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From spin glass to computational problem	

Number placing (sudoku)	Graph coloring	Traveling salesman problem	

Statistical physics of spin glass spreads to various computational problems. 
  -- optimization or constraint satisfaction including NP-hard or NP-complete problems.	

・ Many algorithms from statistical mechanics, such as simulated annealing 
・ Recently taken over by quantum annealing. 



Statistical mechanical study of  
(NP-complete/NP-Hard) CSPs	

• 2-SAT and 3-SAT ( Different behavior for P and NP-complete problems ) 
      R. Monasson et. al., Nature (1999) 
• Graph coloring 
      L. Zdeborova, and F. Krzakala, Phys. Rev. Lett. (2007). 
      F. Krzakala et. al., Proc. Nat. Acad. Sci. (2007). 

• vertex cover 
    Hierarchical clustering of energy landscape  
      A. K. Hartmann, and A. Mann, J.Phys.: Conference Series (2008). 
      A. Mann, and A. K. Hartmann, Phys. Rev. E. (2010). 
    RSB
      M. Weigt, and A. K. Hartmann, Phys. Rev. Lett., (2010) 

• Number partitioning 
      A. K. Hartmann, and A. Mann, J.Phys.: Conference Series (2008). 
      S. Mertens, Phys. Rev. Lett. (1998). 

Still unclear for glass transition (?) 
 • N-queen problem 
      K. Hukushima, Comp. Phys. Commun. (2002). 



Phase transition(s) of NP-complete problems	
On the example of graph coloring 
[ Mézard, Parisi, Zecchina, Science (2002), 
   Mulet, Pagnani, Weigt, Zeccina (2002) ]	
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∑ δ(M /N −α) , ensemble of thermodynamic quantities 

  on random instances.	

Averaging over random graph instances and taking                 limit.   
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, 0/1 for satisfied/violated edges. 
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Random graph instances,  
for example Erdos-Renyi graph.	
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M = 9
α ≈1.286



Phase transition(s) of NP-complete problems	
Graphs from [ Hayes, American Scientist 85, (1997) ], for 3-SAT.	

Fraction of satisfiable instances	 Computational time by DPLL algorithm	

Computational time seems 
to increase exponentially 
NEAR sat-unsat transition threshold 
(with graph coloring,  
                called col-uncol transition).	

  

€ 

E T =0[ ]
α

= 0
  

€ 

E T =0[ ]
α

> 0

Typically satisfiable.	 Typically unsatisfiable.	

Grows linearly 
With system size.	

Grows exponentially 
with system size	



Phase transition(s) of NP-complete problems	

In	1RSB	phase,	overlap	distribu7on	has	mul7modal	character	(even	in	thermodynamic	limit),	
																												and	computa7onal	7me	grows	exponen7ally	with	the	system	size.	

・ Most of solutions are connected each other. 
    (They can come/go with flipping a single spin) 

・ Overlap distribution has unimodal shape. 
・ Energy landscape has basin of solutions.	

Replica symmetric phase (easy sat phase)	

・ Clustered solutions are embedded sparsely. 
・ Overlap distribution has multimodal shape. 
・ Energy landscape is rugged.	

Replica symmetry breaking phase (hard sat phase)	

In fact there is another (or more) phase transition, which is described in terms of spin glass theory.	

1RSB spin glass (hard sat) phase	
RS spin glass (easy sat) phase	
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Hard/Easy transition extends 
 to finite temperature regime	

Graphs from  
[ Zdeborova, Eur. Phys. Lett, (2008) ] 
              for 4-coloring case.	
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• For prime factorization, no polynomial time algorithm have been found,  
   but it is in                          .           
   -- not thought to be NP complete. 

• With the number sieve method, it is solved  
   with quasi-exponential (                   ) time  
   in classical computation. 
   -- sub-exponential algorithms are found. 

• Polynomial time quantum algorithm is found [ Shor 1994 ]. 

  

€ 

exp nα( )

Prime 
factorization	

The prime factorization is (hard but) not NP-complete 
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NP∩ co −NP

Question (Interest)	

・ Does any phase transition or non-trivial behavior of thermodynamic quantity 
   explains the complexity of factorization problems?
       -Can we apply the landscape or phase transition picture 
        to the factorization problems, ‘beyond’ the NP-complete problem ?



Testing the Prime factorization 	

To tackle the relation among phase transition phenomena or landscape 
and the computational hardness,  
exploring beyond NP-complete problems may be worth. 

Testing the Prime factorization is … 
  in the context of classical picture,  
  it can be to test the applicability/extensibility of the replica-theoretic picture. 

  in the context of quantum annealing picture, 
  it may be worth exploring a case of scaling of minimal energy gap 
  with HARD BUT NOT NP-complete case.	
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Formulation of the problem	
・The situation of dividing                                     with a trial divisor     . 
  Such that                           and                         . 

・Binary (spin) variable representation of      ;  

・Cost function       which is extensive with     ,  
  for sound property of thermodynamic function or phase transition ; 
 --                    if and only if      is a correct divisor of     , otherwise                    . 

 -- 	
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H (d ) > 0

  

€ 

H β =

H {si}( )exp −βH {si}( )( )
{si }
∑

exp −βH {si}( )( )
{si }
∑

≈ n

 -- Maximum digit based model 

-- Summation based model 
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Formulation of the problem	

For                                            , this model has ground states	  
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.Totally                ground states,      and       itself are excluded. 
 -- exponential number of system size. 

Here we treat the case with                      .	
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2m − 2

For sufficiently large       , it has exponential numbers of ground states, like spin glass models.	
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m

Quantities of interest	
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ˆ Q ({si}) =
1− 2si −1( ) 2si

* −1( )
2i=0

n−1

∑Hamming distance from correct solution 
(Overlap function with ground state)	

Density of states on hamming distance      and energy     ;	  
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W (E,Q) = δ ˆ Q ({si}) −Q( )
{si }
∑ δ H ({si}) − E( ) = exp S(E,Q)( )
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Behavior of the model :	Isolated solution	

Largely distant  
between low energy excited states and ground state.	
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ΔQ = O(n) (≈ 0.5n)

There is region with no support 
(                     ) 
around ground state.	
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W (E,Q) = 0
Energy barrier with depth 
                                        .   
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ΔE = O(n) (≈ 0.8n)

Support of 	  
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W (E,Q)

・The ground state is isolated  
  in configuration space.	

・Both the distance from  
  other low energy states 
  and the height of energy barrier  
  are proportional to system size.	
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H (d ) = log2 1+mod(N ,d )( )⎡ ⎤ : Maximum digit model	



Behavior of the model :	Isolated solution	

Largely distant  
between low energy excited states and ground state.	
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There is region with no support 
(                     ) 
around ground state.	
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W (E,Q) = 0
Energy barrier with depth 
                                        .   
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ΔE = O(n) (≈ 0.8n)

・The ground state is isolated  
  in configuration space.	

・Both the distance from  
  other low energy states 
  and the height of energy barrier  
  are proportional to system size.	

Up to n=256 (N=2^512), averaged over various composite numbers	  
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H (d ) = log2 1+mod(N ,d )( )⎡ ⎤ : Maximum digit model	



Shape of density of states and phase transition	
Microcanonical entropy	
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(2)
(1)  Slope  :  Broad region with               . 
                                            → Peculiar phase transition	

(2) Kink   :  Value of           is discontinuously different  
                    at E=1.  
                                            → Dip in the specific heat.  
Internal energy depends very weakly on the temperature.	
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H (d ) = log2 1+mod(N ,d )( )⎡ ⎤



Specific heat  
approaches to delta peak.	 Binder ratio of energy converges to                . 

(Indicates the jump of the internal energy.)	
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(1) : Peculiar first order transition(1/3) 	

These features are shared with the first order phase transition. 



(1) : Peculiar first order transition (2/3)	

Dynamics in single instance 
is different for  

that in bistable potential, 
it moves SMOOTHLY.	

Energy distribution function has a FLAT region 
at the transition temperature.	
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d 2S(E)
dE 2 = 0・ It has a region with                  . This feature is in some sense common with  

                                                      the SECOND order phase transition 
                                                      (however, the region is much broader here).	
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d 2S(E)
dE 2 ≈ 0

・ The distance between low and high energy region is BRIDGED, NOT BISTABLE. 
   This is NOT likely to the ordinary phase transition.	



Phase transition behavior	
In the case of an ordinary first order phase transition	

In the case of an ordinary second order phase transition (with critical exponent α > 0)	



Specific heat  
approaches to delta peak.	 Binder ratio of energy converges to                .	
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Likely to 
first order  
Transition.	

(1) : Peculiar first order transition (3/3)	

It has both features of first and second order phase transition. 

Not likely to 
first order 

(rather likely to 
second order)  

Transition. 

Dynamics is different for  
that in bistable potential, 

it moves smoothly.	

Energy distribution function has a flat region 
at the transition temperature.	
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d 2S(E)
dE 2 ≈ 0



(2) ‘Kink’ in energy density of states	
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β

This is NOT a phase transition 
(dip of [c] disppears in  
thermodynamic limit). 

But it is  
CHARACTERIZED 
 by temperature.	

When the governance changes between low but positive energy states and the true ground state,	
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D(q) =
P(Q)
ΔQ  
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P(Q = 0)

Distribution of normalized overlap 
at fixed temperature	

Gradient is discontinuously  
different at                . 
(Not normalized by the system size.) 

The gradient         seems to be constant. 
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E =1
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dS(E)
dE

Internal energy depends very weakly  
on the temperature.	



Commonly exhibited  
in summation-based model	

‘Slope’ and ‘kink’ also appear in the profile 
 of energy density of state of summation-based model.	
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H (d ) = σ j
j=0

n−1

∑ , mod(N ,d ) = σ j2
j

j=0

n−1

∑ : Summation-based model	



Testing the Prime factorization 	

To tackle the relation among phase transition phenomena or landscape 
and the computational hardness,  
exploring beyond NP-complete problems may be worth. 

Testing the Prime factorization is … 
  in the context of classical picture,  
  it can be to test the applicability/extensibility of the replica-theoretic picture. 

  in the context of quantum annealing picture, 
  it may be worth exploring a case of scaling of minimal energy gap 
  with HARD BUT NOT NP-complete case.	



As classical counterpart  
of quantum annealing ?	

The overlap between the ground state and the low energy eigen state,                      matters.	  
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ψGS ψFE

Then,,,  
how is the peculiar phase transition of the factorization model ? 
   -- In the sense that it seems to  occupy the intermediate position. 
Is the transition represents an intermediate position  
                          of the factorization IN COMPLEXITY CLASS ?  	  
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τ ∝ ΔE( )−2

ΔE = E1 − E0 ∝
exp −αn( )

n−γ

⎧ 
⎨ 
⎩ 

Scaling of minimal energy gap in quantum annealing	

Quantum Hopfield model. 
The ground state quantum phase diagram is  
quite similar to that of classical thermal version.	

[ Nishimori and Nonomura, 
     J. Phys. Soc. Jpn (1996)  ]	

Example of coincidence between quantum and classical phase diagram	



Summary	
We analyzed  the statistical mechanical model of integer factorization problem, 
                                                                        focusing on its phase transition phenomena. 
・We find that the ground state is completely isolated from other low energy states with 
             distant or height barrier. 
・The peculiar shapes are found in the density of states,  
  in addition they lead phase transition-like behavior;  
     -- Slope  → Peculiar phase transition which has both feature of first and second order.	
     -- Kink   → Dominant region in phase space drastically changes  
                         at second characteristic temperature. 

・Is the potential energy landscape rather simple comparing to those of NP-complete                
                                                                                                                         problems?  
     -- If it is, that seems to have rich implication to the fact that the integer factorization          
        problem is computationally hard problem but considered to be not enough to  
        comparable to the NP-complete problems. 

・We plan to pursue the behavior of this problem with quantum annealing. 
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To avoid difficulty  
with golf-course landscape, …	
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P(n)(E,Q)∝ exp −γV (n)(E,Q)( )

There is an extensive gap between the ground state and its vicinities. 
The replica exchange Monte Carlo does not work efficiently in such case. 

To avoid the difficulty,  
Multi-histogram reweighting and replica exchange are combined.	
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V (n)(E,Q) = −logW (n−1)(E,Q)   
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V (n+1)(E,Q) = −logW (n)(E,Q)

4. The histogram and potential are improved by iteration.	

1. Once the energy E and the Hamming distance Q is computed. 

2. The transition (of microscopic state) is accepted 
    with the difference of the potential               . 
   ( The canonical distribution with                                     is realized. ) 

3. Density of states               is estimated from                with various    .	
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Behavior of first passage time	
First passage time (for summation based model)	

Replica exchange Monte Carlo 
simulation  
of the summation based model.	

Seems to grow exponentially  
with its system size      .	
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n



Phase transition behavior	
In the case of an ordinary first order phase transition	

In the case of an ordinary second order phase transition (with critical exponent α>0)	


