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In a paper that was uploaded to the Arxive recently

I. INTRODUCTION

From the point of view of elasticity, a glass is a very
simple solid, elastically isotropic, described by a density
p, a bulk modulus B and a shear modulus . Con-
sequently, one has isotropic longitudinal and transverse

sound velocities v; and vy, respectively. ‘/ ’

* In fact we know that (in the thermodynamic limit) plasticity sets in
immediately, for any amount of strain. Phys. Rev. E. 82,055103 (2010)

e Typically plastic events exhibit quadrupolar symmetry (Eshelby).
* Plasticity has profound effect. Upshot of this talk:

* Small amounts of plasticity: classical elasticity remains valid but the elastic
moduli get dressed. Screening by quadrupoles.

* High amounts of plasticity: elasticty theory is modified. Screening by
dipoles.

* The analogy to Kosterlitz-Thouless and Hexatic transitions



Respecting the constraints of time, | will consider a very simple setup, of an amorphous solids confined

to an annulus of radii ry, and rout. Tin <€ Tout

(b)
st
ho] : q .
Vin
Tip + du‘

FIG. 1. Panel (a): Top view of the experimental system.
The blue line marks the position of the circular boundary.
The green layer represent the photo-elastic disks at the cir-
cumference, which are used as pressure sensors. In the yel-
low area, either the bi-disperse ABS disks or the bi-disperse
photo-elastic disks are filled in, see text for details. The black
dot in the center represents the conical shaped pusher used
to achieve the inflation. Panel (b) A diagram of the inflation
process. Here ri, = 7.0 mm, dy = 0.7 mm, hl = 2.0 mm,
h2 = 0.7 mm, and hs = 3.0 mm for the conical shaped pusher
in the low dimensionless pressure experiment, and ri, = 14.0
mm, do = 1.4 mm, hl = 2.0 mm, A2 = 1.4 mm, and hz = 3.0
mim in the high dimensionless pressure experiment. The value
of hg depends on the pusher type: hp = 8.0 mm for the ABS
disks, and hp = 6.0 mm for the photo-elastic disks.

We then impose a displacement

d(r;,) = dp7 and d(r,,) = 0.

What is the resulting displacement field?

Let us consult classical elasticity theory

F= | £d*z— ¢ tidsdl,
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Examples of measured displacement fields in classical glass formers

Sometimes...
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FIG. 1. Examples of quasi-elastic responses associated with

inflation of the inner disk at r;;,. These examples correspond r
with panels (a) and (b) of Fig. 3. he parameters associated
with these examples are T,, = 0.4 and 0.3 respectively, dy = FIG. 3. Typical quasi-elastic angle-averaged displacement

0.15 and 0.18, 7, = 0.72 and 0.8, and r.u: = 76 for both. field.



And sometimes.

FIG. 2. Examples of “anomalous” displacement fields associ-
ated with an inflation of the inner disk at r;,. The examples
shown here correspond to panels (a)-(d) in Fig. 4.
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FIG. 4. Typical anomalous angle-averaged displacement
fields. The parameters of the simulation and the value of
the “anmoaly parameter” k are presented in table I.



The effect of dilute quadrupoles Phy. Rev. E. 104, 024904 2021.

R. Dasgupta, H. G. E. Hentschel, and 1. Procaccia, Mi-
7m=1 I [7 croscopic mechanism of shear bands in amorphous solids,
el +UQQ T VQel Phys. Rev. Lett. 109, 255502 (2012).

Written symbolically

1
Usg = /dzmaﬂﬂﬁ'}'éinaﬁu,}.a

1 |
Ugq = / B3 AassQ°Q
UQel = f d?2T 2 uapQ™ .

Upon minimization of the energy we obtain the same equations as before
but with renormalized elastic moduli.

This is the situation analogous to dielectrics!



The effect of large density of quadrupoles

The new ingredient: we cannot neglect gradients of the quadrupole density pa — 83Q°",

In the presence of dipoles, the most general isotropic and homogeneous quadratic energy is
1 L1 o 1 a pBb o I
L= SA" P Uy + S Aap PO PP + T%doP? |

Broken translational symmetry!!
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FIG. 6. The solutions of Eq. (45) for different values of the
parameter k. Here r;, = 0.01 and roye = 1, with d,-(rim) = 0.1
and d,(roue) = 0.



Three dimensions?

K-T transition and Hexatic do not exist in 3-dimensions

Our theory (if correct) extends smoothly to 3-dimensions
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FIG. 5. Radial displacement field with 10% inflation, ¢ =
0.647. Panel a: Radial displacement field in a planar cross
section of the three-dimensional sphere at z = (. One can see
the qualitative difference from the map of Fig. 3, with activ-
ity going all the way to the outer boundary and displacement
pointing inward at places. Panel b: Comparison of the spher-
ical averaged displacement field with K, = 2000 to the theory
Eq. (30), using & = 0.887. Here r;, = 1.56 and r.,, = 24.94,
with dy = 0.0065.

Inflate a small sphere in the center, equilibrated and measure
the displacement field
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FIG. 6. Radial displacement field with 30% inflation, ¢ =
0.649. Panel a: Radial displacement field in a planar cross
section of the three-dimensional sphere at z = 0. Panel b:
Comparison of the spherical averaged displacement field with
K, = 2000 to the theory Eq. (30), using & = 0.669. Here
rin = 0.65 and r,, = 25.35, with do = 0.0394 and d,(rout) =
0.




Is the transition sharp?
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FIG. 3. The screening parameter £ as a function of the log-
arithm of the inverse pressure. A transition between mate-
rial phases with quasi-elastic response and with anomalous
response 1s clearly observed.



Explanation

We need an avalanche creating quadrupolar field of size KL
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Conclusions and open questions

Plastic events act as screening sources. One can encounter both quadrupolar
and dipolar screening.

At least in 2-dimension the transition appears sharp

If correct, then doing theory without taking this into account is like doing
electrostatics without knowing about Debye.
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How to explain this? we need to go nonlinear!
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Thank you very much for your attention!



Colleagues asked: where are the dipoles?
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FIG. 1. Angle averaged radial components of the displace-
ment field as measured in simulation and experiment, cf.
Refs. [8, 13]. Panel (a): simulations with frictionless Hertzian
disks, exhibiting an anomalous response. The continuous
line is the solution Eq. (4) with rin = 4.8, rout = 72.2 and
k= 0.0525. Panel (b): experimental measurements with fric-
tional disks, The continuous line 15 the solution Eq. (4) with
rin = 133.3, row = 3478 and & = 0.00147.
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FIG. 2. The integral It of Eq. (10} computed for the two
anomalous examples shown in panels (b) and (c¢) of Fig. 1.
The existence of these integrals are a direct demonstration
for the presence of dipole fields.



In amorphous solids the response to strain results in plastic events

D. L. Malandro and D. J. Lacks, J. Chem. Phys ,4593 (1999).
C. E. Maloney and A. Lemaitre, Phys. Rev. E 74, 016118 (2006).
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FIG. 1. (Color online) (Left panel) The localization of the nonaffine displacement onto a quadrupolar structure which is modeled by an
Eshelby inclusion; see right panel. (Right panel) The displacement field associated with a single Eshelby circular inclusion of radius a; see
text. The best fit parameters are a = 3.4 and €* = 0.09, with a Poisson ratio of v = 0.363. To remove the effect of boundary conditions, the
best fit is generated on a smaller box of size (x,y) € [25.30,75.92].

Lesson: in elasticity theory monopoles and dipoles cannot be created locally; they are excluded by topology



What about (the beloved) simple shear?

See also: M. Baggioli, I. Kriuchevskyi, Ti. W. Sirk , and A. Zaccone, PRL 127, 015501 (2021)



In the thermodynamic limit any infinitesimal strain results in plastic responses

S. Karmakar, E. Lerner, and |. Procaccia, Phys. Rev. E 82, 055103 (2010).
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FIG. 2. (Color online) Cartoon of a typical stress vs strain curve
of a single instance of the numerical experiment performed in Ref. [6].
Each undeformed system was strained until the first mechanical
instability was encountered at some strain value ypp. Statistics of
Ayiso = ¥, were collected for a variety of system sizes, in both two
and three dimensions.
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FIG. 2. (Color online) Panel (a). Mean energy drop (AU} and
mean strain interval {Av) in two dimensions as functions of system
size, measured in AQS simulations of steady plastic flow of a model
glass former, see text. Panel(b). The same for three dimensions. The
continuous lines represent the scaling laws (1). The scaling expo-
nents are the same in 2D and 3D,
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In light of this, are amorphous solids really solid??

H. G. E. Hentschel, S. Karmakar, E. Lerner, and I. Procaccia, Do athermal amorphous solids exist?, Phys. Rev.E

83, 061101 (2011).

1 1 |
o(y)= H(V—Vn}+EBz(V—Vn}2+EB;(}f — )P+

To answer this question one needs to examine the sample-to-sample fluctuations of the linear and higher order moduli.

HENTSCHEL, KARMAKAR, LERNER. AND PROCACCIA
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FIG. 6. (Color onling) Distributions of I} measured for each
instance in our ensemble of quenched amorphous solids. As expected,
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the width of these distributions decays with increasing system size.

Higher order moduli have divergent sample-to-sample fluctuations!



What about dynamics?
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In this lecture | will explain that plastic responses result in screening,
dressing elasticity theory in important ways

Reminders from electrostatics: charges (monopoles) and dielectrics (dipoles)

In elasticity theory monopoles and dipoles are topologically protected, plastic events are quadrupolar
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FIG. 3. Graphic representation of the solution of Eq. (9) for
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FIG. 1. Panel (a): Top view of the experimental system.
The blue line marks the position of the circular boundary.
The green layer represent the photo-elastic disks at the cir-
cumference, which are used as pressure sensors. In the yel-
low area, either the bi-disperse ABS disks or the bi-disperse
photo-elastic disks are filled in, see text for details. The black
dot in the center represents the conical shaped pusher used
to achieve the inflation. Panel (b) A diagram of the inflation
process. Here rip, = 7.0 mm, dop = 0.7 mm, hl = 2.0 mm,
h2 = 0.7 mm, and hs = 3.0 mm for the conical shaped pusher
in the low dimensionless pressure experiment, and r;, = 14.0
mm, dy = 1.4 mm, hl = 2.0 mm, h2 = 1.4 mm, and hs = 3.0
mm in the high dimensionless pressure experiment. The value
of ho depends on the pusher type: hp = 8.0 mm for the ABS
disks, and hp = 6.0 mm for the photo-elastic disks.
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FIG. 3. Radial component of the Displacement field induced
by the inflation of one disk at the center of the box. Panel
(a) and (b): simulation results at pressure P = 2 x 1077,
¢ =~ 0.845 with inflation of 80%. rin = 1.14 and rous = 83.82,
£ = 0.0525 and 0.0706 in panels (a) and (b) respectively.
Panels (c) and (d): experimental results at pressure P ~ 10~°
and inflation of 10%, r, = 70 and royy = 3500, dp = 7. Here
t = 0.0014 and 0.00176 in panels (c) and (d) respectively.
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FIG. 4. Displacement field for P = 40. Inset: the displace-
ment field caused by inflating one disk closest to the origin
by 1%. Here the displacement vectors are normalized and
color coded as in Fig. 1. Shown also is the fit of Eq. (9) to
the angle-averaged displacement. Here the parameters used
in the fit are dy = 0.03028; ri, = 3.268; rou = 82.74.
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FIG. 5. Displacement field for P = 60. Inset: the displace-
ment field caused by inflating one disk closest to the origin
by 1%. The displacement vectors are normalized and color
coded as in Fig. 1 Shown also is the fit of Eq. (9) to the
angle-averaged displacement. Here the parameters used in
the fit are dp = 0.03487; r;, = 3.631;ron = 81.9.



The analogy to the hexatic phase in 2-dimensional melting

In an ideal hexagonal crystal, each particle touches six others.

As the crystal melts, this order begins to fall apart. Some particles gain a neighbor and
others lose one, although the large-scale order of the material remains unchanged.
The elastic moduli though soften, analogously to our dilute quadrupole density.

When pairs of 5-7 neighbors form stably, we enter the hexatic phase. These are dipoles!
Now the translational order disappears, but orientational order remains

Finally 5 and 7 coordinated particles dissociate, and these are monopoles, heralding the liquid phase.



Experimental verification (Jin Shang and Jie Zhang)

arXiv:2108.13334

(a) (b) They use disks of acrylonitrile butadiene styrene (ABS) of two
. different radii (7 and 5.5 mm), with a number ratio 1:1. The outer
"I ﬁ%qﬁi circular frame is shown as a blue layer, with an inner layer of
f : ~ : iy photo-elastic disks (green layer) that act as pressure sensors.
| . '_ Inflation is achieved with the (grey) conical pusher.

Fin + dy

After inflation the displacement field is measured and the radial component is computed


https://arxiv.org/abs/2108.13334
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FIG. 2. Radial component of the Displacement field induced
by the inflation of one disk at the center of the box. Panels
(a) and (b) simulation results at dimensionless pressure P =
2.25 x 1075, & =~ 0.872 with inflation of 10%. Here r, =
1.14 and r, = 83.832. dp = 0.7 and 1 1n panels (a) and
(b) respectively. Panels (c) and (d): experimental results at
pressure P = 10~* with inflation of 10%. Here rin = 140 and
rout = 3000, do = 19.1 and 18.3 respectively.
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FIG. 3. Radial component of the Displacement field induced
by the inflation of one disk at the center of the box. Panel
(a) and (b): simulation results at pressure P = 2 x 107",
¢ =3 (.845 with inflation of 80%. rin = 1.14 and roue = 83.82,
k= 0.0525 and 0.0706 i panels (a) and (b) respectively.
Panels (¢} and (d): experimental results at pressure P == 10~
and inflation of 10%, r;, = 70 and r., = 3500, dy = 7. Here
k= 0.0014 and 0.00176 n panels (c) and (d) respectively.



3.5

2.5

average deviatoric stress
=
ul

x10%

—FP2
s —P4S5
- & pg |
P18
5 FI % P72
i Vg ° P144| |
P288
——P720
./V{v/‘
¥ / V ~
1 | 1 | 1

0.005

0.01

0.015
strain

0.02

0.025

0.03



Challenges

1. Show that there exists a phase transition (we
work at T=0, so what is the natural parameter?)

3. What is happening in three dimensions?

4. Examine richer protocols of strain (space dependent inflation,
space dependent shear?)

5. Do we need to rewrite elasticity theory for amorphous materials?



Another example
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The y component of the displacement along x=1,-1<y<1
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