Any time inhomogeneous quantum memoryless process "converges"

NII Keiji Matsumoto

Inhomogeneous memoryless process converges?

$$\rho^0 = \rho$$
, $\rho^1 = \Gamma_1(\rho^0)$, ..., $\rho^t = \Gamma_t(\rho^{t-1})$, ...

 Γ_t : Completely Positive Trace Preserving (CPTP) may depends on t

Typically, does not converge

- 1. May not be dissipative, $\Gamma_t(\rho) = U_t \rho U_t^*$
- 2. Dependency on time *t*: can move away once converged state

Positive and Completely Positive

Positive
$$T(\rho) \ge 0$$
, $\rho \ge 0$
Trace Preserving $tr T(\rho) = tr \rho$

Send density operators
To density operators

Completely positive
$$T \otimes 1(\rho) \ge 0$$
, $T(\rho) = \operatorname{tr}_{H_0} U(\rho \otimes \rho_0) U^*$
Trace Preserving $\operatorname{tr} T(\rho) = \operatorname{tr}_{\rho} U(\rho \otimes \rho_0) U^*$

Memoryless Process and CPTP maps

$$\rho^0 = \rho$$
, $\rho^1 = \Gamma_1(\rho^0)$, ..., $\rho^t = \Gamma_t(\rho^{t-1})$, ...

 Γ_t : Completely Positive Trace Preserving (CPTP) may depend on t

$$\Gamma_{\rm t}$$
 is CPTP \Leftrightarrow $\Gamma_{\rm t}(\rho) = {\rm tr}_{H_0} U(\rho \otimes \sigma_t) U^*$ U : unitary

The process is memoryless, in the sense that σ_t has to be refreshed for each time

Quantum analogue of Markov chain

Inhomogeneous memoryless process converges?

$$\rho^0 = \rho$$
, $\rho^1 = \Gamma_1(\rho^0)$, ..., $\rho^t = \Gamma_t(\rho^{t-1})$, ...

 Γ_t : Completely Positive Trace Preserving (CPTP) may depends on t

Typically, does not converge

- 1. May not be dissipative, $\Gamma_t(\rho) = U_t \rho U_t^*$
- 2. Dependency on time *t*: can move away once converged state

However ···

Any "good" distance btw any two states converges

$$\lim_{t \to \infty} D(\rho_1^t, \rho_2^t) = \lim_{t \to \infty} D_{1,2}^t = D_{1,2}^{\infty}$$

"good"
$$\Leftrightarrow D(\rho_1, \rho_2) \ge D(\Gamma(\rho_1), \Gamma(\rho_2))$$
 , $\forall \Gamma : \mathsf{CPTP}$

e.g.
$$\operatorname{tr} \rho_1(\ln \rho_1 - \ln \rho_2)$$
, $1 - \operatorname{tr} \rho_1^{\alpha} \rho_2^{1-\alpha}$, $\|\rho_1 - \rho_2\|_1$,

$$\rho_{1}^{*}?$$
 $\rho_{1,2}^{\infty}$
 $\rho_{2}^{*}?$
 $\rho_{2,3}^{\infty}$
 $\rho_{3}^{\infty}?$

$$\rho_1^t \rightarrow \rho_1^* \mod \text{unitary ??}$$

Formulation (I)

 $E \coloneqq \{\rho_{\theta}; \theta \in \Theta\}$: set of possible initial states (may be all sates over Hilbert space H)

- 1. Consider convergence of the collection of states rather than convergence of each state
- 2. Want to view $\{\rho_{\theta}; \theta \in \Theta\} \sim \{U\rho_{\theta}U^*; \theta \in \Theta\}$

Formulation (II): equivalence relation

$$E \coloneqq \{\rho_{\theta}; \theta \in \Theta\} \quad F \coloneqq \{\sigma_{\theta}; \theta \in \Theta\}$$

$$E \sim F \Leftrightarrow E \geq F, E \leq F$$

Def (Ver.1)

$$E \ge F \Leftrightarrow D(\rho_{\theta_1}, \rho_{\theta_2}, \cdots, \rho_{\theta_k}) \ge D(\sigma_{\theta_1}, \sigma_{\theta_2}, \cdots, \sigma_{\theta_k})$$

D : Monotone non-increasing by CPTP maps e.g. Holevo's capacity $\inf_{\rho_*} \sup_{\theta} D(\rho_{\theta}, \rho_*)$

[E] embodies all the information quantities defined on E

Formulation (III): equivalence relation

$$E \coloneqq \{\rho_{\theta}; \theta \in \Theta\} \quad F \coloneqq \{\sigma_{\theta}; \theta \in \Theta\}$$

$$E \sim F \Leftrightarrow E \geq F, E \leq F$$

Def (Ver.2)

$$E \ge F \iff \sigma_{\theta} = \Gamma(\rho_{\theta}), \exists \Gamma: CPTP$$

E ~ *F* iff *E* can be mapped to *F* reversibly

e.g.
$$\sigma_{\theta} = U \rho_{\theta} U^*$$

(If E= all the states, reversible \Leftrightarrow unitary)

 $[E] := \{E'; E' \sim E\}$ correction of E' equivalent to E

Formulation (IV)

Th (quantum randomization criterion, [M 2010])

Def ver. 1 \Leftrightarrow Def ver. 2

 $D(\rho_1, \rho_2, ..., \rho_d)$ can be thought as average gain of certain operational task

 $E \ge F$ means E is more informative than F

$$E_1 \ge E_2 \ge \cdots \ge E_t \ge \cdots$$
 monotone decreasing sequence

$$E_t \coloneqq \{\rho_\theta^t; \theta \in \Theta\}$$

Formulation (V)

To define limit, define distance btw [E] and [F]

$$\delta([E], [F]) := \inf_{\Gamma: \text{CPTP } \theta \in \Theta} \|\Gamma(\rho_{\theta}) - \sigma_{\theta}\|_{1}$$

But
$$\delta([E], [F]) \neq \delta([F], [E])$$
,

$$\Delta([E], [F]) := \max\{\delta([E], [F]), \delta([F], [E])\}$$

Δ is distance:

$$\Delta([E], [F]) = 0 \Leftrightarrow [E] = [F]$$

$$\Delta([E], [E']) + \Delta([E'], [E'']) \ge \Delta([E], [E''])$$

Background: comparison of statistical experiments

Blackwell, D. and Girshick, M. A. *Theory of Games and Statistical Decisions* (1954)

Torgersen, E. Comparison of Statistical Experiments, Cambridge University Press(1991)

Shiryaev A N, Spokoiny, V G, STATISTICAL EXPERIMENTS AND DECISIONS: Asymptotic Theory, World Scientific (2000)

Goel P K

"When is one experiment 'always better than' another?" The Statistician 52, Part 4, pp. 515–537 (2003)

Background: comparison of statistical experiments

Statistical experiments $E = \{p_{\theta}\}$

= parametrized family of probability distributions

Statistical Inference (test, estimation, etc)

= data processing to obtain information about ϑ

Compare "information" contained in $E = \{p_{\theta}\}$ and $F = \{q_{\theta}\}$

Applications:

- 1. Experimental design
- 2. Approximation of probability distribution family ex. Approximation of $E^n = \{p_{\theta}^n\}$ by Gaussian shift family

Assertion

Th

If dim
$$H < \infty$$
, $\exists E_{\infty} = \{ \rho_{\theta}^{\infty}; \theta \in \Theta \}$
$$\lim_{t \to \infty} \Delta([E_t], [E_{\infty}]) = 0$$

Th

If dim
$$H < \infty$$
, $\Gamma_t = \Gamma$,
$$\Gamma(E_{\infty}) \sim E_{\infty}$$

$$\Gamma(E_{\infty}) = \{\Gamma(\rho_{\theta}^{\infty}); \theta \in \Theta\}$$
 is a fixed point

Strongly and Weakly Ergodic

Def

The process $\{\Gamma_t\}$ is strongly ergodic iff

$$\forall \rho \ \lim_{t \to \infty} \left\| \Gamma_t \circ \dots \circ \Gamma_2 \circ \Gamma_1(\rho) - \rho_* \right\|_1 = 0$$

weakly ergodic iff

$$\limsup_{t\to\infty} \|\Gamma_t\circ\cdots\circ\Gamma_2\circ\Gamma_1(\rho)-\Gamma_t\circ\cdots\circ\Gamma_2\circ\Gamma_1(\rho')\|_1=0$$

Fact

The process $\{\Gamma_t\}$ is weakly ergodic iff

$$E_{\infty} = \{ \rho_{\theta}^{\infty} = \rho_*; \ \theta \in \Theta \}$$
 (ρ_{θ}^{∞} is independent of θ)

Sketch of the Proof

eigenvalue analysis does NOT work, for Γ₊ depends on t

Suffices to show the assertion for $|\Theta| = (\dim H)^2 (< \infty)$

choose
$$\rho_{\theta_1}$$
, ρ_{θ_2} , \cdots , $\rho_{\theta_{(\dim H)^2}}$ spanning the state space

 $\{[E]; E \text{ is a family over } \Theta\}$ is compact

 $\{[E_t]: t \in \mathbb{N}\}$ has accumulation point $[E_\infty]$

Show
$$\lim_{t\to\infty} \Delta([E_t], [E_\infty]) = 0$$
 using properties of Δ , $E_1 \ge E_2 \ge \cdots \ge E_t \ge \cdots$

Representation of [E]: classical case

Motivation: equivalence class is too abstract

For simplicity, let
$$\Theta = \{0,1\}$$
 $E = \{p_0, p_1\}$ $F = \{q_0, q_1\}$

$$E=\{p_0, p_1\}\ F=\{q_0, q_1\}$$

Relative Information Spectrum

$$\Leftrightarrow$$
 Distribution of $\ln\left(\frac{p_0}{p_1}\right)$ when $x \sim p_0(x)$

- 1. expectation is relative entropy, contains more info.
- 2. Essential in information theory of non-stationary process
- 3. Characteristic function (Hellinger transform)

$$\phi_E(\alpha) = E_{p_0} \left[\exp \left\{ \alpha \ln \left(\frac{p_0}{p_1} \right) \right\} \right] = \int p_0^{1-\alpha}(x) p_1^{\alpha}(x) \ dx$$

Fact

$$E \sim F \iff \phi_E(\alpha) = \phi_F(\alpha), \forall \alpha, 0 \le \alpha \le 1$$

On mathematics ···

- Proof heavily relies on dim H<∞
- In classical case, can remove this condition, though the statement becomes a bit weaker.

(convergence w.r.t. "weak topology")

Uses representation of [E]

In quantum case, can we?

No good representation of [E] so far

Discussion

Assertion

$$\dim H < \infty$$
, $E_t := \{\rho_\theta^t; \theta \in \Theta\}$

Th
$$\exists E_{\infty} \quad \lim_{t \to \infty} \Delta([E_{\infty}], [E_t]) = 0$$

Def The process $\{\Gamma_t\}$ is weakly ergodic iff

$$\limsup_{t\to\infty} \|\Gamma_t \circ \cdots \circ \Gamma_2 \circ \Gamma_1(\rho) - \Gamma_t \circ \cdots \circ \Gamma_2 \circ \Gamma_1(\rho')\| = 0$$

Fact The process $\{\Gamma_t\}$ is weakly ergodic iff

$$E_{\infty} = \{ \rho_{\theta}^{\infty} = \rho_*; \ \theta \in \Theta \}$$

$$(\rho_{\theta}^{\infty} \text{ is independent of } \theta \)$$

But...

Any "good" distance btw any two states converges

$$\lim_{t \to \infty} D\left(\rho_1^{(t)}, \rho_2^{(t)}\right) = \lim_{t \to \infty} D_{1,2}^t = D_{1,2}^{\infty}$$

$$D(\rho_1, \rho_2) \ge D(\Gamma(\rho_1), \Gamma(\rho_2))$$
, $\forall \Gamma : CPTP$

But...

Any "good" distance btw any two states converges

$$\begin{split} \lim_{t\to\infty} &D(\rho_1^t,\rho_2^t) = \lim_{t\to\infty} &D_{1,2}^t = D_{1,2}^\infty \\ &D(\rho_1,\rho_2) \geq &D(\Gamma(\rho_1),\Gamma(\rho_2)) \ , \ \forall \Gamma : \mathsf{CPTP} \end{split}$$

e.g.
$$\operatorname{tr} \rho_1(\ln \rho_1 - \ln \rho_2)$$
, $\|\rho_1 - \rho_2\|_1$, $1 - \|\sqrt{\rho_1} \sqrt{\rho_2}\|_1$

$$\rho_{1}^{*}?$$
 $\rho_{1,2}^{\infty}$
 $\rho_{2}^{*}?$
 $\rho_{2,3}^{\infty}$
 $\rho_{3}^{*}?$
 $\rho_{1}^{(t)} \to \rho_{1}^{*} ??$

But...

Any "good" distance btw any two states converges

$$\lim_{t\to\infty} D(\rho_1^t,\rho_2^t) = \lim_{t\to\infty} D_{1,2}^t = D_{1,2}^\infty$$

$$D(\rho_1,\rho_2) \geq D(\Gamma(\rho_1),\Gamma(\rho_2)) \ , \ \forall \Gamma : \mathsf{CPTP}$$

e.g.
$$\operatorname{tr} \rho_1(\ln \rho_1 - \ln \rho_2)$$
, $\|\rho_1 - \rho_2\|_1$, $1 - \|\sqrt{\rho_1} \sqrt{\rho_2}\|_1$

$$D_{1,3}^{t+1} \approx D_{1,3}^{\infty} \qquad D_{1,3}^{t+1} \approx D_{1,3}^{\infty}$$

$$D_{1,3}^{t+1} \approx D_{1,3}^{\infty} \qquad D_{2,3}^{t+1} \approx D_{2,3}^{\infty}$$

$$D_{1,3}^{t+1} \approx D_{1,3}^{\infty} \qquad D_{2,3}^{t+1} \approx D_{2,3}^{\infty}$$

$$\rho_{1}^{*}?$$
 $D_{1,2}^{\infty}$
 $\rho_{2}^{*}?$
 $D_{1,3}^{\infty}$
 $D_{2,3}^{\infty}$
 $\rho_{3}^{*}?$

 $\rho_1^t \rightarrow \rho_1^* \mod \text{unitary ??}$