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Bacterial growth phases, Monod(1949)
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Bacterial growth phases, Monod(1949)
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Dormancy
provides stress
tolerance

Video from: MS Svenningsen
et al. "Birth and resuscitation
of (p) ppGpp induced
antibiotic tolerant persister
cells." Scientific reports 9.1
(2019): 1-13.

Antibiotic persistence:
Genetically drug sensitive
bacteria can still survive
(different from resistance)



Bacterial growth phases, Monod(1949)
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Bacteria can evolve to have longer lag-time
under antibiotic application

LETTER

Optimization of lag time underlies antibiotic
tolerance in evolved bacterial populations

Ofer Fridman', Amir Goldberg', Irine Ronin', Noam Shoresh? & Nathalie Q. Balaban'
m Antibiotics Wash m Growth
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Fridman et al. Nature (2014)



Bacteria can evolve to have longer lag-time
under antibiotic application

LETTER
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Antibiotic application time



Repeated growth-starvation cycle with stochastic AB application
-> Will the longer-lag time phenotype selected?
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How does the lag time evolve in an intermediate region?

LETTER

Optimization of lag time underlies antibiotic
tolerance in evolved bacterial populations
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Trade-off between growth and tolerance

InN i Fresh media InN with AB for a while
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Lag time A
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General Setup

Repeat feast-famine cycle, with stochastic AB application

A A A A A A

e
Q. What is the best waking-up strategy?

(optimize the cumulative population gain)

e Yusuke Himeoka and NM, Plos Comp17(2): e1008655 (2021)



The simplest case: Deterministic Lag Time (delta-distributed)

When the nutrient 1s added . After the nutrient washed out
After time A ; ; lnstantly ;
dormant growing : dormant growing
Dormant Growing
* No growth » Grows at rate u=1 if there's no antibiotics

* No death * Dies at rate vy if there're antibiotics



The population of the cells at time ¢ > max{\, T} for each condition.

+ AB (prob. p) - AB (prob. 1 —p)
A<T | exp[—¥(T — \)]exp[t — T expt — A
A>T exp[t — Al exp(t — Al

AB application duration T, lagtime A, Growth rate fixed to 1

Average growth after N repeats:
(+AB growth)PN (—AB growth)(—P)N
If the

wakeup is
completely F{(\7.p,T) ={
deterministic

Fitness to maximize:
—p(T—=AN)(1+7)—-X2 (A<T)
—-A A>T).

~—

Discrete transition in the optimal lag time:

>/\ ¥ O (7<1/p_1)
A =
T (v>1/p—1).




A Simple Model: Lag time as a constant rate process

If there 1s the nutrient . After the nutrient washed out
; : : 1nstant1y i
dormant growing : dormant growing
d



Discontinuous transition of the optimal l[agtime

(Growth rate and Death rate set to 1)
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Bet-hedging? Two populations

Total fitness

Fraction x Fr(x, Ao, A\p;v,p,T) =pln [(1 —x)fa(T) + .sz;,(T)]
m

‘ ‘ +(1 —p)ln [(1 —x)fa(0) + .z'ﬁ)(())} :
Dormant growing
(In lag phase)
» Find optimal
}\a, }\b, X

Fraction 1-x
‘m‘ (Ag < Ap)

Dormant growing
(In lag phase)

i.e.xis fraction of slow
wakeup population



Two-Species Case (with exp. wake up)
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Take-home

message: long-lag
subpopulation can )
be selected .

In AB application strategy
space, there are regions that
select for variable drug tolerant
population

Color: long-lag population fraction x*

| e B e .

1

10

AB application

time T

1 lllllll

Yuske Himeoka and NM, Plos Comp17(2):
1008655 (2021)

Generalization such as variable T has been
anaIYZEd, too. A Normal Distribution 1

1
N q(Dxexp-(T-*/20%) 0.25 0.5 0.75 1

1

Everyone wa SECCurc
up ASAP |

Prob. of AB application

o 2 4 6 s 10 Lgtime

Analysis with spontaneous persistence
by Silja B. Lastad (in preparation)



Some more extensions..

General solution: Optimal lagtime

distribution»* (1) = ad(l) + (1 — a)s(l).

10!

10

107

General solutioQ for arb%trary q(A'T') in
Yuske Himeoka and NM, Plos Comp17(2): e1008655 (2021)
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Normal Distribution

' AB duration distribution

q(Decexp (-(T-w)*/20%)
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If awake bacteria can go dormant again
(Lastad and NM, in prep.)

. Optimal persistence strategy for Tag = 10
Lagtime Rate to re-enter dormancy
@ |, AT (b) ’
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Horizontal axis:
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Bacterial growth phases, Monod(1949)
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Dormant states are as
(more) important for
survival of bacteria
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Essay

Bacteria grow swiftly and live thriftily

Roberto Kolter'*, Nathalie Balaban?, and Thomas Julou®

Current Biology 32, R589-R683, June 20, 2022
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Grown in a well-defined, minimal medium
Starve by running out of a carbon source (provide energy)

aN d_N = —y.N
A ar N B . ac !
0.8 107
a5 k O repeat #1
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Schink, S. J., Biselli, E., Ammar, C., & Gerland, U. (2019). Death rate of E. coli during starvation is set by
maintenance cost and biomass recycling. Cell systems, 9(1), 64-73.



Linear trade-off in E. Coli grown in different media/rate

Biselli, E., Schink, S. J., & Gerland, U. (2020). Slower growth of Escherichia coli leads to longer survival in carbon starvation
due to a decrease in the maintenance rate. Molecular systems biology, 16(6), e9478.

Cells grown in %1 energy richer environment cost mgre energy to maintain under starvation
9
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Role of death rate in fithess?

If we focus on exp growth phase, fastest grower=fittest

[CFU]
# of cells

» \ / » Dilute and repeat

Two strains of E. coli

Two strains grown
in a flask

The faster growing strain will
take over the whole

[Hours]

What if faster growing cells also die faster under starvation?

« Himeoka, Y., & Mitarai, N. (2020). Dynamics of bacterial populations under the feast-famine
cycles. Physical Review Research, 2(1), 013372.
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Stochastic feast-Famine cycle

with growth-death trade-off E 0 E
Setup If nutrients comes sporadically
With food Without food » Better to eat it fast (and grow fast)
d_N —u-N d_N N in the feast period with nutrients
dt at ¥ * Need to survive the famine period

>
w

without nutrient — slower death

0.8 ] 1094 -
g3 - i desirable
55 02 o | ES 408
D= 1 | S8 * What is the fitness in this setup?
0-05 1 1 1 1 U\ [ ) [ ) [
3 ’ 02 4 6 & 10 « Competition in growth may result
Time (d) in uTocnp

Y:an increasing function of u



Set up: Multiple species compete for stochastic

addition of food _ -~
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Set up: Multiple species compete for stochastic

addition of food _ _
|
v

——
; >
rate uiN; X ]
Bacteria Ni —_— Ni + 1 : l _
’ Waiting time between nutrient addition A: ¥ 2
rate Z HilN; ’ Poisson distributed P(A) = %e‘AM : "
i i
Food S >SS — 1 : l
i
|

- . é ~

_ rate y;N;
Bacteria Ni _— Ni —1

Trade — off: y; = f (u;), species can mutate to another growth rate



Set up: Multiple species compete for stochastic

addition of food _ _
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Trade — off: y; = f (u;), species can mutate to another growth rate

_ _ _ rate p
Mutation for evolution : a newly born bacterium y; — u; £ Au



Linear Growth-Death trade-off in Repeated
Feast-Famine cycle (with small mutation rate)

no. of bacteria

107

104

Linear death-growth
trade-off

(_C) - 'Linear' 'l‘r'fl.de—_off_

Yy =a+ bu

N W
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Tragedy of commons

p=10"
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time (x107)

a= 10", b=0.1, ép=107%, A = 1.28,



Square Growth-Death trade-off in Repeated
Feast-Famine cycle (with small mutation rate)

7 5 (x 1 0%) Square Trade-off
Rl PP U S — Non-linear death-growth
trade-off
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Optimal growth rate
exists

a=10", b=0.1, du = 1072, p=10" A = 1.28,



Intuitive candidates for the fitness?

UL—y w/y
* If growth and death happensat ¢ If we consider logistic growth
the same time
dN
dN ~ =y _ — V.
E=(H—V)'N e " NA-N)=y-N
. . . =pu-N[(1-N)—y/u]
the difference gives the effective o efficient usage of the carrying
growth rate capacity is determined by the
ratio

(cf. Haerter, NM, Sneppen ISMEJ 2014)



In our set up, £ determines the fitness

14
Linear trade-off y = a + bu Square trade-off y = a + bu?
E: H = ! = E: a = !
y a+bu a/u+b y a+bu? a/u+bu
The higher growth rate the better  The optimal growth rate at
-> Tragedy of commons pu=+a/b

-> Stable system



“Derive” % determines the fitness against invasion

* Waiting time to the next nutrient A : Stochastic variable

e Time for the nutrient to run out 7 : Determined by bacteria in the system

ut —y(A —1) (forA > 1)
uA(for A < 1)

If the waiting time to the next nutrient A is Poisson distributed with average

A, then (Geff) = [,u(l — e‘T/’l) — ye‘f/ﬂ]l

—In steady state, T is determined by (Geff)=0, i.e. e

It is easy to show Effective growth fold G.rr = {

-t/ — _H
Uty

<=
V
<R I=

—Condition for the second species with [ and ¥ to invade the system:
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Take-home message

Under repeated Feast Famine Cycles,
fitness is determined by (Growth
rate)/(Death rate in starvation)

-> Different trade-off results in
different evolutionary consequences

* Derivation of fitness is tedious —is it
possible to make a general
statement?

Himeoka, Y., & Mitarai, N. (2020). Dynamics of
bacterial populations under the feast-famine
cycles. Physical Review Research, 2(1), 013372.



Log , BACTERAL DENSITY
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Dormancy happens when
environment force it to

Growth, Dormancy, and Death

(c) Linear Trade-off
T & & & & & o =
i i3
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Dormancy can be selected
since it provide stress
tolerance

off determines
evolutionary outcome

Himeoka, Y. and Mitarai, N., 2021. PLoS computational biology, 17(2), p.e1008655.
Himeoka, Y., & Mitarai, N. 2020 Physical Review Research, 2(1), 013372.

(related works: Himeoka et al. mSpheres (2022), Himeoka and Mitarai Rhys. Rev. Res. (2022))
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