Extending computational complexity theory to include thermodynamic resource costs

David H. Wolpert (Santa Fe Institute)

with

Gülce Kardes, Jan Korbel, Tom Ouldridge, Farita Tasnim

For continuous-time Markov chains sending $p(0)$ to $p(1)=\sum_{j} P(i \mid j) p_{j}(0)$
Van denBroeck and Esposito, Physica A, 2015

For many non-Markvonian chains sending $p(0)$ to $p(1)=\sum_{j} P(i \mid j) p_{j}(0)$
Ptaszynski and Esposito, PRL, 2019

$$
-\Delta Q=\Delta \Sigma-\Delta S
$$

- $\Delta S=S\left(p_{1}\right)-S\left(p_{0}\right)$ is gain in Shannon entropy of p
- $-\Delta Q$ is (Shannon) entropy flow from system between $t=0$ and $t=1$
- $\Delta \Sigma$ is total entropy production in system between $t=0$ and $t=1$

- cannot be negative

(l.e., the second law of thermodynamics)

GENERALIZED LANDAUER BOUND

- System connected to multiple reservoirs, e.g., heat baths at different temperatures. (So " $k_{\mathrm{B}} T$ " not defined.)
- Arbitrary number of states
- Arbitrary initial distribution p_{0}
- Arbitrary dynamics $\mathrm{P}\left(\mathrm{x}_{1} \mid \mathrm{x}_{0}\right)$

$$
-\Delta Q=\Delta \Sigma+S\left(p_{0}\right)-S\left(p_{1}\right)
$$

Entropy Production $(\Delta \Sigma)$ is non-negative. So:
"Generalized Landauer's bound"

$$
-\Delta Q \geq S\left(p_{0}\right)-S\left(p_{1}\right)
$$

BOOLEAN CIRCUITS

- Currently, all mass-produced computers are implemented with circuits.
- The simplest circuit is one without loops or branches (a "straight-line program")
- If set of allowed gates are a universal basis (e.g., NAND gates), then can build a circuit with them to implement any desired Boolean function.

$$
-\Delta Q=\Delta \Sigma+S\left(p_{0}\right)-S\left(p_{1}\right)
$$

- For fixed $P\left(x_{1} \mid x_{0}\right)$, changing p_{0} changes Landauer cost, $S\left(p_{0}\right)-S\left(p_{1}\right)$
- N.b., the same $P\left(x_{1} \mid x_{0}\right)$ - e.g., same AND gate - has different p_{0}, depending on where it is in a circuit.
- So even for a thermo. reversible gate $\left(\Delta \Sigma\left(p_{0}\right)=0\right)$, changing the gate's location in a circuit (changes $S\left(p_{0}\right)-S\left(p_{1}\right)$ and so) changes $-\Delta Q\left(p_{0}\right)$

- Changing a gate's location in a circuit changes $S\left(p_{0}\right)-S\left(p_{1}\right)$, and so changes the heat it produces, $-\Delta Q\left(p_{0}\right)$
- Sum those heats over all gates to get minimal heat flow of that circuit

Different circuits implementing same Boolean function on same input distribution have different minimal heat

- Formally, those differences in minimal heat of the circuits are differences in EPs of the circuits, arising due to modularity of gates
> A new circuit design optimization problem

Demaine, E., et al., Comm. ACM, 2016

- Considers a similar problem - but incorrectly sets Landauer cost at each gate to same value, $\mathrm{KT} \ln (2)$.

WHAT IS REALLY IMPORTANT THERMODYNAMICALLY?

$$
-\Delta Q=\Delta \Sigma+S\left(p_{0}\right)-S\left(p_{1}\right)
$$

- System evolves while connected to single heat bath at temperature T
- Then heat flow into environment $=-k_{\mathrm{B}} T \Delta Q$
- At scale of real computers and brains, $k_{\mathrm{B}} T\left[\mathrm{~S}\left(\mathrm{p}_{0}\right)-\mathrm{S}\left(\mathrm{p}_{1}\right)\right]$ is small
- At scale of real computers and brains, $\Delta \Sigma$ is dominant cost
- Generalized Landauer's bound often irrelevant (it assumes $\Delta \Sigma=0$!)

What determines $\Delta \Sigma$?

BEYOND GENERALIZED LANDAUER

- System connected to multiple reservoirs, e.g., heat baths at different temperatures. (So " $k_{\mathrm{B}} T$ " not defined.)
- Arbitrary number of states
- Arbitrary initial distribution p_{0}
- Arbitrary dynamics $\mathrm{P}\left(\mathrm{x}_{1} \mid \mathrm{x}_{0}\right)$

$$
-\Delta Q=\Delta \Sigma+S\left(p_{0}\right)-S\left(p_{1}\right)
$$

Entropy Production $(\Delta \Sigma)$ is non-negative.
Are there broadly applicable non-negative lower bounds on $\Delta \Sigma$, to complement Landauer's bound?

BEYOND GENERALIZED LANDAUER

- System connected to multiple reservoirs, e.g., heat baths at different temperatures. (So " $k_{\mathrm{B}} T$ " not defined.)
- Arbitrary number of states
- Arbitrary initial distribution p_{0}
- Arbitrary dynamics $\mathrm{P}\left(\mathrm{x}_{1} \mid \mathrm{x}_{0}\right)$

$$
-\Delta Q=\Delta \Sigma+S\left(p_{0}\right)-S\left(p_{1}\right)
$$

Entropy Production $(\Delta \Sigma)$ is non-negative.

Are there broadly applicable non-negative lower bounds on $\Delta \Sigma$, to complement Landauer's bound?

- Yes.

BEYOND GENERALIZED LANDAUER

$$
-\Delta Q=\Delta \Sigma+S\left(p_{0}\right)-S\left(p_{1}\right)
$$

Entropy Production $(\Delta \Sigma)$ is non-negative.
Are there broadly applicable non-negative lower bounds on $\Delta \Sigma$, to add to the lower bound $-\Delta Q \geq S\left(p_{0}\right)-S\left(p_{1}\right)$?

- Yes.
- Focus on two: Speed limit theorem (SLT) and Mismatch cost

Use them to investigate the (thermodynamic) resource costs of computational machines

Original speed limit theorem (SLT): $\Delta \Sigma \geq \frac{L(p(0), p(1))}{A_{0,1}}$

- $L(p(0), p(1)): L_{1}$ distance from distribution $p(0)$ to distribution $p(1)$
- $A_{0,1}$: total number of (stochastic) state jumps from $t=0$ to $t=1$

Since introduced, SLT has been strengthened several ways (more complicated formulas).

$$
\begin{aligned}
& \text { Shiraishi, N., Funo, K.; Saito, K., PRL (2018) } \\
& \text { Delvenne, J., Falasco, G.; arXiv:2110.13050 } \\
& \text { Lee, J., et al.; PRL (2022) } \\
& \text { Van Vu, T., Saito, K.; PRL (2023) }
\end{aligned}
$$

Original speed limit theorem (SLT): $\Delta \Sigma \geq \frac{L(p(0), p(1))}{A_{0,1}}$

- $L(p(0), p(1)): L_{1}$ distance from distribution $p(0)$ to distribution $p(1)$
- $A_{0,1}$: total number of (stochastic) state jumps from $t=0$ to $t=1$
- Suppose uniform initial distribution over all gates and input bits;
- How does the (Lee et al.) SLT bound vary with error rate of gates, for two logically equivalent circuits?

Original speed limit theorem (SLT): $\Delta \Sigma \geq \frac{L(p(0), p(1))}{A_{0,1}}$

- $L(p(0), p(1)): L_{1}$ distance from distribution $p(0)$ to distribution $p(1)$
- $A_{0,1}$: total number of (stochastic) state jumps from $t=0$ to $t=1$

Tasnim, F., Wolpert, D., Korbel J., Lynn, C., et al. (2023)

Original speed limit theorem (SLT): $\Delta \Sigma \geq \frac{L(p(0), p(1))}{A_{0,1}}$

- $L(p(0), p(1)): L_{1}$ distance from distribution $p(0)$ to distribution $p(1)$
- $A_{0,1}$: total number of (stochastic) state jumps from $t=0$ to $t=1$

What causes the curves to have these shapes?
What are curves for other circuits?

Original speed limit theorem (SLT): $\Delta \Sigma \geq \frac{L(p(0), p(1))}{A_{0,1}}$

- $L(p(0), p(1)): L_{1}$ distance from distribution $p(0)$ to distribution $p(1)$
- $A_{0,1}$: total number of (stochastic) state jumps from $t=0$ to $t=1$

What causes the curves to have these shapes? What are curves for other circuits?

A: Who knows!

DEPENDENCE OF EP ON INITIAL DISTRIBUTION

- Arbitrary dynamics $\mathrm{P}\left(\mathrm{x}_{1} \mid \mathrm{x}_{0}\right)$
- Assume system is thermo. reversible for initial distribution q_{0} I.e., $\Delta \Sigma\left(q_{0}\right)=0$
- Run that system with initial distribution $\mathrm{p}_{0} \neq \mathrm{q}_{0}$ instead:

$$
\begin{aligned}
\Delta \Sigma\left(p_{0}\right) & =D\left(p_{0} \| q_{0}\right)-D\left(p_{1} \| q_{1}\right) \\
& \geq 0
\end{aligned}
$$

where $\mathrm{D}(. \|$.$) is relative entropy (KL divergence)$

Kolchinsky, A, Wolpert D., J. Stat. Mech. (2017)
Wolpert, D., Kolchinsky, A., New J. Phys. (2020)
Riechers, P., Gu, M., Phys. Rev. E (2021)
Kolchinsky, A., Wolpert D., arxiv:2103.05734

DEPENDENCE OF EP ON INITIAL DISTRIBUTION

- Arbitrary dynamics $\mathrm{P}\left(\mathrm{x}_{1} \mid \mathrm{x}_{0}\right)$
- Assume system is thermo. reversible for initial distribution q_{0}

$$
\text { I.e., } \Delta \Sigma\left(q_{0}\right)=0
$$

- Run that system with initial distribution $\mathrm{p}_{0} \neq \mathrm{q}_{0}$ instead:

$$
\begin{aligned}
\Delta \Sigma\left(p_{0}\right) & =D\left(p_{0} \| q_{0}\right)-D\left(p_{1} \| q_{1}\right) \\
& \geq 0
\end{aligned}
$$

where $\mathrm{D}(.| |$.$) is relative entropy (KL divergence)$

$$
D\left(p_{0} \| q_{0}\right)-D\left(p_{1} \| q_{1}\right) \text { is called mismatch cost }
$$

Wolpert, D., Kolchinsky, A., New J. Phys. (2020)
Riechers, P., Gu, M., Phys. Rev. E (2021)
Kolchinsky, A., Wolpert D., arxiv:2103.05734

DEPENDENCE OF EP ON INITIAL DISTRIBUTION

- Arbitrary dynamics $\mathrm{P}\left(\mathrm{x}_{1} \mid \mathrm{x}_{0}\right)$
- Assume system is thermo. reversible for initial distribution q_{0} I.e., $\Delta \Sigma\left(q_{0}\right)=0$
- Run that system with initial distribution $\mathrm{p}_{0} \neq \mathrm{q}_{0}$ instead:

$$
\begin{aligned}
\Delta \Sigma\left(p_{0}\right) & =D\left(p_{0} \| q_{0}\right)-D\left(p_{1} \| q_{1}\right) \\
& \geq 0
\end{aligned}
$$

where $D(. \|$.$) is relative entropy (KL divergence)$

Any nontrivial process that is
thermodynamically reversible for one initial distribution will be costly for any other initial distribution

DEPENDENCE OF EP ON INITIAL DISTRIBUTION

- Arbitrary dynamics $\mathrm{P}\left(\mathrm{x}_{1} \mid \mathrm{x}_{0}\right)$
- Assume system is thermo. reversible for initial distribution q_{0} I.e., $\Delta \Sigma\left(q_{0}\right)=0$
- Run that system with initial distribution $\mathrm{p}_{0} \neq \mathrm{q}_{0}$ instead:

$$
\begin{aligned}
\Delta \Sigma\left(p_{0}\right) & =D\left(p_{0} \| q_{0}\right)-D\left(p_{1} \| q_{1}\right) \\
& \geq 0
\end{aligned}
$$

where $D(.| |$.$) is relative entropy (KL divergence)$

Holds for master equations, Langevin dynamics, (open) quantum thermodynamics, inclusive (Hamiltonian) dynamics - pretty much everything.

DEPENDENCE OF EP ON INITIAL DISTRIBUTION

- Arbitrary dynamics $\mathrm{P}\left(\mathrm{x}_{1} \mid \mathrm{x}_{0}\right)$
- Assume system is thermo. reversible for initial distribution q_{0} I.e., $\Delta \Sigma\left(q_{0}\right)=0$
- Run that system with initial distribution $\mathrm{p}_{0} \neq \mathrm{q}_{0}$ instead:

$$
\begin{aligned}
\Delta \Sigma\left(p_{0}\right) & =D\left(p_{0} \| q_{0}\right)-D\left(p_{1} \| q_{1}\right) \\
& \geq 0
\end{aligned}
$$

where $D(. \|$.$) is relative entropy (KL divergence)$

> Same formula (just different prior q) for nonadiabatic EP, net lost free energy, etc.

EXAMPLE: Mismatch cost for parallel bit erasure

- Two distinct bit-erasing gates, each with thermo. rev. initial distribution q_{0}
- Run gates in parallel, on bits x^{A} and x^{B}, with initial distribution $p_{0}\left(x^{A}, x^{B}\right)$
- Assume $p_{0}\left(x^{A}\right)=q_{0}\left(x^{A}\right)$ and $p_{0}\left(x^{B}\right)=q_{0}\left(x^{B}\right)$.
- So each gate, by itself, generates zero EP. But:

$$
\begin{gathered}
\text { If } p_{0}\left(x^{A}, x^{B}\right) \text { statistically couples the bits, then } \\
\text { full system is not thermo. reversible, } \\
\text { and generates nonzero EP }
\end{gathered}
$$

- Formally: Since gates are distinct, the thermo. rev. joint distribution is $q_{0}\left(x^{A}, x^{B}\right)=q_{0}\left(x^{A}\right) q_{0}\left(x^{B}\right)$

EXAMPLE: Mismatch cost for parallel bit erasure

- Two distinct bit-erasing gates, each with thermo. rev. initial distribution q_{0}
- Run gates in parallel, on bits x^{A} and x^{B}, with initial distribution $p_{0}\left(x^{A}, x^{B}\right)$
- Assume $p_{0}\left(x^{A}\right)=q_{0}\left(x^{A}\right)$ and $p_{0}\left(x^{B}\right)=q_{0}\left(x^{B}\right)$.
- So each gate, by itself, generates zero EP. But:

$$
\begin{gathered}
\text { If } p_{0}\left(x^{A}, x^{B}\right) \text { statistically couples the bits, then } \\
\text { full system is not thermo. reversible, } \\
\text { and generates nonzero EP }
\end{gathered}
$$

- Formally: Since gates are distinct, the thermo. rev. joint distribution is $q_{0}\left(x^{A}, x^{B}\right)=q_{0}\left(x^{A}\right) q_{0}\left(x^{B}\right)$. So $D\left(p_{0} \| q_{0}\right)-D\left(p_{1} \| q_{1}\right) \neq 0$

EXAMPLE: Mismatch cost for parallel bit erasure

- Two distinct bit-erasing gates, each with thermo. rev. initial distribution q_{0}
- Run gates in parallel, on bits x^{A} and x^{B}, with initial distribution $p_{0}\left(x^{A}, x^{B}\right)$
- Assume $p_{0}\left(x^{A}\right)=q_{0}\left(x^{A}\right)$ and $p_{0}\left(x^{B}\right)=q_{0}\left(x^{B}\right)$.
- So each gate, by itself, generates zero EP. But:

$$
\begin{gathered}
\text { If } p_{0}\left(x^{A}, x^{B}\right) \text { statistically couples the bits, then } \\
\text { full system is not thermo. reversible, } \\
\text { and generates nonzero EP }
\end{gathered}
$$

- Intuition: Running two thermo. reversible gates in parallel loses information in their initial coupling, and so is not thermo. reversible.

EXAMPLE: Mismatch cost for parallel bit erasure

- Two distinct bit-erasing gates, each with thermo. rev. initial distribution q_{0}
- Run gates in parallel, on bits x^{A} and x^{B}, with initial distribution $p_{0}\left(x^{A}, x^{B}\right)$
- Assume $p_{0}\left(x^{A}\right)=q_{0}\left(x^{A}\right)$ and $p_{0}\left(x^{B}\right)=q_{0}\left(x^{B}\right)$.
- So each gate, by itself, generates zero EP. But:

$$
\begin{gathered}
\text { If } p_{0}\left(x^{A}, x^{B}\right) \text { statistically couples the bits, then } \\
\text { full system is not thermo. reversible, } \\
\text { and generates nonzero EP }
\end{gathered}
$$

- Broader lesson: Modularity increases EP

EXAMPLE: Mismatch cost for parallel bit erasure

- Two distinct bit-erasing gates, each with thermo. rev. initial distribution q_{0}
- Run gates in parallel, on bits x^{A} and x^{B}, with initial distribution $p_{0}\left(x^{A}, x^{B}\right)$
- Assume $p_{0}\left(x^{A}\right)=q_{0}\left(x^{A}\right)$ and $p_{0}\left(x^{B}\right)=q_{0}\left(x^{B}\right)$.
- So each gate, by itself, generates zero EP. But:

$$
\begin{gathered}
\text { If } p_{0}\left(x^{A}, x^{B}\right) \text { statistically couples the bits, then } \\
\text { full system is not thermo. reversible, } \\
\text { and generates nonzero EP }
\end{gathered}
$$

- Broader lesson: Whatever its practical benefits might be, modularity is thermodynamically costly (!)

EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

$$
\sum_{t=0}^{N-1}\left[D\left(P^{t} p_{0} \| q\right)-D\left(P^{t+1} p_{0} \| P q\right)\right]
$$

Gates are not reinitialized after being run; have old values when next run. So assuming IID generation of input, $R\left(x_{0}\right)$, initially, joint distribution is

$$
R(x)=R\left(x_{0}\right) R\left(x_{1,2,3} \mid x_{0}\right)
$$

EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

$$
\sum_{t=0}^{N-1}\left[D\left(P^{t} p_{0} \| q\right)-D\left(P^{t+1} p_{0} \| P q\right)\right]
$$

So assuming IID generation of input, $R\left(x_{0}\right)$, after running 1st layer, joint distribution is

$$
R(x)=R\left(x_{0}\right) R\left(x_{1,2,3}\right)
$$

EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

$$
\sum_{t=0}^{N-1}\left[D\left(P^{t} p_{0} \| q\right)-D\left(P^{t+1} p_{0} \| P q\right)\right]
$$

So running 1st layer gives mismatch cost

$$
\begin{gathered}
D\left(R\left(x_{0}\right) R\left(x_{1,2,3} \mid x_{0}\right) \| q\left(x_{0}\right) q\left(x_{1,2,3} \mid x_{0}\right)\right)-D\left(R\left(x_{0}\right) R\left(x_{1,2,3}\right) \| R\left(x_{0}\right) q\left(x_{1,2,3}\right)\right) \\
\geq \\
I_{R}\left(x_{0} ; x_{1}, x_{2}, x_{3}\right)
\end{gathered}
$$

EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

$$
\sum_{t=0}^{N-1}\left[D\left(P^{t} p_{0} \| q\right)-D\left(P^{t+1} p_{0} \| P q\right)\right]
$$

So assuming IID generation of input, $R\left(x_{0}\right)$, after running 2nd layer, joint distribution is

$$
R(x)=R\left(x_{0,1}\right) R\left(x_{2,3}\right)
$$

EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

$$
\sum_{t=0}^{N-1}\left[D\left(P^{t} p_{0} \| q\right)-D\left(P^{t+1} p_{0} \| P q\right)\right]
$$

So running 2 nd layer gives mismatch cost

$$
\begin{gathered}
D\left(R\left(x_{0}\right) R\left(x_{1,2,3}\right) \| R\left(x_{0}\right) q\left(x_{1,2,3}\right)\right)-D\left(R\left(x_{0,1}\right) R\left(x_{2,3}\right) \| R\left(x_{0,1}\right) q\left(x_{2,3}\right)\right) \\
I_{R}\left(x_{1} ; x_{2}, x_{3}\right) \\
\hline
\end{gathered}
$$

EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

$$
\sum_{t=0}^{N-1}\left[D\left(P^{t} p_{0} \| q\right)-D\left(P^{t+1} p_{0} \| P q\right)\right]
$$

So running 2 nd layer gives mismatch cost

$$
\begin{gathered}
D\left(R\left(x_{0}\right) R\left(x_{1,2,3}\right) \| R\left(x_{0}\right) q\left(x_{1,2,3}\right)\right)-D\left(R\left(x_{0,1}\right) R\left(x_{2,3}\right) \| R\left(x_{0,1}\right) q\left(x_{2,3}\right)\right) \\
\geq \\
I_{R}\left(x_{1} ; x_{2}, x_{3}\right)
\end{gathered}
$$

Technical detail: Also is a variable saying which layer is currently being updated, which increments in each iteration

EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

$$
\sum_{t=0}^{N-1}\left[D\left(P^{t} p_{0} \| q\right)-D\left(P^{t+1} p_{0} \| P q\right)\right]
$$

So assuming IID generation of input, $R\left(x_{0}\right)$, after running 3rd layer, joint distribution is

$$
R(x)=R\left(x_{0,1,2}\right) R\left(x_{3}\right)
$$

EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

$$
\sum_{t=0}^{N-1}\left[D\left(P^{t} p_{0} \| q\right)-D\left(P^{t+1} p_{0} \| P q\right)\right]
$$

So running 3rd layer gives mismatch cost

$$
\begin{aligned}
D\left(R\left(x_{0,1}\right) R\left(x_{2,3}\right) \| R\left(x_{0,1}\right) q\left(x_{2,3}\right)\right)-D\left(R\left(x_{0,1,2}\right) R\left(x_{3}\right) \| R\left(x_{0,1,2}\right) q\left(x_{3}\right)\right) \\
\geq
\end{aligned}
$$

EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

$$
\sum_{t=0}^{N-1}\left[D\left(P^{t} p_{0} \| q\right)-D\left(P^{t+1} p_{0} \| P q\right)\right]
$$

So assuming IID generation of input, $R\left(x_{0}\right)$, after running 4th layer, joint distribution is

$$
R(x)=R\left(x_{0,1,2,3}\right)=R\left(x_{0,1,2,3}\right)
$$

EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

$$
\sum_{t=0}^{N-1}\left[D\left(P^{t} p_{0} \| q\right)-D\left(P^{t+1} p_{0} \| P q\right)\right]
$$

So running 4th layer gives mismatch cost

$$
D\left(R\left(x_{0,1,2}\right) R\left(x_{3}\right) \| R\left(x_{0,1,2}\right) q\left(x_{3}\right)\right)-D\left(R\left(x_{0,1,2,3}\right) \| R\left(x_{0,1,2,3}\right)\right)
$$

EXAMPLE: Mismatch cost for reusing a Boolean circuit

Over N periods, the sum-total mismatch cost (lower bound on EP) is:

$$
\sum_{t=0}^{N-1}\left[D\left(P^{t} p_{0} \| q\right)-D\left(P^{t+1} p_{0} \| P q\right)\right]
$$

So assuming IID generation of input, $R\left(x_{0}\right)$, after 4th layer, joint distribution is

$$
R(x)=R\left(x_{0}\right) R\left(x_{1,2,3} \mid x_{0}\right)=R(x)
$$

MISMATCH COST IN PERIODIC PROCESSES

A process over a space X that is periodic, with period λ. So for all n,

$$
P(x(n \lambda) \mid x((n-1) \lambda))=P(x(\lambda) \mid x(0))
$$

So over N periods, the sum-total mismatch cost (lower bound on EP) is:

$$
\sigma(N \lambda) \geq \inf _{q \in \Delta_{X}} \sum_{t=0}^{N-1}\left[D\left(P^{t} p_{0} \| q\right)-D\left(P^{t+1} p_{0} \| P q\right)\right]
$$

MISMATCH COST IN PERIODIC PROCESSES

A process over a space X that is periodic, with period $\boldsymbol{\lambda}$. So for all n ,

$$
P(x(n \lambda) \mid x((n-1) \lambda))=P(x(\lambda) \mid x(0))
$$

So over N periods, the sum-total mismatch cost (lower bound on EP) is:

$$
\sigma(N \lambda) \geq \inf _{q \in \Delta_{X}} \sum_{t=0}^{N-1}\left[D\left(P^{t} p_{0} \| q\right)-D\left(P^{t+1} p_{0} \| P q\right)\right]
$$

KEY POINT: Since the process is periodic, q is the same in each period. However, $\mathrm{P}^{\mathrm{t}} \mathrm{p}_{0}$ will differ over periods.

Therefore
At most one mismatch cost in the sum
can equal 0 in general

A process over a space X that is periodic, with period λ. So for all n ,

$$
P(x(n \lambda) \mid x((n-1) \lambda))=P(x(\lambda) \mid x(0))
$$

So over N periods, the sum-total mismatch cost (lower bound on EP) is:

$$
\sigma(N \lambda) \geq \inf _{q \in \Delta_{X}} \sum_{t=0}^{N-1}\left[D\left(P^{t} p_{0} \| q\right)-D\left(P^{t+1} p_{0} \| P q\right)\right]
$$

KEY POINT: Since the process is periodic, q is the same in each period. However, $\mathrm{P}^{\mathrm{t}} \mathrm{p}_{0}$ will differ over periods.

Therefore At most one mismatch cost in the sum can equal 0 in general

A process over a space X that is periodic, with period λ. So for all n ,

$$
P(x(n \lambda) \mid x((n-1) \lambda))=P(x(\lambda) \mid x(0))
$$

So over N periods, the sum-total mismatch cost (lower bound on EP) is:

$$
\sigma(N \lambda) \geq N \Delta J S\left(\left\{P^{t} p_{0}\right\}\right)
$$

- JS is Jensen-Shannon divergence for uniform distribution over N periods

A new strictly positive lower bound on EP for any periodic process

Wolpert, D.H. Phys. Rev. Letters, 125, (2020)
Ouldridge, T.; Wolpert, D.H., arxiv:2208.06895 (2022)
Tasnim, F.; Wolpert, D.H. Entropy, (2023)
Manzano, G., Kardes, G.; Roldan, E.; Wolpert, D.H., arxiv: 2307.05713 (2023)

DETERMINISTIC FINITE AUTOMATA (DFA)

- Simplest computational machine in Chomsky hierarchy
- Finite number of states; one initial state, multiple "accept states"
- Feed in a finite string of bits;
- Each (bit, state) pair maps to a new state, after which next bit is read
- A DFA "accepts" a string if it causes the DFA to end in an accept state
- "Language" of a DFA is all input strings that it accepts
- Many languages that are not accepted by any DFA
- Example: DFA that accepts any string with no more than two successive 'b' bits:

- Every digital computer is a sequence of solitary processes
- Only part of the memory is physically to any processor at any time
- So evolving subsystem is processor and current part of memory
- Results in modularity (mismatch) cost - just like parallel bit erasure
- State space $=$ \{joint state of full memory and processor\}
- Every digital computer is a sequence of solitary processes
- Only part of the memory is physically to any processor at any time
- So evolving subsystem is processor and current part of memory
- Results in modularity (mismatch) cost - just like parallel bit erasure
- State space $=$ \{joint state of full memory and processor\}

Example: In a DFA, memory contains entire string of input symbols However, DFA state only physically coupled to current input symbol, not earlier or later symbols in the string

- Every (synchronous) digital computer is "periodic"
- Every successive iteration is the same physical process. And so every iteration has the same prior
- E.g., in a DFA, every iteration has same prior
- So if prior distribution = actual distribution for iteration i , there is zero mismatch cost for iteration i But: The distributions will differ for iteration $i+1$ in general
- Results in "periodicty (mismatch) cost"

- Every (synchronous) digital computer is "periodic"
- Every successive iteration is the same physical process. And so every iteration has the same prior
- E.g., in a DFA, every iteration has same prior
- So if prior distribution = actual distribution for iteration i , there is zero mismatch cost for iteration i But:
The distributions will differ for iteration $i+1$ in general
- Results in "periodicity (mismatch) cost"
- So, for any p_{0} and any update conditional distribution P ,

$$
E P \geq \operatorname{argmin}_{q} \sum_{i=0}^{n}\left[D\left(P^{i} p_{0} \| q\right)-D\left(P^{i+1} p_{0} \| P q\right)\right]
$$

- Independent of the physical details of the underlying process
(just like generalized Landauer bound)
- In general, RHS is strictly positive
- Total mismatch cost $=$ modularity cost + periodicity cost

EXAMPLE

- Input strings have IID symbols with equal probability of a and b
- Uniform prior

EXAMPLE

- Input strings have IID symbols with probability of $a=0.8$

EXAMPLE

- Input strings have IID symbols with probability of $a=0.2$

EXAMPLE

- Input strings are first order Markov chains (starting from uniform probability)

EXAMPLE

Ouldridge, T., Wolpert, D., arxiv:2208.06895 (2022)

EXAMPLE

What causes curves to have these shapes? What are curves for other DFAs?

A: Who knows!

BIBLIOGRAPHY (a bit out of date)

Analysis of electronic components used in digital computers

- Riechers, P., in "The Energetics of Computing in Life and Machines", Wolpert, D. et al. (Ed.'s), SFI Press (2019)
- Freitas, N., Delvenne, J., Esposito, M., arxiv:2008.10578 (2021)
- Gao, C., Limmer, D., arxiv:2102.13067 (2021)
- Boyd, A. Riechers, P., Wimsatt, G., Crutchfield, J., Gu, M., arxiv:2104.12072 (2021)

Analysis of Turing machines - based on stochastic thermodynamics

- Strasberg, P., Cerrillo, J., Schaller, G., Brandes, T., Phys. Rev. E (2015)
- Wolpert, D., J. Phys. A (2019)
- Kolchinsky, A., Wolpert, D., Phys. Rev. R (2020)
- Brittain, R., Jones, N., Ouldridge, T., arxiv:2102.03388

Analysis of Turing machines - not based on stochastic thermodynamics

- Zurek, W., Phys. Rev. A (1989)
- translation into stochastic thermodynamics in Wolpert, D., J. Phys. A (2019)
- Bennett, C., IBM J.Res.Dev. (1973)

BIBLIOGRAPHY (a bit out of date)

Analysis of straight-line programs (including Bayes nets)

- Ito, S., Sagawa, T., Phys. Rev. Letters (2013)
- Ito, S., Sagawa, T., in "Mathematical Foundations and Applications of Graph Theory", Dehmer M., et al. (Ed.'s), Wiley (2015)
- Wolpert, D., J. Phys. A (2019)
- Wolpert, D., Kolchinsky, A., New J. Phys. (2020)
- Wolpert, D., Phys. Rev. Letters (2020)

Analysis of finite state automata (including Mealy machines)

- Ganesh N., Anderson N., Phys. Lett. A (2013)
- Chu D., Spinney R., arXiv:1806.04875 (2018)
- Garner A., Thompson J., Vedral V., Gu M., Phys. Rev. E (2017)
- Boyd A., Mandal D., Crutchfield J., New J. Phys. (2016)
- Boyd A., Mandal D., Crutchfield J., Phys. Rev. E (2017)
- Boyd A., Mandal D., Riechers P., Crutchfield J., Phys. Rev. Lett. (2017)
- Boyd A., Mandal D., Crutchfield J., J. Stat. Phys. (2017)

BIBLIOGRAPHY (a bit out of date)

Analysis of arbitrary asynchronous information processing systems

- Sagawa, T., Ueda, M., Phys. Rev. Letters (2009)
- Sagawa, T., Ueda, M., Phys. Rev. Letters (2012)
- Sagawa, T., Ueda, M., New. J. Phys. (2013)
- Horowitz, J., Esposito, M., Phys. Rev. X (2014)
- Barato, A., Hartich, D., Seifert, U., New. J. Phys. (2014)
- Horowitz, J., J. Stat. Mech.: Th. and Exp. (2015)
- Barato, A., Seifert, U., New. J. Phys. (2017)
- Hartich, D., Barato, A., Seifert, U., Phys. Rev. E (2016)
- Brittain, R., Jones, N., Ouldridge, T., J. Stat. Mech.: Th. and Exp. (2017)
- Kardeş, G., Wolpert, D., arxiv:2102:01610 (2020)
- Wolpert, D., arxiv:2003:11144 (2020)
- Wolpert, D., New J. Phys. (2020)

BIBLIOGRAPHY (a bit out of date)

Thermodynamic (Ir)relevance of logical reversibility

- Maroney, O., Phys. Rev. E (2009)
- Sagawa, T., J. Stat. Mech.: Th. and Exp. (2014)
- Wolpert, D., J. Phys. A (2019)

Miscellaneous

- Parrondo., J., Horowitz, J., Sagawa, T., Nature Physics (2015)
- Sheng, S., Herpich, T. Diana, G., Esposito, M., Entropy (2019)
- Wolpert, D., Kempes, C., Stadler, P., Grochow, J., "The Energetics of Computation in Life and Machines", SFI Press (2018)
- Grochow, J., Wolpert, D., ACM SIGACT News (2018)
- Wolpert, D., Kolchinsky, A., Owen, J., Nat. Comm. (2019)
- Owen, J., Kolchinsky, A., Wolpert, D., New J. Phys. (2019)
- Riechers, P.. Gu, M., Phys. Rev. E (2021)
- Kolchinsky, A., Wolpert D., arxiv:2103.05734

BIBLIOGRAPHY (a bit out of date)

Relevant computer science; comp. in biology; comp. in foundations of physics (very partial)

- Nielsen, M., Phys. Rev. Letters (1997)
- Pour-El, M., Richards, J., "Computability in Analysis and Physics" (1997)
- Tegmark, M., Annals of Phys. (1998)
- Hut, P., Alford, M., Tegmark, M., Found. Phys. (2006)
- Li, M., Vitanyi, P., "An introduction to Kolmogorov Complexity and its applications", Springer (2008)
- Soloveichik D., Cook M., Winfree E., and Bruck J., Nat. Computing (2008)
- Tegmark, M., Found. Phys. (2008)
- Arora, S., Barak, B., "Computational Complexity: A modern approach", CUP (2009)
- Prohoska, S., Stadler, P., Krakauer, D., J. Theor. Bio. (2010)
- Barrow, J., in "Kurt Godel and the Foundations of Mathematics", Baaz M., et al. (Ed.'s), CUP (2011)
- Aaronson, S., in "Electronic Colloquium on Computational Complexity" (2011)
- Qian, L, Winfree, E., Science (2011)
- Benenson, Y., Nat. Rev. Genetics (2012)
- Cubitt, T., Garcia-Perez, D., Wolf, M., Nature (2015)
- Allaghi, A., Hayes, J., IEEE Trans. CAD of ICs and Systems (2015)
- Barua, B., Mondal, C.; J. Inst. Engineers: Series B, (2019)
- Shiraishi, N., Matsumoto, K., arxiv:2012.13890

