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Fundamental question

Can we tell from the statistics of ticks whether the system is driven?
If so, how much energy does it cost?



Examples for “ticking” processes
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Cost of precision
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Thermodynamic uncertainty relation (TUR)
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m The more precisely an autonomous system operates, the more energy it must dissipate

m Holds for any time-antisymmetric current X(t)

[AC Barato, U Seifert, PRL 114, 158101 (2015), proof by Gingrich et. al., PRL 116, 120601 (2016)]



Markovian description

m Transition rate kj; from state i to j

m Stationary state p;

m Entropy production rate
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Counting observables

-

m Flow nj;(t) := #(transitons from j to j during time t)

m Transition producing a tick , otherwise b; = 0

m Counting observable N(t) = >_ bjn;(t), tick rate (N) = >, b;p}k;;

> Time-symmetric case: bj =1 < by = 1, “traffic-like” (traffic uj := nj + nj)
> Generic case: “flow-like”



Precision
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Counting fluctutations (“Fano factor”)
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Trade-off

Example: Fano factor traffic of a single edge
Cost per tick: 7 := a/(N)
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Trade-off

Example: Fano factor traffic of a single edge
Cost per tick: 7 := a/(N)
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Equal rates kip = ko1

Poisson process: F = Var(N)/(N) =1
Equilibrium: ¢ =0



Mathematical form: Bound on Fano factor of traffic

P

m Given stationary current and traffic of observed edge: x = j5,/u3,
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m Analytic bound F > 1 — x? +



Mathematical form: Bound on Fano factor of traffic

P

m Unknown stationary current and traffic of observed edge: x = j5,/u5,
4
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Mathematical form: Bound on Fano factor of traffic

m stationary current and traffic of observed edge: x = j5,/u5,
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m Several edges: No better precision at same cost



Mathematical form: all bounds (single observed edge)

traffic (x = ji,/uiy) flow (y = ji,/ni>)
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Summary of bounds
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Inference of entropy production
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Inference of entropy production
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Several observed edges

Example: Fano, traffic
m Observed edges labeled by a

m Contribution ¢, = u3/(N) to overall tick rate (3, c, = 1)

m Edge dependent x, = j5/us
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Several observed edges

Example: Fano, traffic
m Observed edges labeled by a

m Contribution ¢, = u3/(N) to overall tick rate (3, c, = 1)

m Edge dependent x, = j5/us

(>, CaX3)2
G/2 =", ca[xaartanh(x,) + x2]
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m Substitute x> = z,




Several observed edges

Example: Fano, traffic
m Observed edges labeled by a

= Contribution ¢, = u$/(N) to overall tick rate >,a=1)

Edge dependent x, = jS/uS
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m Substitute x? = z,




Several observed edges

Example: Fano, traffic

Observed edges labeled by a
Contribution ¢, = uS/(N) to overall tick rate >,a=1)
Edge dependent x, = j5/us

F>_ZCZ + (Zacaza)2
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Substitute x? = z,

Jensen's inequality: >, caf(za) > (D, caza)
with convex f(z) = \/zartanh/z + z

Result: same bound as for single observed edge
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Several observed edges

Fano, traffic:
f(z) = v/zartanh \/z + z is convex
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Several observed edges

f(z) = \/zartanh \/z + z is convex

waiting time, traffic:
f(z) = /zartanh \/z + z is convex
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Trade-off

Example: Fano factor traffic of a single edge
Cost per tick: ¢ :=a/(N)
Optimal networks (unicyclic)

151

3 states
4 states
5 states
bound

optimised

Effective energy (arbitrary offset)

State

0 02 04 06 08 1 12 14 ki
Effective energy difference AE; = In k—”
i



