Thermodynamic cost for precision of general counting observables

Patrick Pietzonka

with Francesco Coghi (NORDITA Stockholm)

4 August 2023

Gedankenexperiment

Gedankenexperiment

Fundamental question

Can we tell from the statistics of ticks whether the system is driven? If so, how much energy does it cost?

Examples for "ticking" processes

Cost of precision

Thermodynamic uncertainty relation (TUR)

$$\sigma t \frac{\mathsf{Var}[X]}{\langle X \rangle^2} \ge 2$$
 (set $k_{\mathsf{B}} = 1$)

- The more precisely an autonomous system operates, the more energy it must dissipate
- Holds for any **time-antisymmetric** current X(t)

[AC Barato, U Seifert, PRL 114, 158101 (2015), proof by Gingrich et. al., PRL 116, 120601 (2016)]

Markovian description

- Transition rate k_{ii} from state i to j
- Stationary state p_i^s
- Entropy production rate

$$\sigma = \sum_{ij} p_i^{\mathsf{s}} k_{ij} \ln \frac{k_{ij}}{k_{ji}}$$

Counting observables

- Flow $n_{ij}(t) := \#(\text{transitons from } i \text{ to } j \text{ during time } t)$
- Transition producing a tick $b_{ij} = 1$, otherwise $b_{ij} = 0$
- lacksquare Counting observable $N(t) = \sum_{ij} b_{ij} n_{ij}(t)$, tick rate $\langle \dot{N} \rangle = \sum_{ij} b_{ij} p_i^{\rm s} k_{ij}$
 - ▶ Time-symmetric case: $b_{ij} = 1 \Leftrightarrow b_{ji} = 1$, "traffic-like" (traffic $u_{ij} := n_{ij} + n_{ji}$)
 - ► Generic case: "flow-like"

- (

Precision

Waiting time fluctuations

$$\varepsilon^2 = \frac{\mathsf{Var}[t^*]}{\langle t^* \rangle^2}$$

Counting fluctutations ("Fano factor")

$$F = \lim_{t o \infty} rac{\mathsf{Var}[\mathit{N}(t)]}{\langle \mathit{N}(t)
angle}$$

When successive ticks are uncorrelated ("renewal process"): $F=\varepsilon^2$

Example: Fano factor traffic of a single edge Cost per tick: $\bar{\sigma} := \sigma/\langle \dot{N} \rangle$

Example: Fano factor traffic of a single edge Cost per tick: $\bar{\sigma}:=\sigma/\langle \dot{N}\rangle$

random networks

Example: Fano factor traffic of a single edge Cost per tick: $\bar{\sigma} := \sigma/\langle \dot{N} \rangle$

Equal rates $k_{12} = k_{21}$

Poisson process: $F = Var(N)/\langle N \rangle = 1$

Equilibrium: $\sigma = 0$

Mathematical form: Bound on Fano factor of traffic

- \blacksquare Given stationary current and traffic of observed edge: $x=j_{12}^{\rm s}/u_{12}^{\rm s}$
- Analytic bound $F \ge 1 x^2 + \frac{x^4}{\overline{\sigma}/2 x \operatorname{artanh}(x) + x^2}$

Mathematical form: Bound on Fano factor of traffic

- Unknown stationary current and traffic of observed edge: $x=j_{12}^{\rm s}/u_{12}^{\rm s}$
- Analytic bound $F \ge \min_{x} \left[1 x^2 + \frac{x^4}{\overline{\sigma}/2 x \operatorname{artanh}(x) + x^2} \right]$

g

Mathematical form: Bound on Fano factor of traffic

- lacktriangle stationary current and traffic of observed edge: $x=j_{12}^{\rm s}/u_{12}^{\rm s}$
- Analytic bound $F \ge 1 x^2 + \frac{x^4}{\overline{\sigma}/2 x \operatorname{artanh}(x) + x^2}$

Several edges: No better precision at same cost

Mathematical form: all bounds (single observed edge)

Summary of bounds

Inference of entropy production

Inference of entropy production

[Skinner, Dunkel PRL **127**, 198101 (2021)]

Example: Fano, traffic

- Observed edges labeled by a
- lacksquare Contribution $c_a=u_a^{
 m s}/\langle \dot{\it N}
 angle$ to overall tick rate $(\sum_a c_a=1)$
- lacktriangle Edge dependent $x_a = j_a^{\rm s}/u_a^{\rm s}$

$$F \ge -\sum_a c_a x_a^2 + \frac{\left(\sum_a c_a x_a^2\right)^2}{\bar{\sigma}/2 - \sum_a c_a \left[x_a \operatorname{artanh}(x_a) + x_a^2\right]}$$

Example: Fano, traffic

- Observed edges labeled by a
- lacksquare Contribution $c_a=u_a^{
 m s}/\langle \dot{\it N}
 angle$ to overall tick rate $(\sum_a c_a=1)$
- lacksquare Edge dependent $x_a = j_a^{\rm s}/u_a^{\rm s}$

$$F \ge -\sum_a c_a x_a^2 + \frac{\left(\sum_a c_a x_a^2\right)^2}{\bar{\sigma}/2 - \sum_a c_a [x_a \operatorname{artanh}(x_a) + x_a^2]}$$

■ Substitute
$$x_a^2 = z_a$$

Example: Fano, traffic

- Observed edges labeled by a
- lacksquare Contribution $c_a=u_a^{
 m s}/\langle \dot{ extstyle N}
 angle$ to overall tick rate $(\sum_a c_a=1)$
- Edge dependent $x_a = j_a^s/u_a^s$

$$F \ge -\sum_a c_a z_a + \frac{\left(\sum_a c_a z_a\right)^2}{\bar{\sigma}/2 - \sum_a c_a \left[\sqrt{z_a} \operatorname{artanh}(\sqrt{z_a}) + z_a\right]}$$

■ Substitute $x_a^2 = z_a$

Example: Fano, traffic

- Observed edges labeled by a
- lacksquare Contribution $c_a=u_a^{
 m s}/\langle \dot{N}
 angle$ to overall tick rate $(\sum_a c_a=1)$
- Edge dependent $x_a = j_a^s/u_a^s$

$$F \ge -\sum_a c_a z_a + \frac{\left(\sum_a c_a z_a\right)^2}{\bar{\sigma}/2 - \sum_a c_a \left[\sqrt{z_a} \operatorname{artanh}(\sqrt{z_a}) + z_a\right]}$$

- Substitute $x_a^2 = z_a$
- Jensen's inequality: $\sum_a c_a f(z_a) \ge f(\sum_a c_a z_a)$ with convex $f(z) = \sqrt{z}$ artanh $\sqrt{z} + z$
- Result: same bound as for single observed edge

Fano, traffic:

$$f(z) = \sqrt{z} \operatorname{artanh} \sqrt{z} + z$$
 is convex

waiting time, traffic:

$$f(z) = \sqrt{z} \operatorname{artanh} \sqrt{z} + z$$
 is convex

Fano, flow:

$$f(z) = -rac{2z}{1+z}\left(rac{1}{2}\lnrac{1-z}{1+z}+z
ight)$$
 is convex

Fano, traffic:

$$f(z) = \sqrt{z} \operatorname{artanh} \sqrt{z} + z$$
 is convex

waiting time, traffic:

$$f(z) = \sqrt{z} \operatorname{artanh} \sqrt{z} + z$$
 is convex

Fano, flow:

$$f(z) = -\frac{2z}{1+z} \left(\frac{1}{2} \ln \frac{1-z}{1+z} + z \right) \text{ is convex}$$

waiting time, flow:

$$f(z) = -rac{3z}{1+2z}\left(rac{1}{2}\lnrac{1-z}{1+2z}+2z
ight)$$
 is *not* convex

Example: Fano factor traffic of a single edge Cost per tick: $\bar{\sigma}:=\sigma/\langle \dot{N}\rangle$

Effective energy difference $\Delta E_{ij} = \ln \frac{k_{ij}}{k_{ji}}$