Nonreciprocal Phase Separation

M. Cristina Marchetti, UC Santa Barbara

cmarchetti@ucsb.edu

Non-reciprocity as a generic mechanism for driving transitions from static to traveling patterns

KITP

Aparna Baskaran Brandeis

Outline

- Nonreciprocity ubiquitous out of equilibrium \rightarrow Examples
- Activator-inhibitor models as NR dynamical systems
- From *global* to *local* dynamics: a generic model of spatiotemporal patterns
- Mapping of previously studied systems (in 1D) onto this generic form

 \rightarrow formulate a general criterion for identifying a new class of NR pattern formation

Nonreciprocal Phase Transitions

NR forces among species yield time-dependent self-organized phases

Static polar states , broken rotational symmetry

Time-dependent chiral state

M Fruchart, R Hanai, PB Littlewood, V Vitelli, Nature 2021

Nonreciprocal (odd) elasticity

Nonconservative interactions yield antisymmetric elastic moduli and unusual response to deformations

Odd elasticity couples compression and shear \rightarrow spontaneous shear under uniaxial compression A = 0

C Schneiber et al. Nat Phys 2020

Realization of odd-elastic engine cycle

M Brandenbourger et al. arXiv:2108.08837

Self-sustained chiral strain cycles in crystals of starfish embryos TH Tan et al. Nature 2022

Traveling Waves of Conserved (Diffusive) Densities

Mass-conserving reaction-diffusion: MinDE of E.Coli

M Loose *et al.* Science 2008

Protein (Rho-GTP) waves on the membrane of starfish egg cells

TH Tan *et al.* Nat Phys 2020

Traveling and oscillatory states emerge from NR-coupled conserved Cahn-Hillard Z You, A Baskaran, MCM, PNAS 2020 & S Saha, J Agudo-Canalejo, R Golestanian PRX 2020

A generic model of nonreciprocal pattern formation of conserved fields

NR interactions

Mass conservation

- Unifies a broad class of pattern forming systems with conservation laws
- Provide a criterion for identifying them through linear stability analysis
 F Brauns, MCM arXiv:2306.08868

Related work:

T Frohoff-Hülsmann, J Wrembel, U Thiele PRE 2021 S Saha, J Agudo-Canalejo, R Golestanian PRX 2020 S Saha, R Golestanian arXiv:2208.14985 T Frohoff-Hülsmann, U Thiele arXiv 2301.05568 Landau free energy:

$$F(\phi) = a\phi^2 + b\phi^4$$

Stationary states are determined by free energy minimization

$$\frac{\partial F(\phi)}{\partial \phi} = 0 \quad \textbf{\rightarrow} \text{bistability}$$

Pattern formation with mass conservation: Cahn-Hilliard Equation

Revisiting a classic model of excitable media → FitzHugh-Nagumo (FHN) model

activation and deactivation dynamics of a spiking neuron $\phi(t)$ fast voltage-like variable $\psi(t)$ slower feedback

 $\partial_t \phi(t) = \phi - \phi^3 + c\psi$ $\partial_t \psi(t) = -b\psi + c\phi$

Stationary states are obtained from free energy minimization

$$F(\phi,\psi) = -\frac{1}{2}\phi^2 + \frac{1}{4}\phi^4 + \frac{1}{2}b\psi^2 + \frac{c\phi\psi}{\phi}$$

→ Bistability but no oscillatory/travelling states

Revisiting a classic model of excitable media → FitzHugh-Nagumo (FHN) model

activation and deactivation dynamics of a spiking neuron $\phi(t)$ fast voltage-like variable $\psi(t)$ slower negative feedback

 $\partial_t \phi(t) = \phi - \phi^3 + c_{12} \psi$ $\partial_t \psi(t) = -b\psi + c_{21} \phi$

Anti-reciprocal $c_{12} = -c_{21}$

Dynamics cannot be obtained from free energy

Revisiting a classic model of excitable media → FitzHugh-Nagumo (FHN) model

From FHN to Extended System: coupled Cahn Hilliard & Diffusive Fields

Two conserved fields:

$$\overline{\phi} = \langle \phi \rangle_{\mathbf{r}}, \quad \overline{\psi} = \langle \psi \rangle_{\mathbf{r}}$$

$$\partial_t \phi(x,t) = \nabla^2 \frac{\delta F}{\delta \phi} \qquad F = \int_{\mathbf{r}} \left[f_{\phi}(\phi) + \frac{1}{2} \kappa (\nabla \phi)^2 + f_{\psi}(\psi) + D \phi \psi \right]$$

$$\partial_t \psi(x,t) = \nabla^2 \frac{\delta F}{\delta \psi} \qquad F = \int_{\mathbf{r}} \left[f_{\phi}(\phi) + \frac{1}{2} \kappa (\nabla \phi)^2 + f_{\psi}(\psi) + D \phi \psi \right]$$

$$\partial_t \phi(x,t) = \nabla^2 (D_{11}\phi + \phi^3 - \kappa \nabla^2 \phi + D\psi)$$

$$\partial_t \psi(x,t) = \nabla^2 (D_{22}\psi + D\phi)$$

Allow for NR cross couplings: $\partial_t \phi(x,t) = \nabla^2 (D_{11}\phi + \phi^3 - \kappa \nabla^2 \phi + D_{12}\psi)$ $\partial_t \psi(x,t) = \nabla^2 (D_{22}\psi + D_{21}\phi)$ $D_{11} < 0$

Generic minimal model of excitable extended dynamical system

Z You A Baskaran MCM PNAS 2020; S Saha et al. PRX 2020; T Frohoff-Hülsmann et al. PRE 2021

Linear Stability of Homogeneous States

$$\partial_t \phi(x,t) = \nabla^2 (D_{11}\phi + \phi^3 - \kappa \nabla^2 \phi + D_{12}\psi)$$
$$\partial_t \psi(x,t) = \nabla^2 (D_{22}\psi + D_{21}\phi)$$
$$D_{11} < 0$$

Nonreciprocity controlled by sign of $D_{12}D_{21}$

Linear Stability Phase Diagram

Weak Nonreciprocity \rightarrow Uninterrupted Coarsening

 $D_{21} = |D_{12}|$ D_{12} 0.5- $\overleftarrow{}$ $|D_{11}|$ coarsening D_{22} 0 0.5 $\frac{1}{2}|D_{11}|$ -0.5 TW -1 $\operatorname{Im} \sigma(q_+) = 0$ 0 \mathcal{D} -1 $\operatorname{Im} \sigma(q_+) > 0$ Η no instability -1.5 -

$$\phi,\psi$$

50

 ψ

- 5

Stronger NR \rightarrow Traveling Waves & Arrested Coarsening

 $D_{21} = |D_{12}|$ D_{12} 0.5- $|D_{11}|$ coarsening ϕ,ψ D_{22} 0 $\frac{1}{2}|D_{11}|$ 0.5 -1 -0.5 -TW $\operatorname{Im} \sigma(q_+) = 0$ 50 0 -1 - $\operatorname{Im} \sigma(q_+) > 0$ \checkmark Η no instability -1.5 **-**

- 5

0

Strong NR + No Flux Boundary Condition \rightarrow Standing Waves

Multistability of Traveling Waves

Two dimensions: undulation instability of traveling fronts

Periodic boundary conditions Initial homogeneous state

No-flux boundary conditions Initial flat interface

Weak antireciprocity → rotating wave

Strong antireciprocity → undulational instability

Interface mode predicts pattern propagation speed

Linearization of the steady state profiles near the inflection point where $\overline{\phi} = \overline{\psi} \rightarrow \ell_{int} = \frac{\pi}{q_+(\overline{\phi})}$

The marginal mode at $q_{int} = q_+(\overline{\phi})$ controls the interface width and speed \rightarrow Transition to traveling waves when $Im[\sigma(q_+^{int})] \neq 0$

patterns

NR mass-conserving fields vs broken symmetry fields

- NR breaks polar symmetry
 → TW
- D₁₁ tunes static phase separation

NR-coupled flocking agents:

- NR breaks chiral symmetry
- disorder tunes alignment transition

M Fruchart et al. Nature 2021

$$j_{\pm} = \frac{j_{AB} \pm j_{BA}}{2}$$

NR-coupled mass-conserving fields

Traveling waves emerge from coalescence of two hydrodynamic modes (mass conservation/translational invariance)

Patterns (phase separation) a prerequisite

Dynamical states tuned by nonreciprocity and $D_{22}/|D_{11}|$

Behavior controlled by mode at the right edge of unstable band \rightarrow characteristic form of dispersion relation that identifies this class of systems

Chiral states emerge from coalescence of Goldstone mode (broken global rotational symmetry of OP/oscillator phase) and damped mode

Symmetry-breaking phase transition a prerequisite

Dynamical states tuned by nonreciprocity and noise

nonlinear pattern controlled by "self-organized" interfacial mode

Many other system can be mapped onto the same generic model

- Nonreciprocally coupled fluid mixtures, e.g., phoretic colloids Z You 2020, S. Saha 2020, 2022
- Mass-conserving reaction-diffusion systems, e.g., MinDE system of E. coli B Jacobs 2019, K John2005, F Brauns 2021

actomyosin cortex, epithelia,

- Active-passive mixtures A Wysocki 2016, R Wittkowski 2017, Z You 2020
- Active (visco)elastic gels JS Bois 2011, S Banerjee 2015
- Active poroelastic media M Radszuweit 2013, CA Weber 2018 _____ cells in ECM, muscles
- Chemosensitive motile bacterial mixtures AI Curatolo 2020
- Chemotactic droplets H Zhao 2023, L Demarchi 2023

All share same characteristic dispersion relation \rightarrow can be identified by linear stability

System	ϕ	ψ
Non-reciprocal binary mixtures	Pattern-forming field	Diffusive field
Active/passive particle mixtures	Density of active particles	Density of passive particles
Mass-conserving reaction–diffusion systems	MinD concentration	MinE concentration
Active gels	Density of contractile elements	Strain

\rightarrow Two Examples

Example 1: Mixture of Active & Passive Brownian Particles

- Both active and passive particles slow down the persistent dynamics of ABPs
 → D_{AA} < 0, D_{AP} < 0
- Cross diffusion of passive particles is not affected by activity $\rightarrow D_{PP} > 0$, $D_{PA} > 0$

Pattern-forming field $\phi \rightarrow \text{density } \rho_A$ of ABPs undergoing Motility Induced Phase Separation (MIPS) Diffusive field $\psi \rightarrow \text{density } \rho_P$ of passive particles

Explicit mapping: Z You, A Baskaran, MCM PNAS 2020

Emergent nonreciprocity

Also: Wysocki *et al*, NJP (2016) Wittkowski *et al.*, NJP (2017)

Simulations by Somaiyeh Shokri

Example 2: motile cells in viscoelastic ECM

JS Bois 2011, S Banerjee 2015 M Radszuweit 2013, CA Weber 2018

Conserved contractile elements/cell density *c*

Translationally invariant gel/ECM displacement *u*

$$\begin{array}{l} \partial_t c + \partial_x (\dot{u}c) = D \partial_x^2 c \\ \gamma \dot{u} = \partial_x \left[\eta \partial_x \dot{u} + E \partial_x u + \sigma_a(c) \right] \\ \hline \text{viscosity} \quad \text{elasticity} \quad \text{active stress} \end{array}$$

Instability & pattern formation:
$$\dot{u} \simeq \frac{1}{\gamma} \sigma'_a \partial_x c \qquad \rightarrow \quad \partial_t c = \partial_x \left[D - c \sigma'_a / \gamma \right] \partial_x c \qquad \sigma'_a = \frac{\partial \sigma_a}{\partial c}$$

$$D_{eff}(c) < 0 \qquad \text{stabilized by viscosity}$$
at short scales

Incorporating viscosity and elasticity:

$$\begin{split} \gamma \partial_t c &= \partial_x \left[\gamma D_{eff} \partial_x c - c E \partial_x \varepsilon \right] - \kappa_{\text{eff}} \partial_x^4 c \\ \gamma \partial_t \varepsilon &= \left[E \partial_x^2 \varepsilon + \partial_x (\sigma'_{\text{a}} \partial_x c) \right] \\ \varepsilon &= \partial_x u \qquad \kappa_{eff} \sim \eta \end{split}$$

requires contractile activity $\sigma_a'(c_0) > 0$

Negative feedback between gel elasticity and density c of active elements provides NR cross-diffusion

Mechanical waves during tissue expansion

Xavier Serra-Picamal^{1,2†}, Vito Conte^{1†}, Romaric Vincent¹, Ester Anon¹³, Dhananjay T. Tambe⁴, Elsa Bazellieres¹, James P. Butler^{4,5}, Jeffrey J. Fredberg⁴ and Xavier Trepat^{1,2,6*}

Conclusions and Outlook

- Cahn Hillard equation with NR coupling to diffusive field provides a generic minimal model for traveling and oscillating states in extended systems T Frohoff-Hülsman, U Thiele arXiv:2301.05568
- In 1D a variety of physical systems can be mapped onto this ``normal form''
- Interfacial mode as useful framework for investigating more complex patterns:
 - density dependent transport coefficients
 S Saha, R Golestanian arXiv:2208.14985
 - nonlinear wavelength selection due to broken mass conservation
 - \circ spontaneous phase separation of ψ field

Soft & Living Matter @UCSB http://biogroup.physics.ucsb.edu Postdoctoral positions available

Fridtjof Brauns

