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Two-time correlations

Fluctuating system in steady state Two-time correlations
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(Even under time-reversal)

- Experimentally accessible In
various systems

Two noneq. features of two-time correlations
I Asymmetry of cross-correlations
2 Oscillations
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Discussion & Summary




Asymmetry In cross-correlations

Equilibrium  Cf = C7, for any a,b Cpo = (Dt + D)a(?))
(Microscopic reversibility) C’,

Nonea. C, #C for somea,b

Steady state  (Bregking of micro. rev.) 0

Time lag T



Asymmetry In cross-correlations

Equilibrium . =C for any a,b g“ = (bt +7)a(1))
(Microscopic reversibility)  C°

Noneaq. .. 7+ C for some a,b

Steady stateé  (Breaking of micro. rev.) 0

0 Time lag T

., 7 C .. fundamental signature of nonequilibrium
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Thermodynamic driving
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Thermodynamic bound on cross correlations

Dimensionless measure of the
asymmetry of cross-correlation
(New In this study)

1 Cl;[a o Zl-b
Aba = [im
=0 2\/(A7Caa)(A7Cbb)
Decay of auto-corr.

- CL = (b(t+ 1) a(n))
ATCCZCZ — Cc(z)a o Ccfa

= (la(t + 7) — a(®]*)
(The change speed of a)

Invariant under rescaling of a, b
and time. Experimentally accessible



Thermodynamic bound on cross correlations

Dimensionless measure of the
asymmetry of cross-correlation
(New In this study)

CO
C — C" o
Aba = lin& = = Cpy K
T— ZV(ATCaa)(ATCbb) \\(5&9
Decay of auto-corr. 0 ERETN
_ _ ab =
Ct = (b(t+ 7) a(h))
AC,,=Co —Ct i
C - - 0" Time lag 7
= (la(t+ 1) — a(®)]?)
~ (The change speed of a)

Invariant under rescaling of a, b
and time. Experimentally accessible



Thermodynamic bound on cross correlations

Dimensionless measure of the Strength of thermodynamic driving
asymmetry of cross-correlation (Standard In discrete systems
New In this stud
( Y) Cycle c ?
i . Cyclic sequence of dlstlnct
— lim Coa — Cap states connected with .
Aba = o
7—0 2\/(A1Caa)(A7Cbb) allowed transitions 0
Decay of auto-corr. \./

C,, = (bt +17)a()) Cycle affinity F.

AC, =C) —Ct = The sum of thermodynamic forces

= (la(t + 7) — a(®]*)
(The change speed of a)

over one turn of the cycle

= Dissipation in the environment
per one turn of the cycle

Invariant under rescaling of a, b
and time. Experimentally accessible Determined by environmental parameters




Thermodynamic bound on cross correlations

 Dimensionless measure of asymmetry - Cycle affinity .

C* — (7 . = The sum of thermodynamic forces
Xpg = IIm B .+ over the cycle
ba )
=0 24/(A,C,)(A,Cpp) . 1 = Dissipation per one cycle




Thermodynamic bound on cross correlations

 Dimensionless measure of asymmetry - Cycle affinity .

7 z . i = The sum of thermodynamic forces
Cra — Cap ' |

¥p, = lim .+ over the cycle
=0 20/(A.Caa)(A:Cpp) .+ = Dissipation per one cycle
Main Result For any observable a,b Fel2n_ /
_ 64 (c—>00)>>
tanh(7./2n * < /
| Xpa | < max Jelon) < max — = =16~
¢ tan(z/n,) c 2m 544 7 7,
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Thermodynamic bound on cross correlations

 Dimensionless measure of asymmetry - Cycle affinity .

. = The sum of thermodynamic forces

T (7T
2p, = lim Cha ab | over the cycle
=0 20/(A;Caa) (A Cp) .+ = Dissipation per one cycle

Main Result For any observable a,b Fel2n_ /
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yA S o n.=167
tan(rz/n,.) o4 ’

g /. B
g // n.=3

A2 _
Maximum over all Nonlinear function of ne=4

cycles in the system  #_: Cycle affinity 0
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-

of states over the cycle Aﬁﬁzt?ity 7:40



Thermodynamic bound on cross correlations

 Dimensionless measure of asymmetry - Cycle affinity .

7 z . i = The sum of thermodynamic forces
Cra — Cap ' |

b, = lim over the cycle
=0 20/(A.Caa)(A:Cpp) .+ = Dissipation per one cycle
Main Result For any observable a,b Fel2n_ /
_ 64 (c—>00)>>
| Xba | IIlaXE § 16 //
ba C 272' §4 nc_ //
g // =8
tanh x < x 22
~ as n.=4
tanx 2 x Linear function of 0
F. : cycle affinity 0 20 40



Thermodynamic bound on cross correlations

Dimensionless measure of asymmetry Cycle affinity 7.

7 z . i = The sum of thermodynamic forces
Cra — Cap ' |

— 1; .+ over the cycle
)(bd 1111 : !
=0 24/(A,C0)(ACpp) .+ = Dissipation per one cycle
Main Result For any observable a,b Fel2n_ /
_64 (mc—>00)>y
tanh(¥_./2n F. S %
| Xpe | < max ol 2n) < max — f =16~
C tan(rz/n,.) ¢ 27 =4 " /
g /.
g // VZCZS
The magnitude of asymmetry Is 7 2 n.=4
universally related to affinity! )
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Thermodynamic bound on cross correlations

Dimensionless measure of asymmetry : | Main Result The asymmetry Is
. : universally related to affinity!
Y = lim Cba — “ab E < tﬁﬂh(? C/ 2nc) < ?'c
=0 20/(8,C) (B Crp) | el = = " 0




Implications

 Dimensionless measure of asymmetry .| Main Result The asymmetry Is
' : universally related to affinity!

T T
Cba — “ab

Yp, = lim 5 | < max tanh(¥./2n ) < max Fe
70 2\/(ATCCZCZ)(ATC19[9) bal = C tan(z/n.) ¢ 2nx
(D Fundamental thermodynamic cost for @ A practical method to infer
various physical functions affinity from measured
. . . . short-time correlations
Information Nonreciprocal  Circulation
transfer motion e \\ \ Fluorescence
<b(t + T )a(t)) - | —xr eg) fluctuations F{(r), F(1)
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Numerical example

 Dimensionless measure of asymmetry .| Main Result The asymmetry Is
: universally related to affinity!
C? —(C°
Kpa = 110 — E | Xpa | < max tanh(7c/2n,) < maxE
=0 20/(A;Cu)(ACpp) 5 Abal =5 tan(z/n,) ¢ 2=xm
Model of biological information Numerical example with random rates

transduction
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Formulation and proof

Discrete-state Markov process
Statesi=1,...,.N

Transition matrix R

Rij = [ransition rate from jto i (i #))

R, = — i R; (Escape rate)

Time evolution
dp(t)/dt = Rp(t) = p(t) = e"'p(0)

Steady-state distribution g - Rg = 0

Two-time correlation

= (b(0a(0)) = X [e"];q;bq




Formulation and proof

Discrete-state Markov process
Statesi=1,...,.N

Transition matrix R

Ri= =2 . K

Time evolution
dp(t)/dt = Rp(t) = p(t) = e"'p(0)

Steady-state distribution g - Rg = 0

(Escape rate)

Two-time correlation

Cyclec=({; =1, = - =1

R; = Transition rate from jto i (i #))

—> il)

£ 0

n

with R.

Uet1 U

|| Forward rates

|| Backward rates

R .R.. R..

lzll l3lz° *° lllnc

R..R.. R..

Lily” "3 *°° lncll



Formulation and proof

Two-time correlation
Cp, = (b(D)a(0)) = ). [eRT]l]q]
g . Steady-state distribution

Proof
Use [e®];; ~ 1 + 1R,

Cp

a “ab

Xp, = 1M
’ 70 2\/A7Caa ATCM?

22 R;q;(ba; — a;b;)

z Rl]q][a —a)? + (b; - b)2]
Length




Formulation and proof

. Two-time correlation
: T __ _ Rt _
Cpq = (b()a(0)) = zij ™19 09 For any n-sided polygon,

. ¢ : Steady-state distribution
s o Q) O
Proof (a;, b))

(Perimeter)2
4n tan(zw/n)

(D Isoperimetric inequality
(from planer geometry)

Use [eRT]ij ~ 1 + Tle (aj, bj) (Area) <

C? —(C° a
Xpq = 1M 2 © Area of the regular n-sided
0 2\/ATC““ Al polygon with the same perimeter.

22@1‘ R;q;(ba; — a;b)) @ Cycle-wise affinity TUR

Y. Rigjl(a; = @) + (b; = b)?|
Length




1 Asymmetry of cross-correlations
= 2 QOscillations (Eigenvalues)

Discussion & Summary




Fluctuating oscillations

e.g.) Biochemical oscillations

Oscillations should be coherent In time
for reliable biochemical functionality.

0
Caa

-
CCICl

Cell cycle Circaql(jgn clock
bV e,
ellp%y:s!: s “ < “ KaiB SK{KS;&\ T-KaiC

Damped oscillation

Time lag T



Fluctuating oscillations

e.g.) Biochemical oscillations

Cell cycle Circadian clock
alBU_

| NN ) C

o s s

Oscillations should be coherent In time
for reliable biochemical functionality.

co Damped oscillation
Cla

Time lag T

>[4,

. a-th elgenvalue of R

Finite-time corr. C, =
A, =—u,+1w,
— C, Is a superposition of

exp(,7) = exp(—p, 7) exp(ia, 7)
Relaxation Oscillation

Assume that one of the modes «a Is
dominant.

Quantitative measure of coherence
( of oscillations before the auto—)

correlation decays
Decay time ()" |@,]

271" ., ‘_1 27[/405

Period



Fluctuating oscillations

Equilibrium = w, = 0 for any a (No oscillation)

Coherence of oscillation

Cell cycle

KaiB U-
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N_ST-
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Dong+ Curr. Opin.
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Ferrell+ Cell 2011
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Thermodynamic driving

Temperature Mechanical
gradient force,
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Bounds on eigenvalues

. Measure of coherence

Decay time | @,
Period B ij'lua
A, = — u, +iw, . elgenvalue

Conjecture

@, | tanh(%,/2n,) . The coherence of oscillation is

< max < max — universally bounded by affinity
U, ¢c tan(zw/n.) ¢ 2nm

Conjectured by Barato and Seifert (201 7)
based on humerical evidence.

Not rigorously proven before.



Bounds on eigenvalues

. Measure of coherence

Decay time | @,
Period B ij'lua
A, = — u, +iw, . elgenvalue

We prove the conjecture as a corollary!

Main Result for any q,b
tanh(¥./2n ) F.

Corollary For all modes «a

o, | tanh(F./2n ) ¥
< max < max —
U, ¢ tan(rz/n,.) ¢ 2T

| v, .| < max < max —
ba ¢ tan(rz/n,.) ¢ 2T

Conjectured by Barato and Seifert (201 7)
based on humerical evidence.

Not rigorously proven before.



Bounds on eigenvalues

We prove the conjecture as a corollary!

Corollary For all modes «a Main Result for any a,b

o, | tanh(F./2n ) F. tanh(¥./2n ) T
< max < max — | 1, | < max < max —
H, C tan(zr/ I/lc) ¢ 2T C tan(yz/ nc) ¢ 2T
Proof P
—u, + 1w, = —exp(4,7 = —CC’, =—(C,,+C,)+1(C, —C"
Ha a ot p( a ) . or 7 N or [( bb) ( ba ab)] 4
| | | |
Complex-valued Real-valued
“Observable’ “Observable’
$p = l/li(a)/ql- bi = Im Z;

elgenvector



Bounds on eigenvalues

We prove the conjecture as a corollary!

Corollary For all modes «a Main Result for any a,b

|, | tanh(F./2n ) F .. tanh(¥./2n ) F .
< max < max — | 1, | < max < max —
H, C tan(ir/ I/lc) ¢ 2T C tan(yz/ nc) ¢ 2T
Proof P

—u, +1w, = —exp(4,7 =—C", =—\(C,,+C,)+1(C, —C*

Ha a ot p( a ) . or 7 N or [( bb) ( ba ab)] 4

0, C;, —C’ C; —C’
Pal _ i) 1Ca= Cap] < lim Coa = Carl 7, | < (affinity bound)

Ha =0 A Gy + A Gy T =0 ZV(ATCaa)(ATCbb)

x+y22\@
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Affinity bounds vs. entropy bounds

This talk Thermo. uncertainty relations

T T 2
lim Cha ab < maXE (Ja) < z J© - accumulated

~0 2,/A.C,, A,Cp, c 2 VarJy ~ 2 d " current

Statistios Correlations of Precision of
state observables a current observable
Thermodynamic -~ . .
Cycle affinity . Entropy production X

sighature

Complementary ways to relate statistical and
thermodynamic signhatures




Affinity bounds vs. entropy bounds

Cycle affinity . Entropy production x°

Strength of drivin
Heng Ving Resulting dissipation

Determined by Environmental parameters .
(e.g., chemical potentials)
Jependence on Independent Dependent
the steady state P cpenae
R_esp_onse to microscopic Robust Sensitive
Kinetic changes
Macroscopic setup Microscopic behavior

— Complementary characterizations of the thermodynamic cost



Summary

C

Result

The asymmetry of cross-correlation is
universally related to affinity

tanh(‘F./2n ) ¥
< max —

| Xpa | < max
el =07 tan(a/n,) ¢ 2

C' —C% [pr _ _
v, = lim——a— —ab | G, = b+ alD)

=0 2\/A7Caa ATCbb ATCCZCZ — Cc(z)a o Ccfa

Proof: Use the isoperimetric inequality
between area and length

¥ . : Cycle affinity (Strength of thermodynamic driving)
n. . # of states on cycle c

Corollary

The coherence of oscillation Is
universally bounded by affinity

tanh(F./2n,.) 7.
< max —

tan(ir / I/lc) ¢ 2T

| @, |

< max
2% ¢

Conjectured by Barato & Seifert (201 7)
A, =—u,+1w, : Eigenvalue of R

Proof: Extract 4, from a complex-valued
correlations

Details — N. Ohga, S. Ito, A. Kolchinsky, arXiv:i2303.13116

See also N. Shiraishi, arXiv:2304.12775
T. Van Vu, V. T. Vo, K. Saito, arXiv:2305.18000



