 0
• We will use tripartite mutual information to study information 

scrambling (Hosur et. al.)

Local Local Non-local
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• Generic Operator state:  

• Operator Entanglement for free fermions well-described by motion of 
bell pairs

• One end of each Bell pair moves with speed 

• I(A,B)  No. of Bell Pairs shared between A and B

Quasiparticle Picture For Free Fermions
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Operator Mutual Information in Free Fermions
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Information Scrambling in Holographic CFTs
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Genuine Tripartite Mutual Information

•

•
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Conclusion

• Studied inhomogeneous quenches in free fermion and holographic 
CFTs

• Information gets concentrated around a fixed point, cooling the rest 
of the system.

• Genuine tripartite mutual information produced in holographic CFTs
• Future direction: Study other systems, other driving protocols, other 

physical quantities.
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Recovery of Quantum Information
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Inhomogeneous Quench in 1+1d CFT

• Let  be the energy density so that

 

• The spatially inhomogeneous Hamiltonian: 

 where 

• The sine-squared deformation (SSD) limit is 

• SSD envelope vanishes at  and maximum at 

•  (uniform) →  (sine-squared deformed)

Wen Wu 2018
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Entanglement Entropy during Quench
LL/20

• Holographic CFT and free fermion CFT similar  
• In the SSD limit, when subsystem is away from origin, entanglement entropy goes from 

thermal entropy of subsystem to ground state entanglement entropy
• For finite , observe oscillations with period 

𝑣(𝑥)
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Entanglement Entropy during Quench
LL/20
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When subsystem contains the origin, entanglement entropy goes from thermal 
value to thermal entropy of the total system 
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Mutual Information

• The mutual information  approaches the 
ground state value

• Mutual information for holographic CFTs also approaches the ground 
state value

Free Fermion CFT

Ground State Mutual Information
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Inhomogeneous Quench of Thermal State

• Quench the uniform thermal state with Möbius Hamiltonian in 1+1d 
CFT

•  
 

with 

•  and hence  is periodic with period 

• For ,
𝛽

• If the ground state of  is the same as , ) in the SSD limit at 
late times is approximately the uniform ground state

• Away from , system “reverse thermalized”
LL/20
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• Purify the thermal state to thermofield double state 
⇒  

• In real space, when , TFD looks like a product of Bell pairs

• One end of each Bell pair moves with speed 

• Entanglement Entropy  No. of Bell Pairs in A

Quasiparticle Picture For Free Fermions
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Information Scrambling in Holographic CFTs
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Simple Examples
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Operator Mutual Information in Holographic CFTs
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Quasiparticle description does not work well for Holographic CFTs.
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