
Extending computational complexity theory 
to include thermodynamic resource costs
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For continuous-time Markov chains sending p(0) to p(1) = ∑j P(i | j) pj(0) 

For many non-Markvonian chains sending p(0) to p(1) = ∑j P(i | j) pj(0) 

• ΔS = S(p1) – S(p0) is gain in Shannon entropy of p

• -ΔQ is (Shannon) entropy flow from system between t = 0 and t = 1

• ΔΣ is total entropy production in system between t = 0 and t = 1
  - cannot be negative
   (I.e., the second law of thermodynamics)

Ptaszynski and Esposito, PRL, 2019

Van denBroeck and Esposito, Physica A, 2015



GENERALIZED LANDAUER BOUND

•  System connected to multiple reservoirs, e.g., heat baths at different 
 temperatures. (So “kBT	” not defined.)

•  Arbitrary number of states 

•  Arbitrary initial distribution p0

•  Arbitrary dynamics P(x1 | x0) 

Entropy Production (!!" is non-negative. So:

“G𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑	𝐿𝑎𝑛𝑑𝑎𝑢𝑒𝑟!𝑠	𝑏𝑜𝑢𝑛𝑑”

−EQ	 ≥	 S(p0) − S(p1) 



BOOLEAN CIRCUITS

•  Currently, all mass-produced computers are implemented  
       with circuits.

•   The simplest circuit is one without loops or branches (a
       “straight-line program”)

•   If set of allowed gates are a universal 
       basis (e.g., NAND gates), then can
       build a circuit with them to implement 
       any desired Boolean function.



• For fixed P(x1 | x0), changing p0 changes Landauer cost, S(p0) − S(p1)

• N.b., the same P(x1 | x0)   - e.g., same AND gate -   has different p0, 
depending on where it is in a circuit.

• So even for a thermo. reversible gate (!!(p0) = 0), changing the gate’s 
location in a circuit (changes	S(p0) − S(p1) and so) changes -!Q(p0)



• Changing a gate’s location in a circuit changes	S(p0) − S(p1), and so 
changes the heat it produces, -!Q(p0)

• Sum those heats over all gates to get minimal heat flow of that circuit

• Formally, those differences in minimal heat of the circuits are differences in 
EPs of the circuits, arising due to modularity of gates

Ø  A new circuit design optimization problem

Different circuits implementing same Boolean function 
on same input distribution have different minimal heat

Demaine, E., et al., Comm. ACM, 2016

- Considers a similar problem - but 
incorrectly sets Landauer cost at each gate 
to same value, KT ln(2).



WHAT IS REALLY IMPORTANT 
THERMODYNAMICALLY?

• System evolves while connected to single heat bath at temperature T

         - Then heat flow into environment = -kBT	 !#$

• At scale of real computers and brains, kBT	[S(p0) − S(p1)] is small

• At scale of real computers and brains, ∆! is dominant cost

- Generalized Landauer’s bound often irrelevant (it assumes ∆! = 0!)

What determines E%?



BEYOND GENERALIZED LANDAUER

•  System connected to multiple reservoirs, e.g., heat baths at different 
 temperatures. (So “kBT	” not defined.)

•  Arbitrary number of states 

•  Arbitrary initial distribution p0

•  Arbitrary dynamics P(x1 | x0) 

Entropy Production (!!" is non-negative. 

Are there broadly applicable non-negative lower bounds on ∆𝛴 , 
to complement Landauer’s bound?
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BEYOND GENERALIZED LANDAUER

Entropy Production (!!" is non-negative.

 

• Yes.

 - Focus on two: Speed limit theorem (SLT) and Mismatch cost

Are there broadly applicable non-negative lower bounds on ∆𝛴 , 
to add to the lower bound −EQ	 ≥	 S(p0) − S(p1)?

Use them to investigate
the (thermodynamic) resource costs of 

computational machines



Original speed limit theorem (SLT):

• L(p(0), p(1)): L1 distance from distribution p(0) to distribution p(1)

• A0,1: total number of (stochastic) state jumps from t = 0 to t = 1

Since introduced, SLT has been strengthened several ways 

(more complicated formulas).

Shiraishi, N., Funo, K.; Saito, K., PRL (2018)
Delvenne, J., Falasco, G.; arXiv:2110.13050
Lee, J., et al.; PRL (2022)
Van Vu, T., Saito, K.; PRL (2023)



Original speed limit theorem (SLT):

• L(p(0), p(1)): L1 distance from distribution p(0) to distribution p(1)

• A0,1: total number of (stochastic) state jumps from t = 0 to t = 1

• Suppose uniform initial distribution over all gates and input bits; 
• How does the (Lee et al.) SLT bound vary with error rate of gates,        

for two logically equivalent circuits?



Original speed limit theorem (SLT):

• L(p(0), p(1)): L1 distance from distribution p(0) to distribution p(1)

• A0,1: total number of (stochastic) state jumps from t = 0 to t = 1

Tasnim, F., Wolpert, D., 
Korbel J., Lynn, C., et al. 
(2023)



Original speed limit theorem (SLT):

• L(p(0), p(1)): L1 distance from distribution p(0) to distribution p(1)

• A0,1: total number of (stochastic) state jumps from t = 0 to t = 1

What causes the 
curves to have 
these shapes?

What are curves 
for other circuits?



Original speed limit theorem (SLT):

• L(p(0), p(1)): L1 distance from distribution p(0) to distribution p(1)

• A0,1: total number of (stochastic) state jumps from t = 0 to t = 1

What causes the 
curves to have 
these shapes?

What are curves 
for other circuits?

A: Who knows!



DEPENDENCE OF EP ON INITIAL DISTRIBUTION

•  Arbitrary dynamics P(x1 | x0) 

•  Assume system is thermo. reversible for initial distribution q0
 I.e.,

• Run that system with initial distribution p0 ≠ q0	instead:

      where D(. || .) is relative entropy (KL divergence)

Kolchinsky, A, Wolpert D., J. Stat. Mech. (2017) 
Wolpert, D., Kolchinsky, A., New J. Phys. (2020)
Riechers, P., Gu, M., Phys. Rev. E (2021)
Kolchinsky, A., Wolpert D., arxiv:2103.05734

ΔΣ(p0) = D(p0 || q0) − D(p1 || q1) 
                ≥ 0

ΔΣ(q0) = 0 
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I.e.,
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      where D(. || .) is relative entropy (KL divergence)

ΔΣ(p0) = D(p0 || q0) − D(p1 || q1) 
                ≥ 0

ΔΣ(q0) = 0 

Wolpert, D., Kolchinsky, A., New J. Phys. (2020)
Riechers, P., Gu, M., Phys. Rev. E (2021)
Kolchinsky, A., Wolpert D., arxiv:2103.05734

D(p0 || q0) − D(p1 || q1) is called mismatch cost



DEPENDENCE OF EP ON INITIAL DISTRIBUTION

•  Arbitrary dynamics P(x1 | x0) 

•  Assume system is thermo. reversible for initial distribution q0
     I.e.,

• Run that system with initial distribution p0 ≠ q0	instead:

      where D(. || .) is relative entropy (KL divergence)

ΔΣ(p0) = D(p0 || q0) − D(p1 || q1) 
                ≥ 0

ΔΣ(q0) = 0 

Any nontrivial process that is 
thermodynamically reversible for one initial distribution 

will be costly for any other initial distribution



DEPENDENCE OF EP ON INITIAL DISTRIBUTION

•  Arbitrary dynamics P(x1 | x0) 

•  Assume system is thermo. reversible for initial distribution q0
     I.e.,

• Run that system with initial distribution p0 ≠ q0	instead:

      where D(. || .) is relative entropy (KL divergence)

ΔΣ(p0) = D(p0 || q0) − D(p1 || q1) 
                ≥ 0

ΔΣ(q0) = 0 

Holds for master equations, Langevin dynamics, (open) 
quantum thermodynamics, inclusive (Hamiltonian) 

dynamics – pretty much everything.



DEPENDENCE OF EP ON INITIAL DISTRIBUTION

•  Arbitrary dynamics P(x1 | x0) 

•  Assume system is thermo. reversible for initial distribution q0
     I.e.,

• Run that system with initial distribution p0 ≠ q0	instead:

      where D(. || .) is relative entropy (KL divergence)

ΔΣ(p0) = D(p0 || q0) − D(p1 || q1) 
                ≥ 0

ΔΣ(q0) = 0 

Same formula (just different prior q) for 
nonadiabatic EP, net lost free energy, etc.



EXAMPLE: Mismatch cost for parallel bit erasure

• Two distinct bit-erasing gates, each with thermo. rev. initial distribution q0

• Run gates in parallel, on bits xA and xB, with initial distribution p0(xA, xB)

• Assume p0(xA) = q0(xA) and p0(xB) = q0(xB). 

• So each gate, by itself, generates zero EP. But:

•  Formally: Since gates are distinct, the thermo. rev. joint distribution is 

 q0(xA, xB)  =  q0(xA)q0(xB)

If p0(xA, xB) statistically couples the bits, then 
full system is not thermo. reversible, 

and generates nonzero EP
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If p0(xA, xB) statistically couples the bits, then 
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EXAMPLE: Mismatch cost for parallel bit erasure

• Two distinct bit-erasing gates, each with thermo. rev. initial distribution q0

• Run gates in parallel, on bits xA and xB, with initial distribution p0(xA, xB)

• Assume p0(xA) = q0(xA) and p0(xB) = q0(xB). 

• So each gate, by itself, generates zero EP. But:

•  Intuition: Running two thermo. reversible gates in parallel loses   
  information in their initial coupling, and so is not thermo. reversible.

If p0(xA, xB) statistically couples the bits, then 
full system is not thermo. reversible, 

and generates nonzero EP
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• Run gates in parallel, on bits xA and xB, with initial distribution p0(xA, xB)

• Assume p0(xA) = q0(xA) and p0(xB) = q0(xB). 

• So each gate, by itself, generates zero EP. But:

•  Broader lesson: Modularity increases EP

If p0(xA, xB) statistically couples the bits, then 
full system is not thermo. reversible, 

and generates nonzero EP



EXAMPLE: Mismatch cost for parallel bit erasure

• Two distinct bit-erasing gates, each with thermo. rev. initial distribution q0

• Run gates in parallel, on bits xA and xB, with initial distribution p0(xA, xB)

• Assume p0(xA) = q0(xA) and p0(xB) = q0(xB). 

• So each gate, by itself, generates zero EP. But:

•  Broader lesson: Whatever its practical benefits might be, 

  modularity is thermodynamically costly (!)

If p0(xA, xB) statistically couples the bits, then 
full system is not thermo. reversible, 

and generates nonzero EP



EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

Gates are not reinitialized after being run; have old values when next run. 
So assuming IID generation of input, R(x0), initially, joint distribution is 

   R(x)  =  R(x0) R(x1,2,3 | x0)



EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

So assuming IID generation of input, R(x0), after running 1st layer, joint distribution is 

   R(x)  =  R(x0) R(x1,2,3)



EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

So running 1st layer gives mismatch cost

D(R(x0) R(x1,2,3 | x0) || q(x0) q(x1,2,3 | x0))  -  D(R(x0) R(x1,2,3) || R(x0)q(x1,2,3))
≥

IR(X0 ; X1, X2, X3)

Wolpert, D.H. Phys. Rev. Letters, 125, (2020)



EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

So assuming IID generation of input, R(x0), after running 2nd layer, joint distribution is 

   R(x)  =  R(x0,1) R(x2,3)



EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

So running 2nd layer gives mismatch cost

D(R(x0) R(x1,2,3) || R(x0) q(x1,2,3))  -  D(R(x0,1)R(x2,3) || R(x0,1)q(x2,3))
≥

IR(X1 ; X2, X3)



EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

So running 2nd layer gives mismatch cost

D(R(x0) R(x1,2,3) || R(x0) q(x1,2,3))  -  D(R(x0,1)R(x2,3) || R(x0,1)q(x2,3))
≥

IR(X1 ; X2, X3)

Technical detail: Also is a variable 
saying which layer is currently 
being updated, which increments in 
each iteration



EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

So assuming IID generation of input, R(x0), after running 3rd layer, joint distribution is 

   R(x)  =  R(x0,1,2) R(x3)



EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

So running 3rd layer gives mismatch cost

D(R(x0,1)R(x2,3) || R(x0,1)q(x2,3))  - D(R(x0,1,2)R(x3) || R(x0,1,2)q(x3)) 
≥

IR(X2 ; X3)



EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

So assuming IID generation of input, R(x0), after running 4th layer, joint distribution is 

   R(x)  =  R(x0,1,2,3)  =  R(x0,1,2,3)



EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

So running 4th layer gives mismatch cost

D(R(x0,1,2)R(x3) || R(x0,1,2)q(x3))  - D(R(x0,1,2,3) || R(x0,1,2,3)) 



EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

So assuming IID generation of input, R(x0), after 4th layer, joint distribution is 

   R(x)  =  R(x0)R(x1,2,3 | x0) = R(x)



MISMATCH COST IN PERIODIC PROCESSES

A process over a space X that is periodic, with period 𝝺. So for all n,

So over N periods, the sum-total mismatch cost (lower bound on EP) is:
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So over N periods, the sum-total mismatch cost (lower bound on EP) is:

KEY POINT: Since the process is periodic, q is the same in each period.
    However, Ptp0 will differ over periods.

Therefore At most one mismatch cost in the sum 
can equal 0 in general



A process over a space X that is periodic, with period 𝝺. So for all n,

So over N periods, the sum-total mismatch cost (lower bound on EP) is:

KEY POINT: Since the process is periodic, q is the same in each period.
    However, Ptp0 will differ over periods.

Therefore

 
A new strictly positive lower bound on EP for any periodic process

At most one mismatch cost in the sum 
can equal 0 in general



A process over a space X that is periodic, with period 𝝺. So for all n,

So over N periods, the sum-total mismatch cost (lower bound on EP) is:

• JS is Jensen-Shannon divergence for uniform distribution over N periods

 
A new strictly positive lower bound on EP for any periodic process

Wolpert, D.H. Phys. Rev. Letters, 125, (2020)
Ouldridge, T.; Wolpert, D.H., arxiv:2208.06895 (2022)
Tasnim, F.; Wolpert, D.H. Entropy, (2023)
Manzano, G., Kardes, G.; Roldan, E.; Wolpert, D.H., arxiv: 2307.05713 (2023)



DETERMINISTIC FINITE AUTOMATA (DFA)

• Simplest computational machine in Chomsky hierarchy
 - Finite number of states; one initial state, multiple “accept states”

 - Feed in a finite string of bits;
 - Each (bit, state) pair maps to a new state, after which next bit is read
 - A DFA “accepts” a string if it causes the DFA to end in an accept state
 - “Language” of a DFA is all input strings that it accepts
 - Many languages that are not accepted by any DFA

• Example: DFA that accepts any string with no more than two 
successive ‘b’ bits:



• Every digital computer is a sequence of solitary processes  
 -   Only part of the memory is physically to any processor at any time
 -   So evolving subsystem is processor and current part of memory

• Results in modularity (mismatch) cost – just like parallel bit erasure
 -  State space = {joint state of full memory and processor}



• Every digital computer is a sequence of solitary processes  
 -   Only part of the memory is physically to any processor at any time
 -   So evolving subsystem is processor and current part of memory

• Results in modularity (mismatch) cost – just like parallel bit erasure
 -  State space = {joint state of full memory and processor}

Example: In a DFA, memory contains entire string of input symbols
         However, DFA state only physically coupled to current input symbol, 
         not earlier or later symbols in the string



• Every (synchronous) digital computer is “periodic”
 - Every successive iteration is the same physical process.
   And so every iteration has the same prior

• E.g., in a DFA, every iteration has same prior

• So if prior distribution = actual distribution for iteration i, there is
 zero mismatch cost for iteration i   .... But:
     The distributions will differ for iteration i + 1 in general

• Results in “periodicty (mismatch) cost”



• Every (synchronous) digital computer is “periodic”
 - Every successive iteration is the same physical process.
   And so every iteration has the same prior

• E.g., in a DFA, every iteration has same prior

• So if prior distribution = actual distribution for iteration i, there is
 zero mismatch cost for iteration i   .... But:
     The distributions will differ for iteration i + 1 in general

• Results in “periodicity (mismatch) cost”

• So, for any p0 and any update conditional distribution P,

 - Independent of the physical details of the underlying process
  (just like generalized Landauer bound)
 - In general, RHS is strictly positive



• Total mismatch cost = modularity cost + periodicity cost



EXAMPLE

• Input strings have IID symbols with equal probability of a and b
• Uniform prior



EXAMPLE

• Input strings have IID symbols with probability of a = 0.8 



EXAMPLE

• Input strings have IID symbols with probability of a = 0.2



EXAMPLE

• Input strings are  first order Markov chains (starting from uniform probability)



EXAMPLE

Ouldridge, T., Wolpert, D., arxiv:2208.06895 (2022)



EXAMPLE

What causes curves to have these shapes?
What are curves for other DFAs?

A: Who knows!
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