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What is a memory effect?: Definition
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Memory formation in matter is a theme of broad intellectual relevance; it sits at the interdisciplinary

aspects of its evolution. The

P ‘hus many forms of memory
y tied to far-from-equilibriu ponse 10 a perturbation.
al behavior arises in diverse contexts in condensed-matter physics and materials, including

Keim et al. Rev. Mod. Phys. 91 (20019).

Memory connotes the ability to encode, access, and erase signatures of
past history in the state of a system. Once the system has completely
relaxed to thermal equilibrium, it is no longer able to recall aspects of its
evolution. (S. Nagel & collaborators)
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Examples of memory effects: Dripping faucet

In an underwater air bubble dripping from a faucet, the pinching neck of air is very sensitive to the geometry of the
initial conditions. This occurs only if the dripping process is fast enough.

Keim et al. Phys. Rev. Lett. 97 144503 (2006)



Examples of memory effects: Hysteresis in granular
avalanches

Under certain circumstances, upwards avalanches occur in an inclined plane.

Russell, Johnson, Edwards & Viroulet J. Fluid Mech. 819 (2019).



Examples of memory effects: Shape memory

This wire is made of a material (nickel titanium) that under cooling of the initial cubic phase (paperclip-shaped),
undergoes a transition to a martensite phase which can be deformed with no modification of microscopic bond
topology. Thus, the material gets back to paperclip-shaped if the cubic phase is recuperated after heating back.
This has applicattions such a as aerospace industry

Boeing Frontiers Online. www.boeing.com



Examples of memory effects: Shape memory in red blood

cells
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Red blood cells are biconcave-discoid-shaped at rest.

Red blood cells return to their biconcave discoid resting
shape as the external forces are withdrawn.

Cordasco & Bagchi Phys. Fluids 29 041901 (2017).



Examples of memory effects: Mechanical memory in cells’
actin networks
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Confocal image of actin sample;
Majumdar, Foucard, Levine, Gardel, Soft Matter 14 2052
(2018).
History dependent shear response in actin networks. T :
training time; ~y: shear strain; K /Kp: stiffening
(K= g—g):
Majumdar, Foucard, Levine, Gardel, Soft Matter 14 2052
(2018).



Examples of memory effects: Memory in glasses
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Aging, rejuvenation and perfect memory in glasses.
Scalliet & Berthier, Phys. Rev. Lett. 122 255502 (2019).
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Hot spin glass that cools faster.

Baity-Jesi, Lasanta et al., Proc. Nat. Acad. Sci 116 15350 (2019).




Examples of memory effects: Shear memory in amorphous
solids

In a series of simulations, a binary mixture of spheres
interacting through a Lennard-Jones pontential
undergoes cyclic shear training at strain £~.

The system response is different depending of the strain
amplitude.

D08 -D.06-0.04-0.07 000 0.0 0.04 0.0 0.08

The three lines initially follow the same path (for positive
strains) and separate as the respective amplitudes are
reached.

Fiocco, Foffi & Sastry, Phys Rev. Lett 112 025702
(2014).



Examples of memory effects
particles
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Here, the system is quenched.

The polar order parameter experiences a hump if subject to a thermal protocol (here, 7 is the thermal noise
intensity).

Kiirsten, Sushkov & lhle, Phys. Rev. Lett. 119 188001 (2017)



Examples of memory effects: Associative memory

Certain square building blocks bonds are stronger, which results in a set of more permanent structures, or
associative memories.
Murugan, Zeravcic, Brenner & Leibler, Proc. Natl. Acad. Sci 112 54 (2015).



Examples of memory effects: Water has thermal memory

... The fact that the water has previously been warmed contributes
to its freezing quickly: for so it cools sooner. Hence many people,
when they want to cool hot water quickly, begin by putting it in
the sun. So the inhabitants of Pontus when they encamp on the
ice to fish (they cut a hole in the ice and then fish) pour warm
water round their reeds that it may freeze the quicker. . .



Examples of memory effects: Water has thermal memory

... The fact that the water has previously been warmed contributes
to its freezing quickly: for so it cools sooner. Hence many people,
when they want to cool hot water quickly, begin by putting it in
the sun. So the inhabitants of Pontus when they encamp on the
ice to fish (they cut a hole in the ice and then fish) pour warm
water round their reeds that it may freeze the quicker. . .

Aristotle, in Meteorologica, part 12,
Book I, (350 BC)




Examples of memory effects: Water has thermal memory!

Making Snow with Boiling Water


https://youtu.be/B3VHGTQQs-4?t=1m16s

Examples of memory effects: Water has thermal memory!

Making Snow with Boiling Water

The Mpemba effect can be interpreted as initial state fast deletion,
due to a very different environment.


https://youtu.be/B3VHGTQQs-4?t=1m16s

Examples of memory effects: Volume memory in polymers
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Fig. 11. Memory effects at T = T, — 5 K, after two consecutive instantancous 7jumps of opposite
sign and partial or full recovery at fixed T = T, = 10 K, as depicted in the inset. (A) Direct quench
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The Kovacs memory effect: a piece of polymer undergoes a volume jump as a consequence of a temperature
protocol, before relaxation to the equilibrium volume.
Kovacs et al., J. Polym. Sci. Pt. B-Polym. Phys. 17 1907 (1979).



The granular gas in nature

e A granular gas is a system composed of many macroscopic particles
that collide with each other, loosing a fraction of kinetic energy upon
collision.



The granular gas in nature

e The characteristic particle collision time is finite.



The granular gas in nature

e Granular gases may be considered as thermalized granular materials.



The granular gas in nature

e Granular materials are ubiquitous in nature. In particular, granular
fluids are common in low gravity environments.



The granular gas in nature

e Granular materials are ubiquitous in nature. In particular, granular
fluids are common in low gravity environments.

An expanding dust cloud on Mars

) Mars dust cloud.
Results derived from NASA’s CALIPSO satellite Source: NASA.
H. Yu et al., J. Geophys. Lett. 42 1984 (2015).



Memory effects in the granular gas

Kovacs effect

(1) Simple Kovacs effect: A single temperature rebound
(hump) is observed during relaxation towards the sta-
tionary value.




Memory effects in the granular gas

Kovacs effect

(1) Simple Kovacs effect: A single temperature rebound
(hump) is observed during relaxation towards the sta-
tionary value.

(2) Complex Kovacs effect: Multiple temperature rebound
(in the form of damped oscillations) are observed during
thermal relaxation.




Kovacs effect

The granular fluid is subject to a thermal impulse and left to
cooling a time 7, before fixing the heat source back again.

T =0 (HP
pof D)

0.8
T =1

0.64
T =1.78 (transition protocol)

=
=
|

7(1)/ 1(0)

Lasanta, VR, Prados & Santos, New J. Phys. 21 033042 (2019)



Kovacs effect

7(1)/ 1(0)

The granular fluid is subject to a thermal impulse and left to
cooling a time 7, before fixing the heat source back again.

T =0 (HP)

1.0

0.84

0.64

=
=
|

T =1

T =1.78 (transition protocol)

e The granular gas can
react, as molecular
gases, by remembering
its initial temperature
(hump up).

Lasanta, VR, Prados & Santos, New J. Phys. 21 033042 (2019)



Kovacs effect

7(1)/ 1(0)

The granular fluid is subject to a thermal impulse and left to
cooling a time 7, before fixing the heat source back again.

T =0 (HP)

1.0

0.84

0.64

=
=
|

T =1

T =1.78 (transition protocol)

e The granular gas can
react, as molecular
gases, by remembering
its initial temperature
(hump up).

e BUT, it can also react
remembering by its
inherent cooling rate
(hump down).

Lasanta, VR, Prados & Santos, New J. Phys. 21 033042 (2019)



Kovacs effect

| |
Temperature fixed Temperature fixed
right after heat impulse long after heat impulse
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Lasanta, VR, Prados & Santos, New J. Phys. 21 033042 (2019).



Kovacs effect

| |
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Lasanta, VR, Prados & Santos, New J. Phys. 21 033042 (2019).



Kovacs effect
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Lasanta, VR, Prados & Santos, New J. Phys. 21 033042 (2019).



Kovacs effect

Giant temperature humps

Multiple temperature
humps

— CP:a=0703=-08
— HP: a=07,0=09

T(7)/T,

Lasanta, VR, Prados & Santos, New J. Phys. 21 033042 (2019).



Kovacs effect
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Memory effects in the granular gas

Mpemba effect

(1) Direct Mpemba effect: Among two systems at different
initial temperatures, it is the hottest one the first to
achieve the (shared) stationary value.




Memory effects in the granular gas

Mpemba effect

(1) Direct Mpemba effect: Among two systems at different
initial temperatures, it is the hottest one the first to
achieve the (shared) stationary value.

(2) Reverse Mpemba effect: Conversely, an initially colder
system may heat up faster than a hotter one to their
shared stationary temperature.




Memory effects in the granular gas
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Theoretical basis: The T — a, coupling: Mpemba effect

“%:_¥ (M27_3/2—X>7 (1)

din(14+a) 4k 3/2 TuaT32 — x
e T2 S~ 2

where 1 = 2ng(n)o?+/m/m and x = (3m/2K)E? .



Theoretical basis: The effects of additional cumulants:
complex Kovacs effect
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Experimental realizations in the lab of a granular gas

Vibration

Air Fluidization:
Spheres on a plane

P
2.7 -

Experiments performed at Granular Dynamics Imaging
Lab, ICCAEXx, Universidad de Extremadura, Badajoz,

Spain
Experiment performed at Sapienza, Roma VR, Lépez-Castafio, Saavedra, Rodriguez-Rivas, Yuste
Pontuale, Gnoli, VR & Puglisi, Phys. Rev. Lett. 117 & Abad, work in progress, 2019

098006 (2016).



Experimental realizations in the lab of a granular gas

Vibration
| T |

5 i D ridings

Experiment performed at Sapienza, Roma
Pontuale, Gnoli, VR & Puglisi, Phys. Rev. Lett. 117
098006 (2016).

Air Fluidization:
Spheres on a plane

Experiments performed at Granular Dynamics Imaging
Lab, ICCAEXx, Universidad de Extremadura, Badajoz,
Spain

VR, Lépez-Castafo, Saavedra, Rodriguez-Rivas, Yuste
& Abad, work in progress, 2019



Experimental realizations in the lab of a granular gas

Vibration

& i D riding;

Experiment performed at Sapienza, Roma
Pontuale, Gnoli, VR & Puglisi, Phys. Rev. Lett. 117
098006 (2016).

Air Fluidization:
Disks on a plane

Experiments performed at Granular Dynamics Imaging
Lab, ICCAEXx, Universidad de Extremadura, Badajoz,
Spain

VR, Lépez-Castafo, Saavedra, Rodriguez-Rivas, Yuste
& Abad, work in progress, 2019



Experimental realizations in the lab of a granular gas

Vibration
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Experiment performed at Sapienza, Roma
Pontuale, Gnoli, VR & Puglisi, Phys. Rev. Lett. 117
098006 (2016).

Air Fluidization:
Disks on a plane

Experiments performed at Granular Dynamics Imaging
Lab, ICCAEXx, Universidad de Extremadura, Badajoz,
Spain

VR, Lépez-Castafio, Saavedra, Rodriguez-Rivas, Yuste
& Abad, work in progress, 2019



Experimental evidence of memory effect in the granular
gas: Kovacs Effect
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Experimental evidence of memory effect in the granular
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Then, why memory effects?

Memory effects should appear always during transients for which
the particle distribution has not undergone a contraction to
average fields; i.e., the system is not yet under a normal state

{ai,n, T,u} = {n, T ,u} (7)



Then, why memory effects?

According to D. Hilbert's theory, normal states are always
attainable if the system has the ability to evolve towards an
equilibrium state.

Existence of normal states in intrinsically non-equilibrium
states is however, not guaranteed.

Therefore, non-equilibrum systems should be more prone to
display persistentmemory effects.

In particular, active matter is a good candidate for lack of
scale separation and thus, for long transients where memory
effects can occur.

Normal (hydrodynamic) states vs. kinetic states

Begriindung der kinetischen Gastheorie, David Hilbert, Math-
ematische Annalen 72, 562577 (1912).




Long memory in a quiral active particle: Self-restrained
diffusion
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Here, we show a short clip of an experiment with N=3
and spin-wise chirality

Flow chirality inversion

Chirality transitions in a system of active flat spinners
M. A. Lépez-Castafio, A. Marquez Seco, A. Méarquez Seco, A. Rodriguez-Rivas, and F. Vega Reyes

Phys. Rev. Research 4, 033230 (2022).




Long memory in a quiral active particle: Self-restrained
diffusion
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Long memory in a quiral active particle: Self-restrained
diffusion
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Mori-Zwanzig formalism

Memory Effects in Irreversible Thermodynamics*
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“Memory Effects in Irreversible Thermodynamics”, Robert Zwanzig, Phys. Rev.
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Mori-Zwanzig formalism

ON THE VALIDITY OF ONSAGER’S THEORY

There is another reason, more methodological than
physical, for seeking a causal generalization of Onsager’s
theory. In his derivation of Eq. (1), Onsager introduced
certain hypotheses leading directly to an instantaneous
response. Many subsequent rederivations (too many to
cite individually) have been concerned mainly with
justifying this simultaneity, by giving further support
to Onsager’s hypotheses, or by putting forth new and
equivalent hypotheses.

Such attempts are of doubtful value. Our principal
objection is that they do not show how it happens that
certain substances, in certain experiments, behave
causally instead of showing an instantaneous response.

A more satisfactory procedure is to derive a causal
theory in the first place, without relying on unverified
hypotheses, and then to investigate the validity of
Onsager’s theory as a limiting case. This is what we
do here.

“Memory Effects in Irreversible Thermodynamics”, Robert Zwanzig, Phys. Rev. 124 983 (1965).
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