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Late activity of GRBs

Dall’Osso+ 11

magnetar?



GRBs and HNe
GRB ! SN association

GRB 980425 / SN 1998bw (z=0.0085) 
GRB 030329 / SN 2003dh (0.1687) 
GRB 031203 / SN 2003lw (0.1055) 
XRF 060218 / SN 2006aj (0.0335) 
GRB 100316D/ SN 2010bh (0.0591) 
GRB 130427A / SN 2013cq (0.3399) ... 

Nomoto et al. (2006)

Observations of GRB suggest 
that some GRBs are connected 
with some kind of SNe. 
!
SNe which associate with GRB 
are “Hypernovae” (HNe) with 
explosion energy, Eexp~1052 
ergs. (~1051 erg for canonical SNe) 
!
The central engine of GRBs is 
required to supply such an 
enormous explosion energy of 
GRBs/HNe.



56Ni

Nomoto et al. (2006)



Central engine models

Collapsar scenario; 
- consists of black hole (BH) and massive accretion 
disk as a end product of massive stars’ death  
- relativistic jets are generated in the vicinity of BH (ν-
driven? magnetic fields driven?) 

Magnetar scenario;  
- rapidly rotating neutron star with super strong 
magnetic fields 
- jets are driven by magnetic pressure or magneto-
centrifugal force



Can magneters generate 56Ni?
to construct a self-consistent model for GRB/HN, 56Ni 
should be considered seriously



Picture
expanding shell 

magnetar-driven wind

magnetar

hot bubble



Equations solved
shock evolution 
w/ thin shell approximation
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According to Shapiro & Teukolsky (1983), the lumi-
nosity of dipole radiation is given as

Lw =
B2

pR
6Ω4 sin2 α

6c3
, (1)

where Bp is the dipole magnetic filed strength, R is the
NS radius, Ω is the angular velocity, and α is the angle
between magnetic and angular moments. Hereafter we
assume sinα = 1 for simplicity. Then, the luminosity is
expressed as

Lw =6.18× 1051erg s−1

×
(

Bp

1016 G

)2 ( R

10 km

)6 ( Ω

104 rad s−1

)4

. (2)

The time evolution of the angular velocity is given as

Ω(t)=Ωi

(
1 +

t

Td

)−1/2

, (3)

where Ωi is the initial angular velocity and Td is spin
down timescale given by

Td=
3Ic3

B2
pR

6Ω2
i

=8.08 s

(
Bp

1016 G

)−2 ( R

10 km

)−6

×
(

Ωi

104 rad s−1

)−2 ( I

1045 g cm2

)
, (4)

where I is the moment of inertia of a NS. Therefore,
Lw(t) ∝ (1 + t/Td)−2. The available energy is the rota-
tion energy of a NS,

ENS =
1

2
IΩ2

i = 5×1052 erg

(
I

1045 g cm2

)(
Ωi

104 rad s−1

)2

,

(5)
which corresponds to the total radiation energy Ew =∫∞
0 Lw(t)dt = Lw(0)Td.
Next, we calculate the time evolution of the shock.

For simplicity, we employ thin shell approximation for
the ejecta (e.g., Laumbach & Probstein 1969; Koo & Mc-
Kee 1990; Whitworth & Francis 2002). In this picture,
we consider an isotropic wind, which forms a hot
bubble. This bubble sweeps up the surrounding
matter into a thin dense shell. This approxima-
tion is applicable when the the thickness between
forward and reverse shocks is small compared to
their radii, but will breaks down as the forward
shock is accelerating. The comparisons of our so-
lutions with hydrodynamic simulations are shown
in Appendix.
The equation of motion of the shell is given as

d

dt

(
MsṘs

)
= 4πR2

sp− Fg, (6)

where Rs is the shock radius, Ms is mass of the shell,
and p is the pressure below the shell, which drives the
shell. Fg is the gravitational force, which consists
of contributions from a point source (GMcMs/R2

s;
G is the gravitational constant and Mc is the mass
below the shell) and the self gravity (GM2

s /2R
2
s).

Ṙs denotes the derivative of Rs with respect to time.
The left hand side (LHS) represents the increase rate of
the outward momentum, while the first term of the right
hand side (RHS) is the driving force of the shell due to
the pressure p.
The energy conservation of the bubble is given as

d

dt

(
4π

3
R3

s
p

γ − 1

)
= Lw − p

d

dt

(
4π

3
R3

s

)
, (7)

where γ is the adiabatic index and Lw is the wind driven
by the magnetar, which is assumed to be the dipole ra-
diation given by Eq. (2). The term on the LHS is the
increase rate of the internal energy of the bubble, while
terms on the RHS are the energy injection rate by the
wind and the power done by the bubble pushing on the
shell. Note that it is assumed that the other mech-
anisms, such as neutrino heating, give no energy
to the shock.
Nuclear statistical equilibrium holds and 56Ni is syn-

thesized in a mass shell with the maximum temperature
of > 5× 109 K. Thus, the temperature evolution is cru-
cial for the amount of 56Ni. In the following, we consider
the postshock temperature, which is evaluated with the
following equation of state,

p = pi + pe + pr, (8)

where pi = nikBT , pe = (7/12)aradT 4[T 2
9 /(T

2
9 + 5.3)],

and pr = aradT 4/3 are contributions from ions, non-
degenerate electron and positron pairs (Freiburghaus
et al. 1999; Tominaga 2009), and radiation, respectively.
Here, ni = ρ/mp is the ion number density with mp be-
ing the proton mass and ρ being the density in the shell,5

T is the temperature in the shell, T9 = (T/109 K), kB is
Boltzmann’s constant, and arad = 7.56×10−15 erg cm−3

K−4 is the radiation constant. Combined with Eq. (6),
we obtain T in the shell and its evolution being consistent
with the shock dynamics.
By substituting Eq. (6) into (7) and deleting p, we get

(3γ − 4)GMs(2Mc +Ms)Ṙs + 24πγρ0R
4
sṘ

3
s

+8πR5
sṘs(ρ

′
0Ṙ

2
s + 3ρ0R̈s)

−2R2
s

[
3(γ − 1)Lw − (3γ − 2)MsṘsR̈s

]

+2R3
s

[
4πG(Mc +Ms)ρ0Ṙs +Ms

...
Rs

]
= 0, (9)

where ρ0(r) is the density of the progenitor star (i.e.
pre-shocked material) and ρ′0 = dρ0/dr. In this calcu-
lation, we used Ṁs = dMs/dt = (dRs/dt)(dMs/dRs) =
4πR2

sρ0(Rs)Ṙs. For the density structure, ρ0, we em-
ploy s40.0 model of Woosley et al. (2002), which is a
Wolf-Rayet star with a mass of 8.7M⊙ and a radius of
0.33R⊙. In addition, we use γ = 4/3. Eq. (9) can be

5 Note that ρ should be different from ρ0 because matter is
compressed by the shock wave. Due to our simple thin shell ap-
proximation we need an additional assumption to evaluate ρ. We
hereby simply assume that ρ = ρ0, which would lead to higher
temperatures. Although the pressure inside the shell might also be
different from the one behind the shell, we neglect the difference
for simplicity (see discussion in the Appendix).
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0 Lw(t)dt = Lw(0)Td.

Next, we calculate the time evolution of the shock. For simplicity, we employ thin

shell approximation for the ejecta (e.g., Laumbach & Probstein 1969; Koo & McKee 1990;

Whitworth & Francis 2002). In this picture, we consider an isotropic wind, which

forms a hot bubble. This bubble sweeps up the surrounding matter into a thin

dense shell. This approximation is applicable when the the thickness between

forward and reverse shocks is small compared to their radii, but will breaks

down as the forward shock is accelerating. The comparisons of our solutions

with hydrodynamic simulations are shown in Appendix.
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By substituting Eq. (6) into (7) and deleting p, we get

(3γ − 4)GMs(2Mc +Ms)Ṙs + 24πγρ0R
4
sṘ

3
s

+8πR5
sṘs(ρ

′
0Ṙ

2
s + 3ρ0R̈s)

−2R2
s

[
3(γ − 1)Lw − (3γ − 2)MsṘsR̈s

]

+2R3
s

[
4πG(Mc +Ms)ρ0Ṙs +Ms

...
Rs

]
= 0, (9)

where ρ0(r) is the density of the progenitor star (i.e. pre-shocked material) and ρ′0 = dρ0/dr.

In this calculation, we used Ṁs = dMs/dt = (dRs/dt)(dMs/dRs) = 4πR2
sρ0(Rs)Ṙs. For the

density structure, ρ0, we employ s40.0 model of Woosley et al. (2002), which is a Wolf-Rayet

star with a mass of 8.7M⊙ and a radius of 0.33R⊙. In addition, we use γ = 4/3. Eq. (9)

can be written to as a set of first order differential equations,

R0(t) = Rs(t), (10)

Ṙ0(t) = R1(t), (11)

Ṙ1(t) = R2(t), (12)

Ṙ2(t) = f(R0, R1, R2), (13)

where

f(R0, R1, R2) =

− GR1

2MsR3
0

[(3γ − 4)(2Mc +Ms)Ms + 8πR3
0ρ0(Mc +Ms)]

− 12πγ

Ms
ρ0R0R

3
1 −

4π

Ms
R2

0R1(ρ
′
0R

2
1 + 3ρ0R2)

+
1

MsR0
[3(γ − 1)Lw − (3γ − 2)MsR1R2]. (14)

This system of differential equations is integrated using the fourth order Runge-Kutta time

stepping method. Tests of this code are given in Appendix. These equations allow us to

investigate the shock propagation in the realistic stellar model, which depends on the density

structure and the evolution of the energy injection.

3. Results

Figure 1 presents the time evolutions of shock radius and shock velocity for a constant

luminosity of Lw = 1052 erg s−1. Three boundary conditions are needed to solve Eq. (9)

because it is a third order differential equation. We set Rs, Ṙs, and R̈s at t = 0. Figure 1

Suwa & Tominaga, MNRAS, 451, 4801 (2015)



Verification of model

Suwa & Tominaga, MNRAS, 451, 4801 (2015)



Shock evolution
Lw=1052 erg s-1

Suwa & Tominaga, MNRAS, 451, 4801 (2015)

40M⊙ progenitor model by Woosley+ (2002)



Temperature evolution

Necessary for Ni synthesis56Ni

Suwa & Tominaga, MNRAS, 451, 4801 (2015)



M56Ni

Suwa & Tominaga, MNRAS, 451, 4801 (2015)



Magnetars for 56Ni

necessary condition for M56Ni>0.2M⊙ 

!

!

extremely strong magnetic fields and (almost) 
breakup rotation are required to explain HNe 

doesn’t match model parameters fitting GRB 
afterglows and SLSNe (B~1014G & Ω~O(103) rad s-1) 

we might need other mechanism (not dipole rad.) or 
other engine (BH wind?) to synthesize  enough 56Ni

P=0.628 ms

�
Bp

1016G

�1/2 �
�i

104 rad s�1

�
� 0.68



Summary

Q 
Can magnetar’s dipole radiation produce enough 
amount of 56Ni explaining hypernovae? 

A 
Seems difficult. We may need other mechanism to 
consistently explain hypernovae and GRBs with 
magnetar scenario


