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Inhomogeneous memoryless process converges?

,00=p ’ plzrl(pO) R’ ptzrt(pt_l)) e

[, : Completely Positive Trace Preserving (CPTP)

Typically, does not converge

1. May not be dissipative, 't(p)=UpU,
2. Dependency ontimet:
can move away once converged state



Positive and Completely Positive

Positive T(p)=0, p =0 Send density operators

Trace Preserving tr T(p) =trp To density operators

Completely positive T® 1(p)=0, T(p) = try, U(p®p,)U*
Trace Preserving  tr T(p) =trp 0 U: unitary

{ >l =




Memoryless Process and CPTP maps

pP=p, pt=ry(p°), -, pt=Te(p*™1), -

[, : Completely Positive Trace Preserving (CPTP)

[, is CPTP & T (p)=try U(p®oc,)U* U: unitary

The process is memoryless, in the sense that o, has
to be refreshed for each time

Quantum analogue of Markov chain



Inhomogeneous memoryless process converges?

,00=p ’ plzrl(pO) R’ ptzrt(pt_l)) e

[, : Completely Positive Trace Preserving (CPTP)

Typically, does not converge

1. May not be dissipative, 't(p)=UpU,
2. Dependency ontimet:
can move away once converged state



However ---

Any “good” distance btw any two states converges

lim D(pf, p4) = limDf , = D7
“good” < D(py,p2) 2 D(T'(p1),I'(p2)) , VI : CPTP

e.g. trp;(Inp; —1Inpy), 1 —trpfp3=%, lips — p2ll1,

k
p3?

pt = pi mod unitary ??




Formulation (I)

E = {py; 0 € O} : set of possible initial states
(may be all sates over Hilbert space H)

1. Consider convergence of the collection of states

2. Want to view {pe; 0 € G)} ~ {UpHU*; 0 € G)}

Dia ¢
pgl ’ pGZ
DNDS,?,
®



Formulation (II) : equivalence relation

E:= {pe;HEO} F:={0g; 0 € O}

E~F <E=2F,E<F

I E (Ver.l)
E2F & D(P91; ,092; ”.;pek) 2 D(O-Qly GQZJ e ;09k>

D : Monotone non-increasing by CPTP maps

e.g. Holevo’s capacity
inf supD(pg, p.)
P« @

|E] embodies all the information quantities defined on E



Formulation (Ill) : equivalence relation

E:= {pe;HEO} F:={0g; 0 € O}

E~F <E=2F,E<F

(Ver.2)

E>F & oy =T(pg), 3M: CPTP

E~ F iff Ecan be mappedto F reversibly
e.g.og = Up,U”

(If E=all the states, reversible < unitary)

[E ] :={E'; E' ~ E} correction of E’ equivalent to E



Formulation (IV)

Th (quantum randomization criterion, [M 2010])
Defver.1 & Defver. 2

D(p,, p5,---, P4) €an be thought as
average gain of certain operational task

E >F means E is more informative than F

E1 2 Ez 22 Ep 2
monotone decreaSing sequence

E. = {pp; 0 € O}



Formulation (V)

To define limit, define distance btw [E] and [F]

SELID = fot gl ep) ol

But 8([EL [F]) # &6([FL [ED,
ACLEL [F]) = max{6([EL, [FD), 8(LFL, [ED}

A(ELTFD) = 0 & [£] = [F
ACTEL TET) + ACE'L [E7D) = A([EL [E"])



Background: comparison of statistical experiments
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Background: comparison of statistical experiments

Statistical experiments E= {pg}
= parametrized family of probability distributions

Statistical Inference (test, estimation, etc)
= data processing to obtain information about &

Compare “information” contained in E= {pg} and F={q,}

Applications :
1. Experimental design
2. Approximation of probability distribution family
ex. Approximation of E"= {p,"} by Gaussian shift family



If dim H <0, 3E,, = {pg’; 0 € O}
lim A([E¢], [Ew]) =0

If dim H<OO, rt — r,

I-(Eoo) = By

[(Ey) = {I’(pg’); 0 € 6} is a fixed point



Strongly and Weakly Ergodic

m The process {I';} is strongly ergodic iff
Vp lim ||[Fzo-0l, 0T (p) —p, =0

t— o0

weakly ergodic iff

limsup [IT, o -0 Ty 0 [ (9) = [ o0 Ty o 4 (o)l = 0
p.p

N\ N
ﬁ'p* fw
m The process {I'+} is weakly ergodic iff
E.= {pg =p,; 6 €0} (pgisindependentof )



Sketch of the Proof

§ eigenvalue analysis does NOT work, for I, depends on t

Suffices to show the assertion for |@|=(dim H)? (<)

choose Pg, 1Py, """ s P spanning the state space

H(dim H)?

{[E]; E is a family over @} is compact
.« {[E,] ; te N} has accumulation point [E_, ]
Show  limA([E,], [E.o]) = O using
properties of A, Eq1 2 Ep 22 Et 2



Representation of [£] : classical case

Motivation: equivalence class is too abstract

For simplicity, let ©={0,1} E={p,, p1} F=19,, 94}
Relative Information Spectrum
< Distribution of In (%) when x ~ po(x)
1

1. expectation is relative entropy , contains more info.

2. Essential in information theory of non-stationary process
3. Characteristic function (Hellinger transform)

¢e(a) = Ep, IEXP {aln (%) *] = J po*()pf(x) dx

m E~F & ¢p(a)=¢pp(a),Va,0 <a <1



On mathematics ***

* Proof heavily relies on dim H<eo

* In classical case, can remove this conditon , though the
statement becomes a bit weaker.

(convergence w.r.t. “weak topology”)
Uses representation of [E]
* In quantum case, can we ?
No good representation of [E] so far






Discussion



Assertion
dimH < 0, E;:={p;0 € 0}

Th 3E. lim A([EL)[E]) =0

t—o oo

Def  The process {T};} is weakly ergodic iff

limsup [|T; oo Ty 0Ty (p) =T ool 0Ty (p)ll =0
p.p

Fact The process {I};}is weakly ergodic iff

Ew ={pg = p.; 0 € 0}
( pg is independent of 6 )



BUt"'

Any “good” distance btw any two states converges
limD (p£ ),pg )) = limD;, = D%,

t—oo t—oo
D(p1,p2) 2 D(T'(p1),T'(p2)) , VI : CPTP
Pi) Di, pgl) p§2)

00
D2,3




BUt"'

Any “good” distance btw any two states converges

gimD(Pf;Pg) = gime,z = D15
D(p1,p2) 2 D(T'(p1),T'(p2)) , VI : CPTP

e.g. trp,(Inp; —Inp,), [[p1 — p2ll1,1 — ”\/ﬁ \/5”1




BUt"'

Any “good” distance btw any two states converges
gimD(Pf,Pg) = lim Di, = D%

D(p1,p2) =2 D(I'(p1),T'(p2)) , VI : CPTP

e.g. trp;(Inp; —Inpy), llpr — p2ll1, 1 — ”\/E \/5”1

k
p3?

pi = p; mod unitary ??



