New Uncertainty Relations in view of Weak Values

Jaeha Lee University of Tokyo

2016-01-06 at YQIP2016

Objective of this Talk

+ To present a (hopefully) novel set of inequalities interpreted as the uncertainty relations of approximation/estimation.
+ To see that the (1) position-momentum uncertainty relation and (2) time-energy uncertainty relation can be treated in one framework.
+ To see that the best choice of proxy functions are given by Aharonov's weak value.

Program

5 min

1. Introduction: Various Uncertainty Relations (UR)

15 min
2. UR for Approximation/Estimation
2.1. Non-commutativity in Depth
2.2. Robertson-Kennard/Schrödinger ineq. Revisited
2.3. UR between Generator and Parameter
3. Summary and Conclusion

1. Introduction

 ~ Various Uncertainty Relations ~
1.1. Review: URs in Quantum Mechanics

Uncertainty Relation between Error and Disturbance

- Heisenberg's Inequality (1927)

$$
\epsilon(Q) \eta(P) \gtrsim \frac{\hbar}{2}
$$

- Ozawa's Inequality (2003)

$$
\epsilon_{O}(A) \eta_{O}(B)+\epsilon_{O}(A) \sigma(B)+\sigma(A) \eta_{O}(B) \geq\left|\left\langle\frac{[A, B]}{2 i}\right\rangle_{\psi}\right|
$$

- Watanabe-Sagawa-Ueda’s Inequality (2010)

$$
\epsilon_{W}(A) \eta_{W}(B) \geq\left|\left\langle\frac{[A, B]}{2 i}\right\rangle_{\psi}\right|
$$

Uncertainty Relations between Observables

- Robertson-Kennard's Inequality (1927-1929)

$$
\sigma(A)^{2} \sigma(B)^{2} \geq\left|\left\langle\frac{[A, B]}{2 i}\right\rangle\right|^{2}
$$

- Schrödinger's Inequality (1930)

$$
\sigma(A)^{2} \sigma(B)^{2} \geq\left|\left\langle\frac{\{A, B\}}{2}\right\rangle-\langle A\rangle\langle B\rangle\right|^{2}+\left|\left\langle\frac{[A, B]}{2 i}\right\rangle\right|^{2}
$$

Uncertainty Relations between Time and Energy

- Mandelshtam-Tamm (1945)

$$
\tau \cdot \Delta H \geq \frac{\hbar}{2}
$$

2. Uncertaity Relations for Approximation/Estimation

- Approximation of Observables
- Estimation of Parameters

* New operator from old

Spectral Decomposition: $B=\int b|b\rangle\langle b| d b$
(New operator)
Functional Calculus: $f(B)=\int f(b)|b\rangle\langle b| d b$,
eng.

$$
\begin{aligned}
B^{2} & =\int b^{2}|b\rangle\langle b| d b, \quad\left(f(b)=b^{2}\right) \\
e^{-i s B} & =\int e^{-i s b}|b\rangle\langle b| d b, \quad\left(f(b)=e^{-i s b}\right) \\
c \cdot \mathrm{Id} & =\int c|b\rangle\langle b| d b, \quad(f(b)=c(\text { const. }))
\end{aligned}
$$

2.0. Starting Point: Versatile Inequality

- Robertson-Kennard's Inequality

$$
\|A-\langle A\rangle\| \cdot\|B-\langle B\rangle\| \geq \frac{1}{2}|\langle[A, B]\rangle|
$$

Expectation Value: $\langle A\rangle=\langle\psi| A|\psi\rangle$
Operator Semi-norm: $\|X\|=\sqrt{\left\langle X^{2}\right\rangle}$

- Versatile Inequality

$$
\|A-f(B)\| \cdot\|g(B)\| \geq \frac{1}{2}|\langle[A, g(B)]\rangle|
$$

Here, $f(b), g(b)$ are real.

Operators created from B

- Proof of the Versatile Inequality

$$
\|A-f(B)\| \cdot\|g(B)\| \geq \frac{1}{2}|\langle[A, g(B)]\rangle|
$$

1. Given two self-adjoint operators X, Y, we have $\|X\|^{2} \cdot\|Y\|^{2} \geq|\langle X Y\rangle|^{2}$ by the Cauchy-Schwarz (CS) inequality.
2. We also have $|\langle X Y\rangle|^{2}=|\langle[X, Y] / 2\rangle|^{2}+|\langle\{X, Y\} / 2\rangle|^{2} \geq|\langle[X, Y] / 2\rangle|^{2}$, where $\{X, Y\}=X Y+Y X$, hence

$$
\|X\|^{2} \cdot\|Y\|^{2} \geq|\langle[X, Y] / 2\rangle|^{2}
$$

by combining them.
3. Since X and Y are arbitrary, we may put $X=A-f(B)$ and $Y=g(B)$ and take the square-root to obtain

$$
\|A-f(B)\| \cdot\|g(B)\| \geq \frac{1}{2}|\langle[A, g(B)]\rangle|,
$$

which was to be demonstrated.

2.1. Application 1: Non-commutativity in Depth

- Versatile Inequality

$$
\|A-f(B)\| \cdot\|g(B)\| \geq \frac{1}{2}|\langle[A, g(B)]\rangle|
$$

The semi-norm $\|A-f(B)\|$ gives a measure for the 'distance' or 'error' between the two observables. Specifically,

$$
\min _{f}\|A-f(B)\| \geq \max _{\bar{g}} \frac{1}{2}|\langle[A, \bar{g}(B)]\rangle|
$$

by normalising $\bar{g}(B)=g(B) /\|g(B)\|$. The minimal error in the approximation of A in terms of proxy functions $f(B)$, is dictated by the maximal degree of non-commutativity of A with respect to the family of all normalised self-adjoint operators generated by B.

~ Optima and the Weak Value ~

Q: Optimal choice of the proxy functions $f(b), g(b)$?

$$
\min _{f}\|A-f(B)\| \geq \max _{\bar{g}} \frac{1}{2}|\langle[A, \bar{g}(B)]\rangle| .
$$

A: Real and Imaginary parts

$$
f_{\mathrm{opt}}(b)=\operatorname{Re} A_{w}(b), \quad g_{\mathrm{opt}}(b)=\frac{\operatorname{Im} A_{w}(b)}{\left\|\operatorname{Im} A_{w}(B)\right\|}
$$

of Aharonov's weak value

$$
A_{w}(b):=\frac{\langle b| A|\psi\rangle}{\langle b \mid \psi\rangle} .
$$

In such case, the inequality reduces to

$$
\left\|A-\operatorname{Re} A_{w}(B)\right\| \geq\left\|\operatorname{Im} A_{w}(B)\right\| .
$$

- Proof of the optimal Proxy Functions

$$
\min _{f}\|A-f(B)\| \geq \max _{\bar{g}} \frac{1}{2}|\langle[A, \bar{g}(B)]\rangle|
$$

1. Optimum of f. An immediate consequence of the triangle inequality [1-2]

$$
\|A-f(B)\|^{2}=\left\|A-\operatorname{Re} A_{w}(B)\right\|^{2}+\left\|\operatorname{Re} A_{w}(B)-f(B)\right\|^{2}
$$

2. Optimum of g. First observe that

$$
\langle g(B) A\rangle=\int_{\mathbb{R}}\langle\psi| g(B)|b\rangle\langle b| A|\psi\rangle d b=\int_{\mathbb{R}} g(b) \cdot A_{w}(b) \rho(b) d b,
$$

and

$$
\langle A g(B)\rangle=\int_{\mathbb{R}} g(b) \cdot A_{w}^{*}(b) \rho(b) d b
$$

where we denote the probability by $\rho(b):=|\langle b \mid \psi\rangle|^{2}$.

Then, the CS inequality yields

$$
\begin{aligned}
\frac{1}{2}|\langle[A, \bar{g}(B)]\rangle| & =\frac{1}{2}\left|\int_{\mathbb{R}} \bar{g}(b) \cdot A_{w}(b)-\bar{g}(b) \cdot A_{w}^{*}(b) \rho(b) d b\right| \\
& =\left|\int_{\mathbb{R}} \bar{g}(b) \cdot \operatorname{Im} A_{w}(b) \rho(b) d b\right| \\
& \leq\left(\int_{\mathbb{R}}|\bar{g}(b)|^{2} \rho(b) d b\right)^{\frac{1}{2}} \cdot\left(\int_{\mathbb{R}}\left|\operatorname{Im} A_{w}(b)\right|^{2} \rho(b) d b\right)^{\frac{1}{2}} \\
& =\left\|g_{\mathrm{opt}}(b)\right\| \cdot\left\|\operatorname{Im} A_{w}(B)\right\| \\
& =\left\|\operatorname{Im} A_{w}(B)\right\| .
\end{aligned}
$$

Equality holds with the choice $g_{\text {opt }}(b)=\operatorname{Im} A_{w}(b) /\left\|\operatorname{Im} A_{w}(B)\right\|$ (equality condition for the CS inequality).

~ Addendum: Geometric View ~

- Weak Value is the image of the Projection of A onto the subspace spanned by B.
- Quantum analogue of the L^{2} structure on the space of classical random variables.

2.2. Application 2: RK Inequality Revisited

- Versatile Inequality

$$
\|A-f(B)\| \cdot\|g(B)\| \geq \frac{1}{2}|\langle[A, g(B)]\rangle|
$$

- Robertson-Kennard's (RK) Inequality

$$
\|A-\langle A\rangle\| \cdot\|B-\langle B\rangle\| \geq \frac{1}{2}|\langle[A, B]\rangle|,
$$

for the choice $f(B)=\langle A\rangle$ and $g(B)=B-\langle B\rangle$.

- Tightened version of the RK Inequality

$$
\left\|A-\operatorname{Re} A_{w}(B)\right\| \cdot\|B-\langle B\rangle\| \geq \frac{1}{2}|\langle[A, B]\rangle|
$$

with the optimal choice $f(B)=f_{\mathrm{opt}}(B), g(B)=B-\langle B\rangle$.

\sim RK ineq. VS optimal ineq. \sim

- Robertson-Kennard's (RK) Inequality

$$
\|A-\langle A\rangle\| \cdot\|B-\langle B\rangle\| \geq \frac{1}{2}|\langle[A, B]\rangle|,
$$

The optimal inequality reduces to the RK inequality if and only if

$$
\operatorname{Re} A_{w}(B)|\psi\rangle=\langle A\rangle|\psi\rangle
$$

(i.e., 'best approximation' is trivial), in which case the covariance,

$$
\begin{aligned}
\operatorname{Cov}[A, B] & =\frac{1}{2}\langle\{A, B\}\rangle-\langle A\rangle\langle B\rangle \\
& =\left\langle\left(\operatorname{Re} A_{w}(B)-\langle A\rangle\right)(B-\langle B\rangle)\right\rangle=0,
\end{aligned}
$$

vanishes identically (i.e., no 'correlation').

- Tightened version of the RK Inequality

$$
\left\|A-\operatorname{Re} A_{w}(B)\right\| \cdot\|B-\langle B\rangle\| \geq \frac{1}{2}|\langle[A, B]\rangle|
$$

Applying the CS inequality to $\operatorname{Cov}[A, B]$:

$$
\left\|\operatorname{Re} A_{w}(B)-\langle A\rangle\right\| \cdot\|B-\langle B\rangle\| \geq\left|\frac{1}{2}\langle\{A, B\}\rangle-\langle A\rangle\langle B\rangle\right| .
$$

(Classical Covariance inequality $\sigma(X) \sigma(Y) \geq \operatorname{Cov}[X, Y]$)

~Schrödinger's Inequality Revisited ~

A tightened version of the Schrödinger's inequality

$$
\begin{aligned}
& \left\|A_{w}(B)-\langle A\rangle\right\|^{2} \cdot\|B-\langle B\rangle\|^{2} \\
& \quad \geq\left|\frac{1}{2}\langle[A, B]\rangle\right|^{2}+\left|\frac{1}{2}\langle\{A, B\}\rangle-\langle A\rangle\langle B\rangle\right|^{2},
\end{aligned}
$$

by combining the two.

2.3. Application 3: Parameter Estimation

Consider a parametrised family of states

$$
|\psi(t)\rangle=e^{-i t A / \hbar}|\psi\rangle, \quad t \in \mathbb{R}
$$

generated by A for a fixed $|\psi\rangle$.

Objective: How well can one obtain the information of both the generator A and the parameter t through the measurement of B ?

Strategy. We try to minimise the distances

$$
\|A-f(B)\|, \quad\|t-g(B)\|
$$

by freely choosing the proxy functions f, g.

~ Cramére-Rao Inequality ~

Recall the CS inequality

$$
\left\|\operatorname{Im} A_{w}(B)\right\| \cdot\|B-\langle B\rangle\| \geq\left|\frac{1}{2}\langle[A, B]\rangle\right|
$$

1. The imaginary part of the weak value corresponds to the Fisher Information

$$
\begin{aligned}
I(t) & =\int\left[\frac{d}{d t} \ln p(b, t)\right]^{2} p(b, t) d b \\
& =\left(\frac{1}{\hbar}\right)^{2} \int\left[\frac{\langle\psi(t) \mid b\rangle\langle b \mid A \psi(t)\rangle}{|\langle b \mid \psi(t)\rangle|^{2}}-\frac{\langle A \psi(t) \mid b\rangle\langle b \mid \psi(t)\rangle}{|\langle b \mid \psi(t)\rangle|^{2}}\right]^{2} p(b, t) d b \\
& =\left(\frac{2}{\hbar}\right)^{2} \int\left[\operatorname{Im} A_{w}(b)\right]^{2} p(b, t) d b=\left(\frac{2}{\hbar}\right)^{2}\left\|\operatorname{Im} A_{w}(B)\right\|^{2}
\end{aligned}
$$

for the estimation of t, where $p(b, t)=|\langle b \mid \psi(t)\rangle|^{2}$ is the probability distribution.
2. The commutator

$$
\begin{aligned}
\left|\frac{d}{d t}\langle g(B)\rangle_{t}\right| & =\frac{1}{\hbar}\left|\langle A g(B)\rangle_{t}-\langle g(B) A\rangle_{t}\right| \\
& =\frac{1}{\hbar}\left|\langle[A, g(B)]\rangle_{t}\right|
\end{aligned}
$$

corresponds to the derivative of the average of g.

- CS Inequality

$$
\left\|\operatorname{Im} A_{w}(B)\right\|^{2} \cdot\|g(B)\|^{2} \geq \frac{1}{4}|\langle[A, g(B)]\rangle|^{2}
$$

- Cramére-Rao Inequality

$$
g(B) \rightarrow g(B)-\langle g(B)\rangle
$$

$$
I(t) \cdot \operatorname{Var}[g(B)] \geq\left(\frac{d}{d t}\langle g(B)\rangle\right)^{2}
$$

Definition (Locally unbiased estimator). A function g is called a locally unbiased estimator of a function $\varphi(t)$ at the point $t_{0} \in \mathbb{R}$, if its statistical average

$$
\langle g(B)\rangle_{t}:=\langle\psi(t)| g(B)|\psi(t)\rangle
$$

coincides with φ

$$
\langle g(B)\rangle_{t}=\varphi\left(t_{0}\right)+\varphi^{\prime}\left(t_{0}\right) \cdot\left(t-t_{0}\right)+o\left(t-t_{0}\right)
$$

at least for the first order expansion at the point t_{0}.
If we plug the conditions for the locally unbiased estimator

$$
\begin{aligned}
I(t) \cdot \operatorname{Var}[g(B)] & \geq\left(\frac{d}{d t}\langle g(B)\rangle\right)^{2} \\
\left\|t_{0}-g(B)\right\| \geq \frac{1}{I\left(t_{0}\right)} & =\left(\frac{\hbar}{2}\right) \frac{1}{\left\|\operatorname{Im} A_{w}(B)\right\|}
\end{aligned}
$$

~UR between Generator and Parameter ~

Combining the previous result

$$
\left\|t_{0}-g(B)\right\| \geq\left(\frac{\hbar}{2}\right) \frac{1}{\left\|\operatorname{Im} A_{w}(B)\right\|}
$$

and the inequality from application 1

$$
\|A-f(B)\| \geq\left\|A-\operatorname{Re} A_{w}(B)\right\| \geq\left\|\operatorname{Im} A_{w}(B)\right\|
$$

we arrive at

$$
\|A-f(B)\| \cdot\left\|t_{0}-g(B)\right\| \geq \frac{\hbar}{2} \cdot \frac{\left\|A-\operatorname{Re} A_{w}(B)\right\|}{\left\|\operatorname{Im} A_{w}(B)\right\|} \geq \frac{\hbar}{2}
$$

Note added: A similar inequality [3] is known from a different context and argument. Our inequality is tighter.
[3] H. F. Hofmann, Phys. Rev. A 83, 022106 (2011).

Theorem (Uncertainty Relation between Generator and Parameter). Let A, B be self-adjoint, and consider $|\psi(t)\rangle=e^{-i t A / \hbar}|\psi\rangle$.

1. Locally unbiased estimators of t at t_{0} exists if and only if

$$
I\left(t_{0}\right)=\left\|\operatorname{Im} A_{w}(B)\right\|_{t_{0}} \neq 0
$$

2. Provided that $\left\|\operatorname{Im} A_{w}(B)\right\|_{t_{0}} \neq 0$, the inequality

$$
\|A-f(B)\|_{t_{0}} \cdot\left\|t_{0}-g(B)\right\|_{t_{0}} \geq \frac{\hbar}{2} \cdot \frac{\left\|A-\operatorname{Re} A_{w}(B)\right\|_{t_{0}}}{\left\|\operatorname{Im} A_{w}(B)\right\|_{t_{0}}} \geq \frac{\hbar}{2}
$$

holds.
3. The optimal proxy functions are respectively given by

$$
f_{\mathrm{opt}}(B)=\operatorname{Re} A_{w}(B), \quad g_{\mathrm{opt}}(B)=-\frac{2}{\hbar I\left(t_{0}\right)} \operatorname{Im} A_{w}(B)+t_{0}
$$

Equality holds for the optimal choice.
3. Summary and Conclusion

Summary

+ By considering a problem of approximating/estimating an observable or a parameter from the measurement of another observable, we have derived several inequalities.
+ For the convenience of presentation, we first presented a versatile inequality

$$
\|A-f(B)\| \cdot\|g(B)\| \geq \frac{1}{2}|\langle[A, g(B)]\rangle|
$$

and derived three types of inequalities as its special cases.

1. Non-commutativity in Depth

$$
\min _{f}\|A-f(B)\| \geq \max _{\bar{g}} \frac{1}{2}|\langle[A, \bar{g}(B)]\rangle|
$$

Maximal degree of non-commutativity provides the lower bound to the distance of approximation.

2. Robertson-Kennard/Schrödinger Inequalities revisited

In view of approximation/estimation, inequalities tighter than the RK inequality are presented:

$$
\begin{aligned}
\left\|\operatorname{Re} A_{w}(B)-\langle A\rangle\right\| \cdot\|B-\langle B\rangle\| & \geq\left|\frac{1}{2}\langle\{A, B\}\rangle-\langle A\rangle\langle B\rangle\right| \\
\left\|A-\operatorname{Re} A_{w}(B)\right\| \cdot\|B-\langle B\rangle\| & \geq\left\|\operatorname{Im} A_{w}(B)\right\| \cdot\|B-\langle B\rangle\| \\
& \geq\left|\frac{1}{2}\langle[A, B]\rangle\right|
\end{aligned}
$$

Adding both hand sides of the two inequalities

$$
\begin{aligned}
\|A-\langle A\rangle\|^{2} \cdot\|B-\langle B\rangle\|^{2} & \geq\left\|A_{w}(B)-\langle A\rangle\right\|^{2} \cdot\|B-\langle B\rangle\|^{2} \\
& \geq\left|\frac{1}{2}\langle[A, B]\rangle\right|^{2}+\left|\frac{1}{2}\langle\{A, B\}\rangle-\langle A\rangle\langle B\rangle\right|^{2}
\end{aligned}
$$

we obtained a tighter version of the Schrödinger Inequality.

3. Uncertainty Relation between Parameter and Generator (incl. Time-Energy Uncertainty Relation)

We considered the problem of approximating/estimating both the generator and the parameter of a unitary transformation

$$
|\psi(t)\rangle=e^{-i t A / \hbar}|\psi\rangle, \quad t \in \mathbb{R}
$$

from the measurement of B , and found the inequality

$$
\|A-f(B)\|_{t_{0}} \cdot\left\|t_{0}-g(B)\right\|_{t_{0}} \geq \frac{\hbar}{2} \cdot \frac{\left\|A-\operatorname{Re} A_{w}(B)\right\|_{t_{0}}}{\left\|\operatorname{Im} A_{w}(B)\right\|_{t_{0}}} \geq \frac{\hbar}{2}
$$

valid for any locally unbiased estimator g of the parameter t.
[4] J. Lee and I. Tsutsui, Uncertainty Relations for Approximation and Estimation, arXiv:1511.08052 (2015).

Conclusion \& Discussion

+ Position-momentum and time-energy UR are treated in one framework.
- Aharonov's weak value appears as the optimal choices of the proxy functions in all the inequalities presented.
+ One may obtain a better understanding of the whole argument in view of quasi-probabilities.

1. It provides a unified framework for the discussion, makes comparison with the classical theory easier, and better accounts for the significance of non-commutativity.
2. It offers a geometric/statistical understanding to account for the reason why weak values appear.
[5] J. Lee and I. Tsutsui, Quasi-probabilities of Quantum Observables and a Geometric/Statistical Interpretation of the Weak Value, PTEP, (appearing).

Thank you for your attention

