
Thermodynamic bound on the 
asymmetry of cross-correlations

Ito group, The University of Tokyo 
Naruo Ohga

Aug. 4, 2023  YITP-YSF symposium

Naruo Ohga, Sosuke Ito, Artemy Kolchinsky, arXiv:2303.13116, 
(Phys. Rev. Lett., in press.)



Two-time correlations

Cτ
ba = ⟨b(t + τ) a(t)⟩

Fluctuating system in steady state 

 : Auto-correlation 
 : Cross-correlation

Cτ
aa, Cτ

bb
Cτ

ba, Cτ
ab

 : Arbitrary two observables 
        (Even under time-reversal)
a, b

- Captures the temporal structure  
  at the trajectory level 
- Experimentally accessible in 
  various systems

Steady-state 
trajectory  
keeps 
fluctuating

Two-time correlations

Two noneq. features of two-time correlations 
1 Asymmetry of cross-correlations 
2 Oscillations



1   Asymmetry of cross-correlations 
2   Oscillations (Eigenvalues) 

Discussion & Summary

☞
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Asymmetry in cross-correlations

: fundamental signature of nonequilibriumCτ
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Goal

Temperature 
gradient

Chemical potential gradient
J. R. Gomez-Solano+, 
EPL 2010

Mechanical 
force

Thermodynamic drivingAsymmetry  :Cτ
ba ≠ Cτ

ab
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Biological motion Any universal 
& quantitative  
relation?



Thermodynamic bound on cross correlations
Dimensionless measure of the  
asymmetry of cross-correlation 
(New in this study)

Invariant under rescaling of   
and time. Experimentally accessible

a, b

χba = lim
τ→0

Cτ
ba − Cτ

ab

2 (ΔτCaa)(ΔτCbb)

Asymmetry of cross-corr.

Decay of auto-corr.
 
 

 
  （The change speed of ）

Cτ
ba = ⟨b(t + τ) a(t)⟩

ΔτCaa = C0
aa − Cτ

aa

= 1
2 ⟨[a(t + τ) − a(t)]2⟩
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Thermodynamic bound on cross correlations
Strength of thermodynamic driving 
(Standard in discrete systems)
Cycle   
　Cyclic sequence of distinct  
   states connected with  
   allowed transitions

c

Cycle affinity  
 = The sum of thermodynamic forces 
    over one turn of the cycle　 
 = Dissipation in the environment  
    per one turn of the cycle

c

Dimensionless measure of the  
asymmetry of cross-correlation 
(New in this study)

Invariant under rescaling of   
and time. Experimentally accessible

a, b

χba = lim
τ→0

Cτ
ba − Cτ

ab

2 (ΔτCaa)(ΔτCbb)

Asymmetry of cross-corr.

 
 

 
  （The change speed of ）

Cτ
ba = ⟨b(t + τ) a(t)⟩

ΔτCaa = C0
aa − Cτ
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= 1
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Decay of auto-corr.

c

Determined by environmental parameters
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 : Cycle affinityc

Maximum over all 
cycles in the system

 : # of states over the cyclenc

Nonlinear function of 
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The magnitude of asymmetry is 
universally related to affinity!

Cycle affinity  
= The sum of thermodynamic forces 
   over the cycle　 
= Dissipation per one cycle

c



Thermodynamic bound on cross correlations 5:30
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Implications

① Fundamental thermodynamic cost for  
    various physical functions
Information 
transfer

Nonreciprocal 
motion

R. Golestanian+ 
PRE 2008

Circulation

C. Battle+ 
Science 2016

② A practical method to infer 
    affinity from measured  
    short-time correlations

e.g.)  
 Fluorescence 
 cross-correlation 
 spectroscopy

Dimensionless measure of asymmetry
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Decay of auto-corr.
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≤ max
c

c

2π

Main Result                      The asymmetry is 
universally related to affinity!

Figure 2 | The principle of FCS and FCCS measurements. (a) Schematic setup. FCS and FCCS use a confocal type of microscope setup. The laser light enters 
the objective from the back and is focused in the sample. For dual-color FCCS (using one-photon excitation), two separate laser lines are usually used to 
excite the spectrally distinct fluorophores. The red-shifted fluorescence from the sample is collected through the same objective and is separated from the 
excitation by the primary dichroic mirror. The tube lens of the microscope focuses the emission light onto a pinhole at the front-end of a detector (avalanche 
photodiode (APD)). This small aperture reduces the collection of fluorescence light from above and below the focal plane. The resulting optically delimited 
detection volume features a size of typically less than one femtoliter. In the case of dual-color FCCS, the fluorescence emissions of the two fluorophores 
are separated by means of a secondary dichroic mirror and two separate detectors are used. (b) Single-color FCS. Labeled particles diffuse through the 
detection volume, producing a fluctuating fluorescence signal. This time trace is subjected to an autocorrelation algorithm, yielding a correlation curve, G(τ). 
The characteristic decay time of G(τ) shows the mobility of the particles (solid curves). The inverse of the amplitude, G(0), is proportional to the particle 
concentration (dashed curves). Also see Box 2. (c) Dual-color FCCS. In dual-color FCCS, two spectrally distinct fluorophores (such as green and red) are used, 
which produce fluctuating fluorescence signals in the respective color channels. Each time trace is autocorrelated (green and red solid curves). In addition, 
the cross-correlation function between the green and red traces is computed (black dashed curves). The relative amplitude of the cross-correlation curve is a 
measure of the degree of binding or colocalization (see Box 2).

a b

c
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techniques28 and fluorescence intensity–based techniques that 
observe the ‘sensitized emission’ of the bulk acceptor upon exci-
tation of the donor or the increase in donor fluorescence upon 
irreversible photobleaching of the acceptor29. Compared with 
FRET,  FCCS is particularly promising for the quantitation of 
strong binding in terms of binding constants, especially for com-
plex stoichiometries21. Moreover, there are differences between 
FCCS and FRET with respect to spatial and temporal resolution. 
A variety of FRET parameters involve pixel-wise differences and/
or ratios of fluorescence intensities from sequentially acquired 
images30, making them potentially susceptible to cellular move-
ments between acquisitions. In contrast, FCCS monitors the con-
centrations of single- and double-labeled particles concurrently. 
On the downside, standard single-spot FCCS measurements do 
not offer simultaneous spatial resolution (that is, an image) and 
are also perturbed by moving labeled structures (for example, 
undulating membranes) that cause additional fluorescence fluc-
tuations on a time scale similar to that of the diffusion process 
of interest. Fluorescence lifetime–based FRET measurements 
avoid the problem of concentration effects, but the fluorescence 
lifetime is susceptible to environmental influences that produce 
unspecific quenching. Finally, a fundamental difference between 
FCCS and FRET is the distance scales of the two techniques. FRET 
is usable only if the binding partners are in very close proximity 

(a few nanometers) and are in a suitable orientation. Some prior 
structural knowledge and control of linker flexibility is therefore 
necessary to obtain appropriate placement of the chromophores, 
whereas FCCS works also with large chromophore distances.

Practical considerations in FCCS
Many FCCS applications, including the intracellular trafficking 
assays12 and part of the intracellular cleavage studies18 mentioned 
above, have used commercial instrumentation recently made avail-
able by Zeiss (ConfoCor2; ref. 31) and Leica (FCS2). A binding assay 
done on artificial membranes32, an assay for topoisomerase II that 
allows distinction between different classes of inhibitors33 and a 
recent cell signaling study based on indirect immunolabeling34 have 
also used the Zeiss setup. Other FCCS applications, including early 
realizations15, the intracellular studies of c-Jun/c-Fos22 and some 
intracellular caspase-cleavage studies19 have used custom-built 
setups with configurations similar to those of commercial ones. 
The measurements of CaM/CaMKII binding20,21 and the solution 
measurements of proteolytic cleavage17 were accomplished using 
two-photon FCCS, which has thus far been done only in custom-
built setups. Whereas custom-built setups can be better adapted 
to special applications and allow for technological developments 
(for example, pulsed interleaved excitation35,36), integrated com-
mercial systems that feature motorized, software-controlled parts, 
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Numerical example

Model of biological information  
transduction

Numerical example with random rates
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P. Mehta and D. J. Schwab, 
PNAS 2012.

5:30

Strong 
NonequilibriumEquilibrium

Dimensionless measure of asymmetry

χba = lim
τ→0

Cτ
ba − Cτ

ab

2 (ΔτCaa)(ΔτCbb)

Asymmetry of cross-corr.

Decay of auto-corr.
|χba | ≤ max

c

tanh( c/2nc)
tan(π/nc)

≤ max
c

c

2π

Main Result                      The asymmetry is 
universally related to affinity!



Formulation and proof

Cτ
ba = ⟨b(τ)a(0)⟩ = ∑ij [e*τ]ijqj biaj

Transition matrix  *
 = Transition rate from  to      
 =     (Escape rate)

Rij j i (i ≠ j)
Rii −∑j : j≠i Rji

Discrete-state Markov process
States 　　  i = 1,…, N

Time evolution   
        dp(t)/dt = *p(t) ⟹ p(t) = e*tp(0)
Steady-state distribution ：q *q = 0

Two-time correlation



Formulation and proof

Cτ
ba = ⟨b(τ)a(0)⟩ = ∑ij [e*τ]ijqj biaj

Transition matrix  *
 = Transition rate from  to      
 =     (Escape rate)

Rij j i (i ≠ j)
Rii −∑j : j≠i Rji

Discrete-state Markov process
States 　　  i = 1,…, N

Time evolution   
        dp(t)/dt = *p(t) ⟹ p(t) = e*tp(0)
Steady-state distribution ：q *q = 0

Cycle c = (i1 → i2 → ⋯ → inc
→ i1)

with Rik+1 ik ≠ 0

  c = kB ln ∏Forward rates
∏Backward rates

Two-time correlation

 = kB ln
Ri2i1Ri3i2…Ri1inc

Ri1i2Ri2i3…Rinci1



Formulation and proof

Cτ
ba = ⟨b(τ)a(0)⟩ = ∑ij [e*τ]ijqj biaj

 : Steady-state distributionq

Two-time correlation

Area

Length

Proof

　 χba = lim
τ→0

Cτ
ba − Cτ

ab

2 ΔτCaa ΔτCbb

=
2∑ij Rijqj (biaj − aibj)

∑ij Rijqj[(ai − aj)2 + (bi − bj)2]

(ai, bi)
(aj, bj)Use [e*τ]ij ≈ 1 + τRij



Formulation and proof

Cτ
ba = ⟨b(τ)a(0)⟩ = ∑ij [e*τ]ijqj biaj

 : Steady-state distributionq

Two-time correlation

Area

Length

Proof

　 χba = lim
τ→0

Cτ
ba − Cτ

ab

2 ΔτCaa ΔτCbb

=
2∑ij Rijqj (biaj − aibj)

∑ij Rijqj[(ai − aj)2 + (bi − bj)2]

(Area) ≤ (Perimeter)2

For any -sided polygon, n

Area of the regular -sided 
polygon with the same perimeter.

n

4n tan(π/n)

① Isoperimetric inequality  
    (from planer geometry)

② Cycle-wise affinity TUR

Use [e*τ]ij ≈ 1 + τRij

(ai, bi)
(aj, bj)

|χba | ≤ max
c

tanh( c/2nc)
tan(π/nc)

≤ max
c

c

2π
⟹
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Fluctuating oscillations

Damped oscillation

Dong+ Curr. Opin. Microbiol. 2008Ferrell+ Cell 2011

Cell cycle Circadian clock
e.g.) Biochemical oscillations

Oscillations should be coherent in time 
for reliable biochemical functionality.



Fluctuating oscillations

Damped oscillation

Dong+ Curr. Opin. Microbiol. 2008Ferrell+ Cell 2011

Cell cycle Circadian clock
e.g.) Biochemical oscillations

Oscillations should be coherent in time 
for reliable biochemical functionality. Assume that one of the modes  is 

dominant. 
α

    Cτ
ba = ∑ij [e*τ]ij qj biaj

exp(λατ) = exp(−μα τ) exp(iωα τ)
Relaxation Oscillation

    →  is a superposition ofCτ
ba

 : -th eigenvalue of λα = − μα + iωα α *

 = Decay time
Period = (μα)−1

2π |ωα |−1 = |ωα |
2πμα

(# of oscillations before the auto- correlation decays )
Quantitative measure of coherence

Finite-time corr.



Fluctuating oscillations

Dong+ Curr. Opin. 
Microbiol. 2008

Ferrell+ Cell 2011

Cell cycle Circadian clock

Coherence of oscillation
Temperature 
gradient

Chemical potential 
gradient

J. R. Gomez-Solano+, 
EPL 2010

Mechanical 
force

Thermodynamic driving

α

Any universal 
& quantitative  
relation?

Equilibrium   for any   (No oscillation)⟹ ωα = 0 α



Bounds on eigenvalues
Measure of coherence
Decay time

Period = |ωα |
2πμα

Conjectured by Barato and Seifert (2017)  
based on numerical evidence. 
Not rigorously proven before.

 : eigenvalueλα = − μα + iωα

The coherence of oscillation is  
universally bounded by affinity

Conjecture
|ωα |

μα
≤ max

c

tanh( c/2nc)
tan(π/nc)

≤ max
c

c

2π
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Corollary                    For all modes  α
|ωα |

μα
≤ max

c

tanh( c/2nc)
tan(π/nc)

≤ max
c

c

2π

Main Result

−μα + iωα = ∂
∂τ

exp(λατ)
τ=0

= ∂
∂τ

Cτ
z*z

τ=0
= ∂

∂τ [(Cτ
aa + Cτ

bb) + i (Cτ
ba − Cτ

ab)]
τ=0

zi = u(α)
i /qi

eigenvector 

 bi = Im zi

ai = Re zi

Complex-valued 
“Observable”

Real-valued 
“Observable”

Proof
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Main Result

−μα + iωα = ∂
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exp(λατ)
τ=0

= ∂
∂τ

Cτ
z*z

τ=0
= ∂

∂τ [(Cτ
aa + Cτ

bb) + i (Cτ
ba − Cτ
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τ=0

Proof

       (affinity bound)|ωα |
μα

= lim
τ→0

|Cτ
ba − Cτ

ab |
ΔτCaa + ΔτCbb

≤ lim
τ→0

|Cτ
ba − Cτ

ab |
2 (ΔτCaa)(ΔτCbb)

= |χba | ≤

x + y ≥ 2 xy
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Correlations of 
state observables

Affinity bounds vs. entropy bounds

lim
τ→0

Cτ
ba − Cτ

ab

2 ΔτCaa ΔτCbb
≤ max

c

c

2π
⟨Jτ

d⟩2

Var Jτ
d

≤ Στ

2

This talk Thermo. uncertainty relations

Statistics Precision of  
a current observable 

Thermodynamic 
signature Entropy production ΣτCycle affinity

Complementary ways to relate statistical and 
thermodynamic signatures

 :Jτ
d

accumulated 
current



Affinity bounds vs. entropy bounds
Entropy production ΣτCycle affinity

Independent Dependent

Strength of driving 
Environmental parameters  
(e.g., chemical potentials)

Resulting dissipation 
rateDetermined by

Robust Sensitive

Dependence on 
the steady state
Response to microscopic 
kinetic changes

→ Complementary characterizations of the thermodynamic cost

Macroscopic setup Microscopic behavior



Summary
Corollary

|χba | ≤ max
c

tanh( c/2nc)
tan(π/nc)

≤ max
c

c

2π

Result

χba = lim
τ→0

Cτ
ba − Cτ

ab

2 ΔτCaa ΔτCbb
：Eigenvalue of  λα = − μα + iωα *

Details → N. Ohga, S. Ito, A. Kolchinsky, arXiv:2303.13116

 : Cycle affinity (Strength of thermodynamic driving)c
 : # of states on cycle nc c

 Cτ
ba = ⟨b(t + τ) a(t)⟩

ΔτCaa = C0
aa − Cτ

aa

Proof: Use the isoperimetric inequality 
          between area and length

Proof: Extract     from a complex-valued 
          correlations

|ωα |
μα

≤ max
c

tanh( c/2nc)
tan(π/nc)

≤ max
c

c

2π

The coherence of oscillation is 
universally bounded by affinity

The asymmetry of cross-correlation is 
universally related to affinity

λα

See also   N. Shiraishi, arXiv:2304.12775 
               T. Van Vu, V. T. Vo, K. Saito, arXiv:2305.18000  

Conjectured by Barato & Seifert (2017) 


