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Life cycle of stars
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Types of SNe
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Supernovae are made by neutron star formation
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Baade & Zwicky (1934)
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Evidence: Crab nebula

SN observed in 1054 
Pulsar inside SNR
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Evidence: SN1987A
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9. 2 超新星からの重力波 57
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図 9.2 カミオカンデ、IMB、Baksan で検出された超新星 1987A からのニュートリ
ノ。エネルギーはニュートリノそのものではなく二次的に生成された陽電子の
ものであることに注意。それぞれの検出器で最初に検出されたイベントを時刻
原点とし、それ以降のイベントの相対検出時間を横軸にとっている。

る。この本の執筆段階でいまだ重力波の直接検出は実現されていないが、2015

年より動き出した米国のAdbanced LIGO計画によって近い将来重力波が検出
されると期待されている。

9. 2. 1 四 重 極 公 式
ここでは、四重極公式に基づいて重力波強度を評価しよう。この公式を導く
には、低速および弱い重力場であるという近似が用いられている。それではま
ずこの四重極公式を導こう。厳密な公式を導くには一般相対性理論の摂動論を
行なう必要があるが、本節ではそこまで踏み込まず、ニュートン力学の枠組み
と次元解析から公式を導出する。
[Flanagan-Hughes2005 Section 4.3]

まず、質量分布のモーメントを定義する。0次のモーメントは質量そのもの
である。

M0 ≡
∫

ρdx3 = M (9.8)

より正確には、これは全質量エネルギーである。次に双極子モーメントを定義

Time after first event (s)

En
er

gy
 (M

eV
)

Neutrinos from SN 1987A (Feb. 23 1987)

Eνe̅~5x1052 erg (e.g. Sato & Suzuki 1987) 

Etot~6xEνe̅~3x1053 erg
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Galactic supernova rate

Estimate from historical events  
RSN=3.2+7.3-2.6 century-1 (Adams et al. 2013) 

Estimate from pulsar birth rate 
Rpulsar~2.8 century-1 (Faucher-Giguère & Kaspi 2006) 

No galactic SN from 1992, based on neutrino observation 
(Ikeda et al. 2007, Agafonova et al. 2015)
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would be very helpful to refine distance measurements, not
just for star-formation/supernova-rate estimates, but also to
determine the absolute neutrino luminosities once a super-
nova has been detected.

Overall, there is a good case that the core-collapse rate
within!6ð10Þ Mpc is at least 1 (2) per year. We expect that
ongoing studies of star-formation and supernova rates in
nearby galaxies can reduce the uncertainty. However, even
for a known average rate, there will remain relatively large
Poisson uncertainties on the actual rate during short peri-
ods even in the whole collection of nearby galaxies, which
limits the level of refinement in the predictions. This rate
can be compared to the estimated Milky Way rate of 2$ 1
per century (see Ref. [75] and references therein), with
Poisson probabilities ultimately determining the odds of
occurrence, as shown in Fig. 3.

IV. NEUTRINO BURST DETECTION

A goal of measuring supernova neutrino ‘‘mini-bursts’’
from galaxies at a few Mpc necessitates a large detector,
roughly!100 times the size of SK. We focus on the Deep-
TITAND proposal for a 5 Mton (fiducial volume) enclosed
water-Čerenkov detector [10,11]. The detector would be
constructed in modules sized by Čerenkov light transpar-
ency and engineering requirements. We assume a photo-
multiplier coverage of 20%, similar to that of SK-II (half
that of the original SK-I and the rebuilt SK-III). As in SK,
the detection efficiency at the energies considered here
would be nearly unity.

The backgrounds present in deep detectors have been
well-characterized by SK and other experiments. Deep-
TITAND is proposed to be at a relatively shallow depth of
1000 meters of seawater, which would increase the down-
going cosmic ray muon rate per unit area by a factor ’ 100
compared to SK, which is at a depth of 2700 meters water
equivalent. A nearly perfect efficiency for identifying
cosmic ray muons in the outer veto or the detector itself
is required. This was achieved in SK, where the only
untagged muons decaying in the detector were those

produced inside by atmospheric neutrinos [22]. Simple
cylinder cuts around cosmic ray muon tracks would veto
all subsequent muon decays while introducing only a
negligible detector deadtime fraction.
Low-energy backgrounds include natural radioactivities,

solar neutrinos, photomultiplier noise, and beta decays
from nuclei produced following spallation by cosmic ray
muons. Of these, only the last is depth-dependent, and this
would be much larger than in SK (a factor ’ 30 for the
higher muon rate per area but lower muon average energy,
and a factor ’ 30 for the larger detector area). The high
muon rate means that it would not be possible to use the
same cylinder cuts employed in SK to reduce spallation
beta decays without saturating the deadtime fraction (note
that these beta decays have lifetimes more than 106 times
longer than the muon lifetime). At low energies, the above
background rates are large, but the spectrum falls steeply
with increasing energy, essentially truncating near 18 MeV
[22,76].
This allows for a significant simplification and reduction

in the background rate by considering only events with a
reconstructed energy greater than 18 MeV (a neutrino
energy of 19.3 MeV). Which events to reconstruct would
be determined by a simple cut on the number of hit photo-
multipliers, just as in SK, but with a higher threshold. The
backgrounds above this cut are due to atmospheric neutri-
nos, and thus the rates scale with the detector volume but
are independent of depth. The dominant background con-
tribution is from the decays of nonrelativistic muons
produced by atmospheric neutrinos in the detector, i.e.,
the so-called invisible muons. The background rate in
18–60 MeV in SK is about 0:2 events=day, of which the
energy-resolution smeared tail of the low-energy back-
ground is only a minor component [22,76].
Scaling this rate to a 5 Mton detector mass

(!5% 10&4 s&1) and considering an analysis window of
10 sec duration (comparable to the SN 1987A neutrino
signal) allows calculation of the rate of accidental coinci-
dences [76]. For N ¼ 3 events, this corresponds to about
only once every five years, and when it does, examination
of the energy and timing of the events will allow further
discrimination between signal and background (a subse-
quent optical supernova would confirm a signal, of course).
For N ( 4, accidental coincidences are exceedingly rare
(!1 per 3000 years), therefore we require at least N ¼ 3
signal events to claim detection of a supernova (a some-
what greater requirement than in Ref. [9], where a smaller
detector was assumed). Since the backgrounds observed by
SK in this energy range are from atmospheric neutrinos, we
expect no correlated clusters of background events.
To estimate detection prospects, for the !!e flavor we

assume a Fermi-Dirac spectrum with an average energy
of 15 MeV and a total energy of 5% 1052 erg. These are
reasonable values for the effective received spectrum of !!e

after neutrino mixing in the supernova. In many theoretical
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FIG. 3 (color online). Probabilities for one or more supernovae
in the Milky Way over time spans relevant for the lifetimes of
large neutrino detectors, depending on the assumed supernova
rate.

KISTLER et al. PHYSICAL REVIEW D 83, 123008 (2011)

123008-6

Kistler et al. (2011)
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Progenitors of SNe: pre-SN images
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14 Smartt

Figure 6. The progenitor detections are marked with error bars (data from Table 1 and the limits
are marked with arrows (data from Table 2). The lines are cumulative IMFs with different minimum
and maximum masses.

star-forming regions. Williams et al. (2014) also suggest that
their results are compatible with progenitors all coming from
masses M < 20 M⊙ although the uncertainties do not rule
out the possibility of no upper-mass cut-off.

3.3. Possible explanations

The reasons for these missing high-mass progenitors are dis-
cussed as follows

3.3.1. Dust formation and circumstellar extinction
As discussed in Section 2.1.3, the extinction toward the pro-
genitors is often estimated from the extinction toward the SN
itself, or the nearby stellar population. The former estimates

may not be directly applicable since the circumstellar dust
around the progenitor stars can be destroyed in explosions—
as in the case of SN2012aw and SN2008S.

Walmswell & Eldridge (2012) calculated the dust that
could be produced in red supergiant winds and the extra ex-
tinction that this would produce. The idea is well motivated
and valid, but Kochanek et al. (2012) showed that treating
CSM extinction with a slab of ISM material is not physically
consistent. As shown in Kochanek et al. (2012), the pro-
genitor of SN2012aw was thought to be quite a high-mass
star but correct treatment of radiative transfer in a spheri-
cal dust shell reduces the progenitor luminosity limit while
comfortably fitting the optical, NIR, and MIR detections and
limits. The major concern for this sample is that the objects

PASA, 32, e016 (2015)
doi:10.1017/pasa.2015.17

�## "��2�7 �!5��� ����� /"/ ���
 ��
,�C�9�/232�4!�:��## "��CCC 1/:0!7253 �!5�1�!3 ��D�#��.�7%3!"7#D��������,31������/#����
	���"$0�31#�#��#�3��/:0!7253���!3�#3!:"��4�$"3��/%/79/093�/#��## "��CCC 1/:0!7253 �!5�1�!3�#3!:" 

Smartt (2015)

prediction from IMF

Progenitors of Core-Collapse Supernovae 13

Figure 5. The maximum likelihood of the minimum and maximum initial
masses of the type II progenitor distribution, assuming the stars follow a
Salpeter IMF. Originally calculated in Smartt et al. (2009), and reproduced
here with the updated and extended masses in this review. The dashed lines
show the confidence contours (68, 90, and 95%) for the detections only
and the solid lines show the confidence contours for the detections and
upper limits combined. The star symbol marks the best fit, as described in
Section 3.2, of mmin = 9.5+0.5

−2 and mmax = 16.5+2.5
−2.5. This is for the masses

from the STARS and Geneva rotating models, the values for the KEPLER
masses are given in the text.

follow a Salpeter function. For the masses estimated with the
STARS (and rotating Geneva) models, the values determined
(using the same idl routine as employed in Smartt et al. 2009)
are a minimum mass for the distribution of mmin = 9.5+0.5

−2

and a maximum mass of mmax = 16.5+2.5
−2.5 where the errors

are the 95% confidence limits (see Figure 5). If we employ
the KEPLER models, then the values are mmin = 10+0.5

−1.5 and
a maximum mass of mmax = 18.5+3

−4 (again with 95% confi-
dence limits). These results are illustrated further in Figure 6
where the masses are plotted with a Salpeter IMF (cumula-
tive frequency function). The plots show that the mass dis-
tributions are comfortably reproduced with a standard IMF
between the lower and upper mass limits from the maximum
likelihood calculations, but they need to be truncated at the
higher mass. If one allows the mass function to vary up to
say 30 M⊙, then the mass distribution cannot be reproduced.
This is the same basic result as shown in Figure 3—the pop-
ulation of progenitors is missing the high-mass end of the
distribution, but this time the IMF is quantitatively consid-
ered. The maximum likelihood calculation is visualised in
this cumulative frequency plot—given an IMF slope, the line
fit should go through the error bars of the detections and not
conflict with any of the upper limits.

The lower mass limit to produce a core-collapse SN was
estimated in Smartt et al. (2009) to be mmin = 8.5+1.0

−1.5 from
the same method and the sample to that point. Smartt (2009)
reviewed the limits from the maximum masses of white dwarf
progenitors, suggesting a convergence at mmin = 8 ± 1. The
two values estimated here slightly higher: the value from
the STARS models is mmin = 9.5+0.5

−2 (integer mass models
evolved through C-burning down to that mass have been
calculated) which is not significantly different to that esti-
mated previously given the errors. The value from the KE-
PLER models is higher again, at mmin = 10+0.5

−1.5. However,
low-mass models (7–10 M⊙) are not available from KE-
PLER and the values in this luminosity range were estimated
assuming the same differential in luminosity between KE-
PLER and STARS models exists between 7 and 10 M⊙ as
at 11 M⊙ (Figure 4). This is uncertain and the lower mass
from KEPLER should not be treated as a quantitative esti-
mate: mmin is critically dependent on the mass estimates for
the three lowest luminosity progenitors and if these are ad-
justed down by ∼1 M⊙then the value of mmin = 9.5 would
be reproduced. Some further quantitative modelling of stars
in this interesting mass range is required to reproduce the
stellar luminosities and produce either a Fe-core collapse
or O–Mg–Ne core that collapses through electron capture.
Despite this uncertainty at the lower end, the existence of
a high-mass upper limit for type II SNe appears be secure.
The value is model dependent of course, but the basic re-
sult is that type II progenitors are statistically lacking above
a log L/L⊙≃ 5.1 dex. The final model luminosities at this
value are stars with mmax = 16.5 (19 M⊙ at 95% confidence)
for the STARS and Geneva models and mmax = 18.5 (21.5
M⊙ at 95% confidence) for the KEPLER models.

While Smartt et al. (2009) first discussed this as the ‘red
supergiant problem’, the lack of detected high-mass progen-
itors is now a broader issue for all SN types. This broader
issue of a lack of high-mass progenitors generally was dis-
cussed in Kochanek et al. (2008), who took all historical
and literature limits to that date. The fact that there are now
three type IIb SNe in our sample with progenitor detections
(Table 3) and these also have luminosities less than ∼5.1 dex
illustrates that the missing high-mass star problem is relevant
for all type II SNe (type II-P, II-L, IIb). We address the issue
of type IIn progenitors below.

Alternative methods of probing the mass function of SN
progenitor stars have been recently advanced by Williams
et al. (2014) and Jennings et al. (2014). These use similar
methods of quantifying the stellar population around histor-
ical SNe in galaxies closer than 8 Mpc and around SN rem-
nants in M31 and M33. They use high-quality HST imaging
and careful stellar photometric measurements to determine
the luminosity and masses of stars within the immediate
vicinity of SNe (typically within 50 pc). Jennings et al. (2014)
find that there is a lack of high-mass stars close to the SN rem-
nants in M31 and M33, suggesting either the highest mass
stars do not produce SNe, or that SNR surveys are biased
against finding objects in the very youngest (<10 Myr old)

PASA, 32, e016 (2015)
doi:10.1017/pasa.2015.17
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Related interesting topics w/ pre-SN images
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© NASA/ESA 
Adams et al. (2017)

Quiescent SNe progenitors 3

-10

0

10

R

-10

0

10

�
�
L

⌫
[
1
0

3
L

�
]

V

-10

0

10

B

4500 4750 5000 5250 5500 5750 6000 6250

JD-2450000

-10

0

10

U

5 4 3 2 1 0

Years until SN 2013am

Figure 2. The UBVR light curves of the progenitor of SN 2013am. The circles (crosses) represent the high (low) quality data points.

The filled white circles indicate the epochs displayed in Figure 1. The red region is the RMS spread about the mean of the comparison
light curve sample for each epoch. The dashed lines mark the average hRMS

i

i of the comparison sample pixels about zero. The grey

ranges denote the time span in which a 12-15 M� star with Solar metallicity would begin core Oxygen, end core Oxygen, and begin core
Silicon burning, respectively (the last two timespans overlap, Sukhbold & Woosley 2014). Be aware that the �⌫L

⌫

scales of Figures 2-5

di↵er.

thus had to relax our limits. In particular, we needed to
increase the seeing limits for images used in the reference
frame of the galaxy hosting SN 2013am to 1.0047, 1.0036, 1.0037,
and 1.0030. The limits on the background sky fluxes were the
same for all four progenitors. The reference frames are shown
as the first column in Figure 1. We calibrate our images using
SDSS photometry (Ahn et al. 2012), converted from ugriz
to UBVR following Jordi et al. (2006). For all four SNe, we
are able to accurately determine the position of the progen-
itor using post-explosion images that include the fading SN.
Frames containing the SNe are shown in the fourth column
of Figure 1.

Following Johnson et al. (2017), we place a grid of 12
trial points around each SN. The light curves of these com-
parison samples are used to examine the systematic errors
in our variability estimates of the progenitors. The outer
points of the grid are placed 15 pixels apart, which is ⇠ 3.005
at the LBC’s plate scale of 0.002255 pixel�1. The inner points
have a spacing of 7 pixels. Figure 1 includes the locations of
these grid points as blue circles. We extract light curves cen-
tered on the progenitors and the grids at each epoch using
the standard PSF-weighted estimates measured by ISIS. We
use a PSF created from the reference frame using DAOPHOT
when the ISIS generated PSF was corrupted by saturated
stars.

We present data for all epochs with a seeing FWHM
< 2.000, but we flag lower quality epochs defined by a see-
ing FWHM > 1.005 or an ISIS flux scaling factor < 0.8. A

low flux scaling factor indicates that the image was obtained
at a higher than average airmass or through cirrus clouds.
The second and third columns of Figure 1 show the epochs
of higher quality data where the progenitor had the largest
luminosity excess and deficit in �L

R

compared to the refer-
ence image. We list the number of higher quality points in
each band as N

g

in Table 1.

3 INDIVIDUAL PROGENITORS

In this section, we summarize the known properties of the
progenitor to each SN and how we characterize their vari-
ability. We use the same distances to the host galaxies as
Gerke et al. (2015), the Galactic extinction from Schlafly &
Finkbeiner (2011), and include any estimates of the local ex-
tinction. We assume a foreground reddening law of R

V

= 3.1
for all cases.

To examine the variability, we utilize both the high
and low quality data. First, we characterize the “stochas-
tic” variability of these SN progenitors using the root-
mean-square (RMS

p

) and peak-to-peak (PtoP
p

) luminosity
changes (�⌫L

⌫

) for each band. The RMS
p

calculations in-
clude all data, while the PtoP

p

luminosity change estimates
only include higher quality data. The PtoP

p

value will not
be a good measure of the variability for progenitors with few
higher quality points (e.g., U -band for SN 2013ej). We calcu-
late the same quantities for the comparison sample (RMS

i

,

c� 0000 RAS, MNRAS 000, 000–000
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Figure 3. The UBVR light curves of the progenitor of SN 2013ej. The format is the same as Figure 2. Be aware that the �⌫L
⌫

scales

of Figures 2-5 di↵er.

PtoP
i

) and report their means (hRMS
i

i, hPtoP
i

i) and dis-
persions in Table 1.

Both the RMS
p

and the PtoP
p

values are a combination
of intrinsic variability and noise. We can estimate the intrin-
sic RMS variability of the progenitor by subtracting either
the ISIS noise estimate h�2i1/2 or the average hRMS

i

i of the
comparison sample in quadrature, where the former is more
conservative while the latter is likely more realistic. These
noise corrected estimates of the intrinsic variability are al-
ways non-zero if h�2i1/2 is used as the noise estimate, while
using hRMS

i

i as the noise estimate can drive the estimate
of the intrinsic variability to be zero. The PtoP

p

statistic
also has some expected level of noise. We used Monte Carlo
calculations to determine the mean contribution of Gaus-
sian noise fluctuations to the PtoP statistics as a function
of the number of data points used in the estimate. For ex-
ample, with 4, 8, or 16 points, the mean PtoP values found
for a Gaussian of width � are 2.1�, 2.8�, and 3.5�, respec-
tively. We correct the PtoP

p

value by again subtracting this
expected noise in quadrature.

While Table 1 reports variability statistics for all four
bands, we will primarily discuss the V and R-band results.
RSGs have little blue flux and the bluer bands, especially
U -band, have more systematic problems. We will use the
RMS

p

corrected by h�2i1/2 for our standard estimates (‘Var’
in Table 1) and average the V and R-band values for our
formal limits, Var. We also report the PtoP

p

corrected by
h�2i1/2 scaled for the number of epochs used in its calcula-
tion as PtoP

C

in Table 1. This correction drives some values
of PtoP

C

to zero.
We investigate any long-term trends in the luminos-

ity of the progenitors by fitting the changes in the band-

luminosities with a simple line, L(t) = A
p

t + B
p

. We also
perform the same fit to the comparison sample. For the pro-
genitors, we report the errors in A

p

and for the comparison
sample we report the average absolute value h|A

i

|i and the
standard deviations of the |A

i

| values about h|A
i

|i. We re-
port the weighted average of the V and R-band A

p

values
as the trend in luminosity, A, although any trends in the
progenitors’ luminosities are consistent with the compari-
son sample and (typically) zero.

Our di↵erenced light curves are shown in Figures 2-5.
We show the changes of �⌫L⌫ in the band luminosity ⌫L⌫
relative to the di↵erence image given the assumed distance
and contribution of both Galactic and local extinction. In
each figure, the luminosity scales are the same for all filters,
but the scales di↵er from figure to figure. The black cir-
cles indicate the data that meet our ‘higher quality’ criteria
and the crosses indicate those that do not. The filled white
circles indicate the epochs shown in Figure 1. The horizon-
tal red shaded region is the RMS of the comparison sample
about their mean for that particular epoch (this is di↵erent
from hRMS

i

i). The value of hRMS
i

i is shown as horizontal
dashed lines at its value and its negative about �⌫L

⌫

= 0.
The vertical gray bars denote the range in time before explo-
sion in which a Solar metallicity progenitor between 12-15
M� begins core Oxygen burning, ends core Oxygen burning,
and begins core Silicon burning, respectively (Sukhbold &
Woosley 2014).

c� 0000 RAS, MNRAS 000, 000–000

Johnson et al. (2017)
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Theory
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Standard scenario of core-collapse supernovae
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Current paradigm: neutrino-heating mechanism

A CCSN emits O(1058) of neutrinos with O(10) MeV. 
Neutrinos transfer energy 

Most of them are just escaping from the system (cooling) 

Part of them are absorbed in outer layer (heating) 

Heating overwhelms cooling in heating (gain) region

14

neutron staremission

absorption

heating region
shock
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What do simulations solve?

15

input: ρ(r), T(r), Zi(r), vr(r)
stellar evolution

Gravity
general relativity
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Nuclear equation of state
strong interaction

Numerical table based on nuclear physics 
e.g.) 103 g cm-3 < ρ < 1015 g cm-3 

0.1 MeV < T < 100 MeV 
0.03 < Ye <0.56

Neutrino transfer
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parameter free simulation!
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Problem 1: Insufficient explosion energy

1 foe=1051 erg is 
necessary 
~1050erg in simulations 

Can we extrapolate the 
growth of expl. ene. up to 
1051 erg?
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Figure 10. Time evolution of diagnostic energy (lower limits indicated by
dotted lines, upper limits by solid lines, see text), neutron star radius and
mass, and the radius of the spectrally averaged ⌫e sphere at an optical depth
of h⌧⌫e i = 2/3 (from top to bottom). Neutron star radius and mass are defined
by the density surface at 1011 gcm-3. All quantities are angle-averaged and
the curves are smoothed by running averages of 5 ms.

to follow the energy budget of unbound matter and the con-
tinuous recombination processes behind the expanding shock
front, the simulations would have to be carried on further for
several hundred milliseconds (cf. Scheck et al. 2006, 2008).
This is presently beyond reach due to extremely small trans-
port time steps. Because of ongoing accretion and mass ejec-
tion we expect that the explosion energies can rise consider-
ably even after the onset of the explosion (cf. Marek & Janka
2009; Müller et al. 2012b; Müller 2015).

The time evolution of the baryonic neutron star masses and
radii defined by the density surface at 1011 gcm-3 as well as
the radius of the spectrally averaged electron neutrino sphere
at an (effective) optical depth of h⌧⌫ei = 2/3 is shown in the
three lower panels of Fig. 10. For computing the optical depth

for neutrino equilibration we used the effective opacity

eff =
p
totabs, (20)

where abs is the opacity for neutrino absorption processes
and tot = abs + scatt is the total opacity for absorption and
scattering. The preliminary value of the baryonic neutron star
mass is determined by the amount of matter that can be ac-
creted from the collapsing star and settles to densities above
1011 gcm-3 until the end of our simulations. After the strong
decrease of the mass-accretion rate caused by the arrival of
the Si/Si-O interface in the two more massive models, the in-
crease of the neutron star masses begins to flatten. The higher
growth rate of the neutron star mass in model s15-2007 com-
pared to model s12-2007 directly reflects the differences of
the mass-accretion rates in these two simulations that persist
until the explosions set in at late times (compare Fig. 2).

3.2. Model Set II
In the following, the main results of our simulations (Set II)

concerning 14 pre-supernova models of Woosley et al. (2002)
are presented in the light of the preceding discussion of Set I.
An overview of the characteristic properties of these models
is given in Figs. 11 and 12.

The differences in the position and density gradient of the
Si/Si-O interface (see Fig. 1) are directly mirrored by the tem-
poral evolution of the mean shock radii of the models with
lower and higher ZAMS masses (see Fig. 11, first row). The
most outstanding examples are models s19.6, s20.2, and s26.6
with a very pronounced jump of the density at the interface.
After the arrival of this jump at the shock surface, the shock
almost continuously expands outwards. The time evolution of
these models is comparable to that of models s20-2007 and
s25-2007 extensively discussed in Sect. 3.1. For model s21.6,
the delay between the arrival of the interface and the begin-
ning of the shock expansion is largest, because for this model
the step-like decrease of the mass-accretion rate is less ex-
treme than in the other representatives of the subset of more
massive models (see Fig. 11, second row). The less mas-
sive stars that do not show a sharp discontinuity at the Si/Si-
O interface (especially the 12.4 M�, 13.2 M�, 14.4 M�, and
18.4 M� cases) explode only at relatively late times when the
mass-accretion rates have decreased sufficiently, similar to the
models s12-2007 and s15-2007 of Model Set I.

Model s11.2 which has already been intensively studied in
previous works (Buras et al. 2006a; Marek & Janka 2009;
Müller et al. 2012b; Suwa et al. 2013) can be considered as
special case. In this model, the Si/Si-O composition shell
interface arrives already at ⇠ 80ms after bounce and at this
time, the mass-accretion rate decreases to a much lower value
(⇠ 0.2M� s-1) than in the other less massive models. This is
why the shock front can expand to large radii at early times. In
spite of a transient overshoot of ⌧adv/⌧heat = 1 at ⇠ 100ms post
bounce, however, the 11.2 M� model explodes only when
this critical value of the time-scale ratio is exceeded for a
long-lasting period later than ⇠ 300ms after bounce (see also
Marek & Janka 2009).

In general, the trends already discussed in the previous sec-
tion for the four explosion models of Woosley & Heger (2007)
also hold for the 14 models of Woosley et al. (2002). The ma-
jor prerequisites for a relatively immediate onset of the explo-
sion can be summarized as follows. High mass-accretion rates
and proto-neutron star masses at the time before the Si/Si-O
interface reaches the shock surface cause high neutrino lu-
minosities and mean energies. This leads to strong neutrino
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Figure 10. Time evolution of diagnostic energy (lower limits indicated by
dotted lines, upper limits by solid lines, see text), neutron star radius and
mass, and the radius of the spectrally averaged ⌫e sphere at an optical depth
of h⌧⌫e i = 2/3 (from top to bottom). Neutron star radius and mass are defined
by the density surface at 1011 gcm-3. All quantities are angle-averaged and
the curves are smoothed by running averages of 5 ms.

to follow the energy budget of unbound matter and the con-
tinuous recombination processes behind the expanding shock
front, the simulations would have to be carried on further for
several hundred milliseconds (cf. Scheck et al. 2006, 2008).
This is presently beyond reach due to extremely small trans-
port time steps. Because of ongoing accretion and mass ejec-
tion we expect that the explosion energies can rise consider-
ably even after the onset of the explosion (cf. Marek & Janka
2009; Müller et al. 2012b; Müller 2015).

The time evolution of the baryonic neutron star masses and
radii defined by the density surface at 1011 gcm-3 as well as
the radius of the spectrally averaged electron neutrino sphere
at an (effective) optical depth of h⌧⌫ei = 2/3 is shown in the
three lower panels of Fig. 10. For computing the optical depth

for neutrino equilibration we used the effective opacity

eff =
p
totabs, (20)

where abs is the opacity for neutrino absorption processes
and tot = abs + scatt is the total opacity for absorption and
scattering. The preliminary value of the baryonic neutron star
mass is determined by the amount of matter that can be ac-
creted from the collapsing star and settles to densities above
1011 gcm-3 until the end of our simulations. After the strong
decrease of the mass-accretion rate caused by the arrival of
the Si/Si-O interface in the two more massive models, the in-
crease of the neutron star masses begins to flatten. The higher
growth rate of the neutron star mass in model s15-2007 com-
pared to model s12-2007 directly reflects the differences of
the mass-accretion rates in these two simulations that persist
until the explosions set in at late times (compare Fig. 2).

3.2. Model Set II
In the following, the main results of our simulations (Set II)

concerning 14 pre-supernova models of Woosley et al. (2002)
are presented in the light of the preceding discussion of Set I.
An overview of the characteristic properties of these models
is given in Figs. 11 and 12.

The differences in the position and density gradient of the
Si/Si-O interface (see Fig. 1) are directly mirrored by the tem-
poral evolution of the mean shock radii of the models with
lower and higher ZAMS masses (see Fig. 11, first row). The
most outstanding examples are models s19.6, s20.2, and s26.6
with a very pronounced jump of the density at the interface.
After the arrival of this jump at the shock surface, the shock
almost continuously expands outwards. The time evolution of
these models is comparable to that of models s20-2007 and
s25-2007 extensively discussed in Sect. 3.1. For model s21.6,
the delay between the arrival of the interface and the begin-
ning of the shock expansion is largest, because for this model
the step-like decrease of the mass-accretion rate is less ex-
treme than in the other representatives of the subset of more
massive models (see Fig. 11, second row). The less mas-
sive stars that do not show a sharp discontinuity at the Si/Si-
O interface (especially the 12.4 M�, 13.2 M�, 14.4 M�, and
18.4 M� cases) explode only at relatively late times when the
mass-accretion rates have decreased sufficiently, similar to the
models s12-2007 and s15-2007 of Model Set I.

Model s11.2 which has already been intensively studied in
previous works (Buras et al. 2006a; Marek & Janka 2009;
Müller et al. 2012b; Suwa et al. 2013) can be considered as
special case. In this model, the Si/Si-O composition shell
interface arrives already at ⇠ 80ms after bounce and at this
time, the mass-accretion rate decreases to a much lower value
(⇠ 0.2M� s-1) than in the other less massive models. This is
why the shock front can expand to large radii at early times. In
spite of a transient overshoot of ⌧adv/⌧heat = 1 at ⇠ 100ms post
bounce, however, the 11.2 M� model explodes only when
this critical value of the time-scale ratio is exceeded for a
long-lasting period later than ⇠ 300ms after bounce (see also
Marek & Janka 2009).

In general, the trends already discussed in the previous sec-
tion for the four explosion models of Woosley & Heger (2007)
also hold for the 14 models of Woosley et al. (2002). The ma-
jor prerequisites for a relatively immediate onset of the explo-
sion can be summarized as follows. High mass-accretion rates
and proto-neutron star masses at the time before the Si/Si-O
interface reaches the shock surface cause high neutrino lu-
minosities and mean energies. This leads to strong neutrino
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ZAMS. In addition to model s15 just studied, we use four more
models from Nomoto & Hashimoto (1988) (NH88), Woosley
& Weaver (1995) (WW95), Woosley et al. (2002) (WHW02),
and Limongi & Chieffi (2006) (LC06). The first three of them
were also employed in Suwa et al. (2011), in which neutrino
oscillation effects on a supernova explosion were investigated.
The precollapse density structures are given in Figure 12 (see
also Figure8 of Suwa et al. 2011 for comparison of the density
structures at 100 ms after the bounce; in this paper it was
argued that the structures are similar among the different
models for M<0.8Me whereas they are different for
M>0.8Me). It can be observed that even though the initial
mass at ZAMS is the same, the density structures prior to
collapse become different, depending on both the physics and
the numerics implemented in stellar evolutionary calculations.
It should be noted in particular that the difference between
WW95 and WH07 is substantial for M1.1Me before
collapse (compare red and orange lines in Figure 12).

Figure 13 presents these models in the nM L˙ – plane
evaluated for 1D simulations (cf. Figure 6). NH88, WW95,
and LC06 have clear turning points, and the former two are

located more to the left than the last and are more likely to
achieve shock revival. This is a consequence of the density
jumps more remarkable for these models as observed in
Figure 12. It is noted that all 1D simulations failed to produce
an explosion.
The shock evolutions for 2D simulations are given in

Figure 14. The two progenitors, NH88 and WW95, indeed
succeeded in producing shock revival, whereas the others
failed. This is a clear demonstration that not the ZAMS mass
but the density structure of the progenitor matters for the
dynamics of shock revival. Again, the successful models have
turning points that are located more to the left than the
unsuccessful models, as seen in Figure 13. This is the same
conclusion as in the previous subsection.

3. TURNING POINT

In this section, we propose a novel idea to diagnose a
possibility of shock revival using the trajectory in the nM L˙ – or

nMM L2˙ – plane (see Figure 15). This plane is often used to
discuss the critical curve, which divides this plane into two
regions: the region below this line, in which there are steady
accretion flows, and the other region above the curve, in which
there is no such flow (Burrows & Goshy 1993). The latter is
therefore interpreted as the regionwhere shock revival occurs.
The question arises, where on the actual trajectory is the critical
line crossed from below?
In Figure 15, we present the typical situation we found in the

majority of our models in the previous sections as a schematic
picture of the trajectory and the critical curve in the nM L˙ –
plane. The red solid line represents the critical curve, and the
black dotted line gives a typical trajectory. As mentioned
already in the preceding sections, there is a point on the
trajectoryat which the slope of the trajectory steepens suddenly
as a consequence of the rapid change in the mass accretion rate
there. This point is referred to as the turning point in this paper.
It is worth noting that the trajectory is shallower than the
critical curve before the turning is reached and the order is
changed thereafter. Consequently, it is obvious that the
trajectory can cross the critical curve if and only if the turning
point is located above the critical curve. It should also be clear

Figure 10. (a) Initial profiles of density and composition for model s80. The abundances of 28Si (red line) and 16O (green line)and the density (blue line) are given as
a function of the mass coordinate. There are two jumps in density, representing the transition of layers. (b) Trajectories of the mass shells with the mass coordinates of
1–1.85 Me with an interval of 0.01 Me are plotted as gray curves for the same model. Thin black lines represent 1.66, 1.7, and 1.75 Me from left to right, respectively.
A thick black curve indicates the average shock position. When the mass shell of 1.66 Me runs across the shock, several oscillations ensue in the shock radius. The
shock is eventually expanded at ∼400 ms after the bounce.

Figure 11. Time evolutions of the diagnostic energy for 2D models. It is
defined by the integral of the sum of the specific internal, kinetic, and
gravitational energies, over the zones, in which it is positive. The horizontal
axis is the postbounce time.
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blackbodies, of course. Using the theoretical spectra of
Eastman et al. (1996), I find that the bolometric corrections
derived from Planck functions are !0.2 mag too large for
Teff " 6500 K, about right (#0.1 mag) in the range
5000 $ Teff $ 6500 K, and systematically low for
Teff $ 5000 K. It would be convenient if the LN65 formulae
were rederived with improved corrections.

5. PROPERTIES OF CORE-COLLAPSE SUPERNOVAE

Core-collapse SNe can also be hosted by massive stars
that have lost most or all of their hydrogen-rich envelopes
(SNe Ib), and even most or all of their helium envelopes
(SNe Ic). Therefore, it proves interesting to compare the
physical properties of such objects with those derived from
SNe IIP. A bibliographic search reveals that there are only a
handful of well-studied SNe Ib/c. Table 4 lists such objects

and the corresponding references from which their physical
parameters were obtained.

In general, SNe Ib/c have bell-shaped light curves with a
rise time of !15–20 days, a fast-decline phase of !30 days,
and a slower decline phase at a rate between 0.01 and 0.03
mag day%1. Unlike SNe IIP, the light curves of SNe Ib/c are
promptly powered by 56Ni ! 56Co ! 56Fe. While the peak
is determined by the amount of nickel synthesized in the
explosion, the width depends on the ability of the photons
to diffuse out from the SN interior, which is determined by
the envelope mass and expansion velocity. Therefore, the
early-time light curve provides useful constraints on the
56Ni mass, envelope mass, and kinetic energy (Arnett 1996).
Additional constraints on the kinetic energy come from the
Doppler broadening of the spectral lines. The late-time
decline rate reveals that a fraction of the gamma rays from
the radioactive decay escape from the SN ejecta without
being thermalized and can therefore be used to quantify the
degree of 56Ni mixing in the SN interior. Nomoto et al.
(2000) have modeled SNe Ib as helium stars that lose their
hydrogen envelopes by mass transfer to a binary compan-
ion, and SNe Ic as C/O bare cores that lose their He enve-
lope in a second stage of mass transfer. In both cases they
assume spherically symmetric explosions. Table 4 sum-
marizes the parameters derived from such models for the
seven SNe Ib/c.

Figure 7 shows envelope masses and nickel masses as a
function of explosion energy for the seven SNe Ib/c along
with the 16 SNe II shown in Figure 6. The top panel reveals
that SNe Ib/c appear to follow the same pattern shown by
SNe II, namely, that SNe with greater envelope masses pro-
duce more energetic explosions. The main difference
between both subtypes, of course, is the vertical offset
caused by the strong mass loss suffered by SNe Ib/c prior to
explosion. From the bottom panel it is possible to appreci-
ate that SN 1998bw was quite remarkable in explosion
energy (60 foe) and nickel mass (0.5M&) compared to all of
the other core-collapse SNe. Owing to its extreme energy,
this object has been called a hypernova. SN 1998bw is also
remarkable because it was discovered at nearly the same
place and time as GRB 980425 (Galama et al. 1998). The
Type Ic supernovae SN 1997ef and SN 2002ap are located
far below SN 1998bw in the energy scale (8 and 7 foe,
respectively), yet far above the normal SN 1994I. Despite
their greater than normal energies, neither of these objects
produced unusually higher nickel masses compared to lower
energy SNe Ib/c. Although the statistics are poor, it proves
interesting that both SNe Ib/c and SNe II share the same
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Fig. 6.—Envelope mass and nickel mass of SNe II, as a function of
explosion energy. Filled circles represent the 13 SNe IIP for which I was
able to apply the technique of LN85. The three crosses correspond to SN
1987A, SN 1997D, and SN 1999br, which have been modeled in detail by
Arnett (1996) and Zampieri et al. (2002). The nickel yield for SN 1999br
comes from this paper (Table 2).

TABLE 4

Physical Parameters for Type Ib/c Supernovae

SN Type
Energy

('1051 ergs)
EjectedMass

(M&)
NickelMass

(M&) References

1983I................. Ic 1.0 2.1 0.15 1
1983N ............... Ib 1.0 2.7 0.15 1
1984L................ Ib 1.0 4.4 0.15 1
1994I................. Ic 1.0 0.9 0.07 2
1997ef ............... Ic 8.0 7.6 0.15 2
1998bw ............. Ic 60.0 10.0 0.50 2
2002ap .............. Ic 7.0 3.75 0.07 3

References.—(1) Shigeyama et al. 1990; (2) Nomoto et al. 2000; (3)Mazzali et al. 2002.
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Problem 2: Insufficient 56Ni mass

M(56Ni) is primary observable of SN  
M(56Ni)~0.1M⊙ (typically 0.07M⊙) 

 T>5x109 K is necessary for 56Ni production 
E=(4π/3)r3 aT4  ➡ T(rsh)=1.33x1010(E/1051erg)1/4(rsh/1000km)-3/4 K 
With E=1051erg, rsh<3700km for T>5x109K (Woosley et al. 2002) 

56Ni amount is more difficult to explain than explosion 
energy
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Teff $ 5000 K. It would be convenient if the LN65 formulae
were rederived with improved corrections.
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Core-collapse SNe can also be hosted by massive stars
that have lost most or all of their hydrogen-rich envelopes
(SNe Ib), and even most or all of their helium envelopes
(SNe Ic). Therefore, it proves interesting to compare the
physical properties of such objects with those derived from
SNe IIP. A bibliographic search reveals that there are only a
handful of well-studied SNe Ib/c. Table 4 lists such objects

and the corresponding references from which their physical
parameters were obtained.

In general, SNe Ib/c have bell-shaped light curves with a
rise time of !15–20 days, a fast-decline phase of !30 days,
and a slower decline phase at a rate between 0.01 and 0.03
mag day%1. Unlike SNe IIP, the light curves of SNe Ib/c are
promptly powered by 56Ni ! 56Co ! 56Fe. While the peak
is determined by the amount of nickel synthesized in the
explosion, the width depends on the ability of the photons
to diffuse out from the SN interior, which is determined by
the envelope mass and expansion velocity. Therefore, the
early-time light curve provides useful constraints on the
56Ni mass, envelope mass, and kinetic energy (Arnett 1996).
Additional constraints on the kinetic energy come from the
Doppler broadening of the spectral lines. The late-time
decline rate reveals that a fraction of the gamma rays from
the radioactive decay escape from the SN ejecta without
being thermalized and can therefore be used to quantify the
degree of 56Ni mixing in the SN interior. Nomoto et al.
(2000) have modeled SNe Ib as helium stars that lose their
hydrogen envelopes by mass transfer to a binary compan-
ion, and SNe Ic as C/O bare cores that lose their He enve-
lope in a second stage of mass transfer. In both cases they
assume spherically symmetric explosions. Table 4 sum-
marizes the parameters derived from such models for the
seven SNe Ib/c.

Figure 7 shows envelope masses and nickel masses as a
function of explosion energy for the seven SNe Ib/c along
with the 16 SNe II shown in Figure 6. The top panel reveals
that SNe Ib/c appear to follow the same pattern shown by
SNe II, namely, that SNe with greater envelope masses pro-
duce more energetic explosions. The main difference
between both subtypes, of course, is the vertical offset
caused by the strong mass loss suffered by SNe Ib/c prior to
explosion. From the bottom panel it is possible to appreci-
ate that SN 1998bw was quite remarkable in explosion
energy (60 foe) and nickel mass (0.5M&) compared to all of
the other core-collapse SNe. Owing to its extreme energy,
this object has been called a hypernova. SN 1998bw is also
remarkable because it was discovered at nearly the same
place and time as GRB 980425 (Galama et al. 1998). The
Type Ic supernovae SN 1997ef and SN 2002ap are located
far below SN 1998bw in the energy scale (8 and 7 foe,
respectively), yet far above the normal SN 1994I. Despite
their greater than normal energies, neither of these objects
produced unusually higher nickel masses compared to lower
energy SNe Ib/c. Although the statistics are poor, it proves
interesting that both SNe Ib/c and SNe II share the same
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Fig. 6.—Envelope mass and nickel mass of SNe II, as a function of
explosion energy. Filled circles represent the 13 SNe IIP for which I was
able to apply the technique of LN85. The three crosses correspond to SN
1987A, SN 1997D, and SN 1999br, which have been modeled in detail by
Arnett (1996) and Zampieri et al. (2002). The nickel yield for SN 1999br
comes from this paper (Table 2).

TABLE 4

Physical Parameters for Type Ib/c Supernovae

SN Type
Energy

('1051 ergs)
EjectedMass

(M&)
NickelMass

(M&) References

1983I................. Ic 1.0 2.1 0.15 1
1983N ............... Ib 1.0 2.7 0.15 1
1984L................ Ib 1.0 4.4 0.15 1
1994I................. Ic 1.0 0.9 0.07 2
1997ef ............... Ic 8.0 7.6 0.15 2
1998bw ............. Ic 60.0 10.0 0.50 2
2002ap .............. Ic 7.0 3.75 0.07 3

References.—(1) Shigeyama et al. 1990; (2) Nomoto et al. 2000; (3)Mazzali et al. 2002.
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Personal prospects

Long-term simulations 
Binary interaction 
Progenitor structure 
Supernova forecast
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Long-term simulations are necessary
Detailed multi-D simulations are only available < ~1 s
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9. 2 超新星からの重力波 57
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図 9.2 カミオカンデ、IMB、Baksan で検出された超新星 1987A からのニュートリ
ノ。エネルギーはニュートリノそのものではなく二次的に生成された陽電子の
ものであることに注意。それぞれの検出器で最初に検出されたイベントを時刻
原点とし、それ以降のイベントの相対検出時間を横軸にとっている。

る。この本の執筆段階でいまだ重力波の直接検出は実現されていないが、2015

年より動き出した米国のAdbanced LIGO計画によって近い将来重力波が検出
されると期待されている。

9. 2. 1 四 重 極 公 式
ここでは、四重極公式に基づいて重力波強度を評価しよう。この公式を導く
には、低速および弱い重力場であるという近似が用いられている。それではま
ずこの四重極公式を導こう。厳密な公式を導くには一般相対性理論の摂動論を
行なう必要があるが、本節ではそこまで踏み込まず、ニュートン力学の枠組み
と次元解析から公式を導出する。
[Flanagan-Hughes2005 Section 4.3]

まず、質量分布のモーメントを定義する。0次のモーメントは質量そのもの
である。

M0 ≡
∫

ρdx3 = M (9.8)

より正確には、これは全質量エネルギーである。次に双極子モーメントを定義

Time after first event (s)

En
er

gy
 (M

eV
)

Neutrinos from SN 1987A (Feb. 23 1987)
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Fig. 1. Trajectories of selected mass coordinates from 1.01 M⊙ to
1.33 M⊙ by a step of 0.02 M⊙. The thick solid line indicates the position
of 1.3 M⊙, which indicates the mass of the PNS, and the thick dotted
line represents the shock radius at the northern pole. The left panel is
the result of 2D simulation and the right panel is that of continuous
1D simulation, with the connection done at ∼ 690 ms after the bounce.
The shrinkage of the PNS can be seen. There are several discontinu-
ities, for example ∼ 1.2 s post-bounce, which are due to the rezoning to
make the resolution finer and remove the outermost region where the
density becomes too small to use the tabular equation of state. These
discontinuities do not cause any serious problems in this simulation.

explosion occurs (see Suwa et al. 2013 for more details).
After that, all hydrodynamic quantities are averaged over
the angle1 and the spherically symmetric simulation is fol-
lowed up to ∼ 70 s when the crust formation condition is
satisfied. Note that the whole simulation is performed using
the “same” code so that there is no discontinuity between
these 2D and 1D simulations. If we use different codes to
connect the different times and physical scales, some breaks
of physical quantities could occur (e.g., total mass, total
momentum, or total energy). Therefore, a consistent simu-
lation with the same code has the advantage of removing
these breaks.

In figure 1, the time evolution of selected mass coordi-
nates is presented. The mass within ∼ 1.3 M⊙ contracts to
a PNS and the outer part expands as ejecta of the super-
nova. The shock (thick dotted line) propagates rapidly to
outside the iron core driven by neutrino heating aided
by the convective fluid motion. The estimated diagnostic
energy (Suwa et al. 2010, so-called the explosion energy)
determined by summing up the gravitationally unbound
fluid elements in this model is ∼ 1050 erg, so that a real-
istic explosion simulation is still not achieved. This is,
however, one of the successful explosion simulations. The
term “successful” means that the simulation successfully
reproduces the structure containing a remaining PNS and
escaping ejecta. Previous exploding models obtained by

1 This treatment does not produce any strange phenomena for the PNS because the
PNS is almost spherically symmetric for the case without rotation.

Marek and Janka (2009) and Suwa et al. (2010) certainly
acquired the expanding shock wave up to outside the iron
core, but most of the post-shock materials were in-falling
so that the mass accretion onto the PNS did not settle and
the mass of the PNS continued to increase. Thus these sim-
ulations were not fully successful explosions. On the other
hand, Suwa et al. (2013) and this work successfully repro-
duce the envelope ejection so that we can determine the
“mass cut,” which gives the final mass of the compact object
(i.e., NS or black hole). This is because the progenitor used
in this study has a steep density gradient between iron core
and silicon layer so that the ram pressure of in-falling mate-
rial rapidly decreases when the shock passes the iron core
surface. This is a similar situation to the explosion simula-
tion of the O-Ne-Mg core of an 8.8 M⊙ progenitor reported
by Kitaura, Janka, and Hillebrandt (2006), in which the
neutrino-driven explosion was obtained in a “1D” simula-
tion owing to the very steep density gradient of this specific
progenitor. Note that the progenitor in this study does not
explode with spherical symmetry even though it has a steep
density gradient. However, with the help of convection, this
progenitor explodes in 2D simulation and the shock earns
enough energy to blow away the outer layers.

In figure 2, we show the hydrodynamic quantities (ρ,
T, entropy s, and electron fraction Ye) at several selected
times, i.e., 10 ms, 1 s, 10 s, 30 s, and 67 s after the bounce.
One can find by the density plot that the PNS shrinks due
to neutrino cooling. Note that for the post-bounce time
tpb ! 10 s the central temperature increases because of the
equidistribution of the thermal energy that can be found
in the entropy plot, in which one finds that entropy at the
center increases due to entropy flow from the outer part. For
tpb " 10 s, the PNS evolves almost isentropically and both
the entropy and the temperature decrease due to neutrino
cooling. This can be called the PNS cooling phase. One can
find from the Ye plot that neutrinos take out the lepton
number as well.

Figure 3 represents the time evolution in the ρ–T plane.
The line colors and types are the same as figure 2. In this
plane, we show three black solid lines that indicate the cri-
teria for crust formation. The critical temperature for lat-
tice structure formation is given by Shapiro and Teukolsky
(1983) as

Tc ≈ Z2e2

"kB

(
4π

3
ρYexa

Zmu

)1/3
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≈ 6.4 × 109 K
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175

)−1 (
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Fig. 2. Time evolution of the density (left top), the temperature (left bottom), the entropy (right top), and the electron fraction (right bottom). The
density and the temperature are given as functions of the radius and the entropy and the electron fraction are functions of the mass coordinate. The
corresponding times measured from the bounce are 10 ms (red solid line), 1 s (green dashed line), 10 s (blue dotted line), 30 s (brown dot-dashed
line), and 67 s (grey dot-dot-dashed line), respectively. (Color online)

Fig. 3. The time evolution in the ρ–T plane. The color and type of lines
are as in figure 2. Three thin solid black lines indicate the critical lines
for crust formation. See text for details. (Color online)

where Z is the typical proton number of the compo-
nent of the lattice, e is the elementary charge, " is
a dimensionless factor describing the ratio between the
thermal and Coulomb energies of the lattice at the melting
point, kB is the Boltzmann constant, xa is the mass fraction
of heavy nuclei, and mu is the atomic mass unit, respectively.
The critical lines are drawn using parameters of " = 175
(see, e.g., Chamel & Haensel 2008), Ye = 0.1, and xa = 0.3.
As for the proton number, we employ Z = 26, 50, and 70
from bottom to top. Although the output for the typical
proton number by the equation of state is between ∼ 30 and
35, there is an objection that the average proton number
varies if we use the NSE composition. Furusawa et al.
(2011) represented the mass fraction distribution in the
neutron number and proton number plane and implied that
even larger (higher proton number) nuclei can be formed

in the thermodynamic quantities considered here. There-
fore, we here parametrize the proton number and show the
different critical lines depending on the typical species of
nuclei. In addition, there are several improved studies con-
cerning " that suggest the larger value (e.g., Horowitz et al.
2007), which leads to a lower critical temperature corre-
sponding to later crust formation, although the value is still
under debate.

The critical lines imply that the lattice structure is formed
at the point with the density of ∼ 1013−14 g cm−3 and at the
post-bounce time of ∼ 70 s. Of course these values (espe-
cially the formation time) strongly depend on the parame-
ters employed, but the general trend would not change very
much even if we included more sophisticated parameters.

4 Summary and discussion
In this letter, we performed a very long-term simulation of
the supernova explosion for an 11.2 M⊙ star. This is the
first simulation of an iron core starting from core collapse
and finishing in the PNS cooling phase. We focused on the
PNS cooling phase by continuing the neutrino-radiation-
hydrodynamic simulation up to ∼ 70 s from the onset of
core collapse. By comparing the thermal energy and the
Coulomb energy of the lattice, we finally found that the
temperature decreases to ∼ 3 × 1010 K with the density
ρ ∼ 1014 g cm−3, which almost satisfies the critical condi-
tion for the formation of the lattice structure. Even though
there are still several uncertainties for this criterion, this
study could give us useful information about the crust for-
mation of a NS. We found that the crust formation would
start from the point with ρ ≈ 1013−14 g cm−3 and that it pre-
cedes from inside to outside, because the Coulomb energy
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three-quarters of our binaries have measured or-
bital properties, which allowed us to directly mod-
el the orbital parameter distributions. (iii) The
orbital properties cover the full range of periods
and mass ratios relevant for binary interaction.
Thus, we are better equipped to draw direct con-
clusions about the relative importance of various
binary interaction scenarios.

We find an intrinsic binary fraction of fbin =
0.69 T 0.09, a strong preference for close pairs
(p = –0.55 T 0.2), and a uniform distribution of
the mass ratio (k = –0.1 T 0.6) for binaries with
periods up to about 9 years. Comparison of the
intrinsic, simulated, and observed cumulative dis-
tributions of the orbital parameters shows that
observational biases are mostly restricted to the
longest periods and the most extreme mass ra-
tios (Fig. 1).

Compared with previous works, we find no
preference for equal-mass binaries (22).We obtain
a steeper period distribution and a larger fraction
of short period systems than previously thought
(9–14, 23), resulting in a much larger fraction of
systems that are affected by binary evolution.

Because star-cluster dynamics and stellar evo-
lution could have affected the multiplicity prop-
erties of only very few of the young O stars in
our sample (see supplementary text A.2), our
derived distributions are a good representation
of the binary properties at birth. Thus, it is safe
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Fig. 1. Cumulative number distributions of logarithmic orbital periods (left) and mass ratios (right) for
our sample of 71 O-type objects, of which 40 are identified binaries. The horizontal solid lines and the
associated dark green areas indicate the most probable intrinsic number of binaries (49 in total) and its
1s uncertainty, corresponding to an intrinsic binary fraction fbin = 0.69 T 0.09. The horizontal dashed
lines indicate the most probable simulated number of detected binaries (40 T 4), which agrees very well
with the actual observed number of binaries (40 in total). Crosses denote the observed cumulative
distributions for systems with known periods (34 in total) and mass ratios (31 in total). The lower
dashed lines indicate the best simulated observational distributions and their 1s uncertainties, corre-
sponding to intrinsic distributions with power-law exponents p = –0.55 T 0.22 and k = –0.10 T 0.58,
respectively. The lower solid lines and associated dark blue areas indicate the most probable intrinsic
number distributions and their errors. The latter were obtained from a combination of the uncertainties
on the intrinsic binary fraction and on the power-law exponents of the respective probability density
functions. d, days.

Fig. 2. Schematic representa-
tion of the relative importance
of different binary interaction
processes given our best-fit bi-
nary fraction and intrinsic distri-
bution functions. All percentages
are expressed in terms of the frac-
tion of all stars born as O-type
stars, including the single O stars
and the O stars in binaries, either
as the initially more massive
component (the primary) or as
the less massive one (the second-
ary). The solid curve gives the
best-fit intrinsic distribution of
orbital periods (corresponding to
p = –0.55), which we adopted
as the initial distribution. For the
purpose of comparison, we nor-
malized the ordinate value to
unity at the minimum period
that we considered. The dotted
curve separates the contributions
from O-type primary and second-
ary stars. The colored areas indi-
cate the fractions of systems that
are expected to merge (red), ex-
perience stripping (yellow), or
accretion/common envelope evo-
lution (orange). Assumptions and
uncertainties are discussed in
the text and in supplementary
text C. The pie chart compares
the fraction of stars born as O stars that are effectively single [i.e., single (white) or in wide binaries with little or no interaction effects (light green)—29%
combined] with those that experience significant binary interaction (71% combined).
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1.4. Résumé of DNS Formation

Previous theoretical works on the physics of DNS formation
includes (here disregarding general population synthesis studies)
Bisnovatyi-Kogan & Komberg (1974), Wheeler et al. (1974),
Flannery & van den Heuvel (1975), Srinivasan & van den Heuvel
(1982), van den Heuvel (1994), Ivanova et al. (2003), Dewi &
Pols (2003), Podsiadlowski et al. (2004), van den Heuvel (2004),
and Dewi et al. (2005). From these papers, a standard scenario12

has emerged (e.g., Bhattacharya & van den Heuvel 1991; Tauris
& van den Heuvel 2006), which we now summarize in more
detail.

In Figure 1, we show an illustration of the formation of a DNS
system. The initial system contains a pair of OB-stars that are
massive enough13 to terminate their lives in a core-collapse SN
(CCSN). To enable the formation of a tight DNS system in the end,
the two stars must initially be in a binary system close enough to
ensure interactions via either stable or unstable mass transfer. If the
binary system remains bound after the first SN explosion (which is
of Type Ib/c; Yoon et al. 2010), the system eventually becomes
observable as a HMXB. Before this stage, the system may also be
detectable as a radio pulsar orbiting an OB-star, e.g., as in
PSRsB1259−63 (Johnston et al. 1992) and J0045−7319 (Kaspi
et al. 1994). When the secondary star expands and initiates full-
blown Roche-lobe overflow (RLO) during the HMXB stage, the
system eventually becomes dynamically unstable. For wide
systems, where the donor star has a deep convective envelope at
the onset of mass transfer (i.e., during the so-called Case B RLO,
following the termination of core hydrogen burning), the timescale
on which the system becomes dynamically unstable might be as
short as a few 100yr (Savonije 1978). This leads to the formation
of a CE (Paczyński 1976), where the dynamical friction of the
motion of the NS inside the giant star’s envelope often causes

extreme loss of orbital angular momentum and (in some cases)
ejection of the hydrogen-rich envelope. If the binary system
survives the CE phase, it consists of a NS orbiting a helium star
(the naked core of the former giant star). Depending on the orbital
separation and the mass of the helium star, an additional phase of
mass transfer (Case BB RLO; Habets 1986; Tauris et al. 2015)may
be initiated. This stage of mass transfer is important since it enables
a relatively long phase of accretion onto the NS, whereby the NS is
recycled, and it allows for extreme stripping of the helium star prior
to its explosion (as a so-called ultra-stripped SN; Tauris et al. 2013,
2015; Suwa et al. 2015; Moriya et al. 2017). Whether or not the
system survives the second SN depends on the orbital separation
and the kick imparted onto the newborn NS (Flannery & van den
Heuvel 1975; Hills 1983; Tauris & Takens 1998). As we shall
argue in this paper, we expect most systems to survive the second
SN explosion. If the post-SN orbital period is short enough (and
especially if the eccentricity is large), the DNS system will
eventually merge due to GW radiation and produce a strong high-
frequency GW signal and possibly a shortGRB (e.g., Eichler et al.
1989). The final remnant is most likely a BH, although, depending
on the EoS, a NS (or, at least, a metastable NS) may be left behind
instead (Vietri & Stella 1998).

1.5. Major Uncertainties in DNS Formation

Aside from the pre-HMXB evolution, which is discussed in
Section 3.1, the most important and uncertain aspects of our
current understanding of DNS formation are related to

Table 1
Observed Ranges of Key Properties of DNS Systems

Properties of Recycled (Old) NSs:
Spin period, P 23 185 ms–
Period derivative, Ṗ 0.027 18 10 s s18 1´ - -( – )
Surface dipole B-field, B 0.29 18 10 G9´( – )
Mass, MNS,1 1.32–1.56 Me

a

Properties of Young NSs:
Spin period, P 144 2773 ms–
Period derivative, Ṗ 0.89 20 10 s s15 1´ - -( – )
Surface dipole B-field, B 2.7 5.3 10 G11´( – )
Mass, MNS,2 M1.17 1.39 :–

Orbital Properties:
Orbital period, Porb 0.10 45 days–
Eccentricity, e 0.085 0.83–
Merger time, gwrt 86 Myr l ¥
Systemic velocity, vsys 25 240 km s 1-–

Note. Data taken from the ATNF Pulsar Catalogue (Manchester et al. 2005)—
see Table 2 for further details. Only DNS systems in the Galactic disk are
listed. The systemic recoil velocity, v vsys

LSR= , is quoted with respect to the
local standard of rest (Section 2.2).
a 1.32 Me Mark an upper limit to the lowest mass of the first-born NS.

Figure 1. Illustration of the formation of a DNS system that merges within a
Hubble time and produces a single BH, following a powerful burst of GWs and
a shortGRB. Acronyms used in this figure—ZAMS: zero-age main sequence;
RLO: Roche-lobe overflow (mass transfer); He-star: helium star; SN:
supernova; NS: neutron star; HMXB: high-mass X-ray binary; CE: common
envelope; BH: black hole.

12 See brief discussion given in Section 4.2 for an alternative “double core
scenario” (Brown 1995; Dewi et al. 2006) in which CE evolution with a NS is
avoided.
13 The secondary (initially less massive) star may be a M5 7 :– star which
accretes mass from the primary (initially more massive) star to reach the
threshold limit for core collapse at M8 12~ :– (Jones et al. 2013; Woosley &
Heger 2015; see also Section 3.1).
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Explosions of ultra-stripped SNe 3079

Figure 7. Evolutions of the radius of shocks.

Figure 8. Time evolutions of PNS mass (defined by ρ > 1011 g cm−3).

detailed nucleosynthesis calculation, which is beyond the scope of
this paper. The NS kick velocity is estimated by assuming the linear
momentum conservation of the whole progenitor star, i.e. assuming
that anisotropic mass ejection leads to NS kick (e.g. Wongwatha-
narat, Janka & Müller 2013). The linear momentum of ejecta is
calculated by

Pej =
∫

ρ<1011 g cm−3,vr>0
ρvdV , (3)

where v is the velocity vector and vr is its radial component. The NS
kick velocity is then given by vkick = −Pej/MNS,baryon. Since the
axial symmetry is assumed in our simulations, the kick velocity may
be overestimated due to the existence of preferable direction of NS
kick, i.e. symmetry axis. Additionally, the stochastic nature of post-
shock turbulent flow would also change the degree of asymmetry
of ejecta so that the initial small perturbation could change the kick
velocity significantly (Scheck et al. 2006). More statistical study is
needed to pin down this issue. It can be argued that small envelope,
not small iron core itself, which can rapidly accelerate shock, would
generally lead to small kick velocity due to too short time for SASI
to build up (see also, e.g., Podsiadlowski et al. 2004; Bogomazov,
Lipunov & Tutukov 2007).

4 SU M M A RY A N D D I S C U S S I O N

We have performed both stellar evolution simulations of bare CO
cores and explosion simulations for the end product of the CO cores
for modelling ultra-stripped Type Ic SNe. We have found that all
CO cores with mass from 1.45 to 2.0 M⊙ resulted in explosion
with energy of O(1050) erg, which left NSs with gravitational mass
from ∼1.24 to 1.44 M⊙ and ejecta from ∼0.1 to 0.4 M⊙ with
synthesized 56Ni of O(10−2) M⊙. These values are compatible with
observations of ultra-stripped SN candidates (Drout et al. 2013;
Tauris et al. 2013, 2015). For SN 2005ek, Mej ≈ 0.2–0.7 M⊙ and
MNi ≈ 0.02–0.05 M⊙ are appropriate to fit its light curve. The
event rate of these SNe is estimated as ∼1 per cent of core-collapse
SN rate (Drout et al. 2013, 2014), which is also compatible with an
NS merger rate estimation (Abadie et al. 2010).

We took a different approach from previous studies on ultra-
stripped SNe (Tauris et al. 2013, 2015). In previous works, they
self-consistently performed stellar evolutionary simulations until
oxygen burning phase with self-consistent mass-loss driven by wind
but explosion calculations were based on phenomenological mod-
elling with three free parameters: kinetic energy of SN, Ni mass,
and mass cut (i.e. NS mass). Based on this model, they found that
ultra-stripped SN model could account for the light curve of SN
2005ek quite well. In our work, on the other hand, we performed
stellar evolutionary simulations until the last phase of evolution, i.e.
iron core collapse, but for initially bare CO cores without mass-loss.
For the explosion phase, we performed neutrino-radiation hydrody-
namics simulations to calculate explosion energy, Ni mass, and NS
baryon mass in self-consistent manner. In this sense, this work is

Table 2. Summary of simulation results.

Model tfinal
a Rsh

b Eexp
c MNS, baryon

d MNS, grav
e Mej

f MNi
g vkick

h

(ms) (km) (B) (M⊙) (M⊙) (10−1 M⊙) (10−2 M⊙) (km s−1)

CO145 491 4220 0.177 1.35 1.24 0.973 3.54 3.20
CO15 584 4640 0.153 1.36 1.24 1.36 3.39 75.1
CO16 578 3430 0.124 1.42 1.29 1.76 2.90 47.6
CO18 784 2230 0.120 1.49 1.35 3.07 2.56 36.7
CO20i 959 1050 0.0524 1.60 1.44 3.95 0.782 10.5

Notes. aThe final time of simulations measured by post-bounce time.
bThe angle-averaged shock radius at tfinal.
cThe explosion energy in units of B (=1051 erg) at tfinal, which is still increasing.
dThe baryonic mass of NS at tfinal.
eThe gravitational mass of NS computed by equation (2) at tfinal.
fThe ejecta mass at tfinal.
gThe Ni mass at tfinal.
hThe kick velocity at tfinal.
iNote that this model is marginally exploding.

MNRAS 454, 3073–3081 (2015)
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Figure 4. Abundance ratios of elements in the ejecta of ultra-stripped Type
Ic SNe to the solar abundance. The red and black lines denote the ratios
of the CO145 and CO15 models, respectively. The dashed lines denote the
maximum ratios and the ratios of the 10 per cent of the maximum ratios.

Figure 5. Abundance ratios of isotopes in the ejecta of the (a) CO145 and
(b) CO15 model to the solar abundance. The red and black lines correspond
to odd-Z and even-Z nuclei. The green-hatched region denotes the range of
the abundance ratio between the maximum and one-tenth of that.

is ignored, the peak luminosity is approximately halved. The main
energy source other than 56Ni and 56Co is 57Ni and 66Cu for the
CO145 and the CO15 model, respectively. The decay time of the
luminosity from these elements is about 4 and 8 d in the CO145 and
the CO15 model, respectively. The difference of the contribution
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Figure 6. Light-curves of the ultra-stripped Type Ic SNe. The red and blue
curves denote the CO145 and CO15 models, respectively. The circles denote
the light-curve of SN 2005ek. The orange dashed line denotes the CO145
Ye-B model (see Section 4.2).

from these elements is mainly the result of the difference in the 56Ni
yield.

Recently, a variety of fast-decaying SNe have been found in
survey programs for transient objects. Subluminous SNe have also
been observed as Types Ia and Ib/c SNe (e.g. Foley et al. 2013;
Drout et al. 2014). Some subluminous fast-decaying SNe could be
ultra-stripped SNe. These observed SNe showed spectral features
different from those of normal Types Ia and Ib/c SNe. The ejecta of
the ultra-stripped SNe in our models indicate a higher abundance
ratio of intermediate elements to oxygen compared with the case
for more massive CO cores. These compositional differences could
give distinctive spectral features. The identification of ultra-stripped
SNe from Type I SNe is important for the evaluation of the ultra-
stripped SN rate. Future observations of ultra-stripped SNe could
constrain the rates of ultra-stripped SNe.

We note, as pointed out in Suwa et al. (2015), that it is safe to
consider that our results give a lower limit of the explosion energy
of an ultra-stripped SN. In the case of a stronger explosion of an
ultra-stripped SN, the ejected 56Ni mass could be larger. If so, ultra-
stripped SNe could be observed as fast-decaying SNe such as the
Type Ic SN 2005ek. We also note that the 56Ni mass would be
underestimated because of the missing proton-rich component in
the neutrino-irradiated ejecta. This will be discussed in Section 4.2.

4.2 Uncertainties of the yield of light trans-iron elements in
ultra-stripped SN models

We obtained light trans-iron elements in the ultra-stripped SN mod-
els. However, the production efficiency of the elements depends
on the Ye distribution of the SN ejecta, which in turn depends on
the detailed treatment of neutrino transport. Indeed, Müller (2016)
showed that an approximate treatment of neutrino transport intro-
duces a broader Ye distribution than in a more stringent model
including sophisticated microphysics. On the other hand, an update
of the code can even lead to a smaller Ye distribution. For instance,
an ECSN simulation performed by the Garching group with an up-
dated code showed a smaller minimum value of Ye (0.34) than the
previous result (0.404; Wanajo et al. 2011) (Janka 2016, private

MNRAS 471, 4275–4285 (2017)
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Figure 18. Effect of various zoning and time step criteria on the final core compactness in two different regions—A:17.1–17.5 M⊙ and B:20.1–20.5 M⊙. 1A,B—different
zoning: default (thick) and 2/3 of default (dot-dashed). 2A,B—time step: default (thick), half (dot-dashed) and double (thick-dashed).

U-series and SH-series stars, albeit at slightly different masses
(Figure 3). It is also present in the compactness plot for the bare
CO cores studied later in Section 5.

This behavior can be traced to the presence of a strong,
extended convective oxygen burning shell during the post-
silicon burning evolution of stars over about 50 M⊙. The lighter
stars lack this shell; the heavier ones have it. Starting at 50 M⊙
for the U-series, this shell is present at silicon depletion with a
base at 1.8 M⊙. Moving to heavier masses, the shell grows larger
and its base moves outward, reaching 2.5 M⊙ at 65 M⊙. There
is a sharp density decline at the base of the shell and because
of this migration outside the fiducial point for measuring ξ2.5,
the compactness parameter rises again as the star mass passes
about 60 M⊙.

Whether this shell is present or not depends upon the timing
of silicon core ignition and oxygen shell burning. Recall the key
role played by the carbon shell and oxygen ignition for stars in
the range 21–30 M⊙ (Section 3.2). When the carbon shell was
situated far enough out, oxygen burning would ignite before
carbon shell burning was done with major consequences for
the compactness. Here, the oxygen shell plays the role of the
former carbon shell. If it burns far enough out, the silicon core
can ignite earlier. In this case, however, igniting silicon does not
blow out the oxygen shell. It persists until the end.

Figure 19 shows the locations of various silicon and oxygen
burning episodes as a function of mass for the SH series models.

Figure 19. Maximum extents of the oxygen and silicon burning convective cores
and 1st shells are plotted against the initial mass of the model for SH stars. The
base of the single remaining carbon convective shell (dashed) is also shown,
but lies well outside 2.5 M⊙ and has little effect on ξ2.5 in this mass range. The
bases of the 1st shells are not plotted for clarity, but they almost always perfectly
match with the extents of the cores. Notice, how the silicon core size responds
as the oxygen core overgrows the silicon shell near 45–50 M⊙.

Though it lacks the time dimension of a full convective history
plot, the figure shows that the size of the oxygen convective core
increases monotonically with mass for these heavy stars. Where
the oxygen convective shell ignites is pegged to the extent of

11

NB) all MZAMS=15M⊙

that shock revival will be fizzled if the system evolves rapidly
after the turning point, rolling down the second half of the
trajectory and quickly passing the critical point again. Hence, it
is important that the system stays for a long time around the
turning point.

Since the critical curve is a convex and the monotonically
increasing function of the mass accretion rate, the more to the
upper left the turning point is located, the more likely shock
revival is to obtain. Although the critical curve has been well
studied by several groups,11 we emphasize here the importance
of the trajectory as well. In principle, multidimensional
neutrino-radiation hydrodynamic simulations, or ab initio
computations, with detailed neutrino physics and radiative
transfer being incorporated, are required to obtain reliable
model trajectories. It has been demonstrated, however, that one
observed effect of multidimensionality in supernova dynamics
is to lower the critical curve (Murphy & Burrows 2008;
Nordhaus et al. 2010; Hanke et al. 2012), although the
trajectory is also somewhat modified. Hence, it is expected that
1D simulations will be sufficient to find approximate locations

Figure 12. Same as Figure 2, but for progenitors with the ZAMS mass of 15 Me. Here we use five models from Nomoto & Hashimoto (1988) (NH88), Woosley &
Weaver (1995) (WW95), Woosley et al. (2002) (WHW02), Limongi & Chieffi (2006) (LC06), and Woosley & Heger (2007) (WH07). Owing to the different
treatments of physics and numerics for stellar evolutionary calculations, the structures prior to collapse show diversity even if they have the same ZAMS mass. In
panel (b), free-fall times are given by dashed lines.

Figure 13. Model trajectories in the OM L˙ – plane for the 1D simulations of
15 Me progenitors. This is the same as Figure 6, but for different progenitor
models. The mass accretion rate is evaluated at 300 km from the center.

Figure 14. Time evolutions of the angle-averaged shock radius for 15 Me
progenitors. NH88 and WW95 produce explosion owing to small densities of
the envelopes.

Figure 15. Schematic picture of the critical curve and turning point. If the
turning point is located above the critical curve and the luminosity and mass
accretion rate stay in the vicinity of the tuning point for a long time, such a
model will produce an explosion. The critical curve is expected to be shifted by
macrophysics such as dimensionality, and the turning point may be shifted by
microphysics, as well as the progenitor structure. The critical curve and turning
point are also useful to assess the influence of a particular physics incorporated.

11 There are a few attempts to derive the critical curve analytically (Janka
2012; Keshet & Balberg 2012; Pejcha & Thompson 2012). The impact of
properties of the nuclear equation of state on the critical curve is also studied
(Couch 2013a) and is found to be minor compared to the dimensionality.
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Progenitor models in 3D

26HLLC Riemann solver. The unsplit PPM solver in FLASH does
not utilize the “consistant multifluid advection” scheme of
Plewa & Müller (1999). We include self-gravity assuming a
spherically symmetric (monopole) gravitational potential. Due
to the operator splitting between the hydrodynamics and the
nuclear network, we find that, in order to maintain adequate
coupling between the burning and the hydrodynamics, it is
critical to limit the size of the time step so that the internal
energy in any one zone changes by no more than 1% during the
course of a single step.

3. 3D COLLAPSE OF AN IRON CORE

We follow the violent Si shell burning and build up of the
iron core mass in 3D for ∼160 s. This single simulation
required approximately 350,000 core-hours on Stampede at
TACC on 1024 cores. Visualizations of the 3D progenitor
burning simulation are shown in Figure 1, where we show slice
plots of key quantities along with volume renderings of the iron
core and the radial component of the velocity in the Si-burning
shell.13 In Figure 2, we show spherically averaged radial
profiles of the density, ρ, electron fraction, Ye, specific entropy,
s, and convective velocity from the 3D FLASH simulation at
three times: the transition from the 1D MESA model to 3D; 5 s

prior to collapse; and the point of collapse. Angle averages,
...á ñ, are taken over spherical shells and vr is the radial velocity
component. Evident from Figure 2 is that the convective speeds
near collapse are typically >100 km s−1. This is slightly larger
than the comparable speeds found in the O-burning shell
(Viallet et al. 2013). Because the nuclear burning is balanced
on average by turbulent dissipation, the energy generation rate
is related to the average velocity and the depth of the
convection zone by v ℓ3� ~ (Arnett et al. 2009). This is,
however, the average convective speed, and fluctuations
increase the peak speeds. We see from Figure 1 that the peak
speeds in the Si-burning shell can be several hundred km s−1,
reaching speeds near collapse of ∼500 km s−1. This is not
negligible when compared to nominal infall speeds for core
collapse initial models (∼1000 km s−1). The speed of the
convection increases as collapse approaches and the core
contracts.
In Figure 2 we also show final 1D MESA models at the point

of collapse considering two different scenarios: one in which
the neutronization reaction rate is enhanced by the same
amount as in the 3D FLASH simulation (blue dashed lines) and
the other in which we do not enhance this reaction rate above
the fiducial value found in MESAʼs approx21 network (cyan
dashed lines). Stellar collapse is highly dynamic and the model
profiles change rapidly once gravitational instability sets in.
Thus, for the sake of fair comparison, we consider all models at
the point when the central densities have reached the same

Figure 1. Visualizations of the 3D progenitor evolution simulation. The top row displays pseudocolor slices of the 28Si mass fraction (top left), flow speed (top right),
total mass fraction of iron group nuclei (bottom right), and specific nuclear energy generation rate (bottom left). The separate panels show different times since the
start of the 3D simulation: 20 s (left), 100 s (middle), and 155 s (right). This final time is about 5 s before gravitational core collapse (see Figure 3). The bottom row
shows volume renderings of the surface where the “iron” mass fraction is 0.95 (left) and of the radial velocity (right) both at 155 s of 3D evolution.

13 Movies of these visualizations may be viewed at http://flash.uchicago.edu/
~smc/progen3d.
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where the domain of integration in Equations (9) and (10)
extends from the inner boundary radius r− to the outer
boundary radius r+ of the oxygen shell. Angled brackets denote
mass-weighted spherical Favre averages for quantity X,
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We note that one does not expect any mean flow in the non-
radial directions in the absence of rotation; therefore, only vθ
and vj appear in Equation (10). In Figure 5, we also show the
results for Qnuc˙ and the kinetic energy in convective motions
from the 1D Kepler run for comparison. MLT only predicts the
radial velocities of rising and sinking convective plumes, so we

Figure 4. Volume rendering of the mass fraction of silicon at the end of the 3D simulation at 293.5 s (onset of collapse) on one patch of the Yin-Yang grid, showing
fuzzy silicon-rich updrafts of hot ashes (red) and silicon-poor downdrafts of fresh fuel. A global asymmetry in the updrafts is clearly visible. The inner boundary of the
oxygen shell (cyan) is relatively “hard” due to the strong buoyancy jump between the silicon and oxygen shell and therefore remains almost spherical.

Figure 5. Top: volume-integrated net nuclear energy generation rate Qnuc˙ in the
oxygen shell in the 3D simulation (black) and in Kepler (red). Bottom: kinetic
energies q jE , (black) and Er (blue) contained in fluctuating non-radial and
radial motions in the 3D simulation; see Equations (9) and(10) for definitions.
The MLT estimate of the volume-integrated kinetic energy Er,1D in radial
convective motions in the oxygen shell for the Kepler model (red) is computed
by using Equation (3) for the convective velocity assuming α1=1.
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that the explosion characteristics strongly depend on
the mass of the progenitor and on its internal structure.
However, it is still unclear which are the most important
quantities among those characterizing the internal structure
of a core-collapse supernova progenitor.

Because stellar evolutionary calculations are subject
to restrictions (see, e.g. Jones et al. 2015, for recent code
comparison), we decided to generate progenitor mod-
els by ourselves in a more systematic and manageable
way. To this end, we used the approach proposed by
Baron & Cooperstein (1990) to construct initial models. In
this approach one prescribes the distributions of entropy
and electron fraction (Ye) in a progenitor model as func-
tions of the mass coordinate, and one assumes hydrostatic
equilibrium to obtain the density structure from these dis-
tributions. The hydrodynamic evolution of the progenitor
models is then simulated employing a microscopic equation
of state.

Contrary to Baron & Cooperstein (1990), we apply
their approach to modern radiation hydrodynamic simula-
tions of neutrino-driven core-collapse supernovae. While a
neutrino-driven explosion is the current standard paradigm
for core-collapse supernovae, Baron & Cooperstein (1990)
were discussing the influence of progenitor properties on
the prompt explosion scenario, in which the prompt shock
resulting from core bounce was thought to cause the ex-
plosion. In particular, we have performed one-dimensional
(1D) general relativistic hydrodynamic simulations includ-
ing a detailed treatment of neutrino transport and a nuclear
equation of state, i.e., our study is more elaborate than that
of Baron & Cooperstein (1990).

Using this approach, we were able to perform a com-
prehensive parameter study which displays the dependen-
cies of the outcome of 1D core-collapse supernova simula-
tions on the properties of the progenitor models. In addi-
tion, our approach has the advantage over other numerical
studies of core-collapse supernovae, which all rely on pro-
genitor models from stellar evolutionary calculations (but
see Yamamoto & Yamada 2016), that initial conditions can
be studied, which extend those currently predicted by stellar
evolutionary calculations.

In section 2 we explain how we constructed the progen-
itor models, and in section 3 we describe our hydrodynamic
method and present the results of our simulations. We dis-
cuss in detail the influence of the progenitor properties on
the core-collapse supernova dynamics in section 4, and con-
clude in section 5 with a summary and discussion of our
results.

2 PROGENITOR MODELS

In this section, we explain the strategies to obtain progenitor
models for core-collapse supernova simulations. First of all,
we construct progenitor models resembling the stellar evo-
lutionary model s11.2 of Woosley et al. (2002), which has
been widely used in hydrodynamic simulations.

M
M1 M2 M3 M4 M5

Sc
S1

S2

S5

Yec

Ye3

Ye4

S,Ye

Figure 1. Schematic behavior of the entropy S (red line) and
electron fraction Ye (blue line) distribution as a function of mass
for our progenitor models.

2.1 Hydrostatic equation

To construct a progenitor model for our hydrodynamic sim-
ulations, we solve the hydrostatic equation

dP
dM

= −
GM
4πr4

, (1)

where P,M,G, and r are the pressure, the mass coordinate,
the gravitational constant, and the radial coordinate, respec-
tively. The density is given by dM/dr = 4πr2ρ. To solve
Eq. (1) one needs to specify a value for the central density,
ρ0, which is one of parameters of this approach, and one
needs to have P given as a function of density ρ, entropy S,
and electron fraction Ye, i.e., an equation of state (EOS).

Following Baron & Cooperstein (1990), we change G →

geffG in Eq. (1), where geff < 1 is a factor mimicking the fact
that the progenitors are no longer in hydrostatic equilibrium,
but already in a dynamic state. We used this procedure to
destabilize the core in a uniform way, because reducing in-
stead the pressure (by reducing the entropy or Ye) may lead
to undesirable effects, like e.g., a strange mass accretion his-
tory (see Baron & Cooperstein 1990).

In the following subsections, we give the distributions
of S and Ye as functions of the mass coordinate M that we
used in our study. Given these functions, we integrate Eq. (1)
and obtain ρ(r) and M(r). Due to limited extent of the tab-
ular equation of state used in our simulations, we integrate
Eq. (1) outward in mass until the density drops below a value
of 103 g cm−3. We note that this Newtonian treatment of the
progenitor model is compatible with the general relativistic
treatment used in our hydrodynamic simulations, because
the central lapse function is 1 − α ≈ O(10−3) for the pro-
genitor models, i.e., the use of the Newtonian approximation
is well justified.

MNRAS 000, 1–10 (2016)
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Figure 9. Evolution of the diagnostic explosion energy for model
BC18.

The additional grey lines give the structures of the models
listed in Appendix A, which are obtained by stellar evolu-
tion calculations. Obviously, our parametrized models show
a similar trend as the evolutionary ones, except for their
non-monotonic behavior at densities ρ ∼ 107 g cm−3 and
at densities of a few times 109 g cm−3, i.e. near the center.
In other words, these models allow us to investigate ther-
modynamic regimes beyond those encountered in canonical
models.

The Chandrasekhar mass is often used as a rough esti-
mate of the iron core mass. Since the former mass depends
on the electron fraction as

Mch ≈ 5.87Y 2
e M⊙ (12)

= 1.01

(

Ye

0.415

)2

M⊙, (13)

our small iron core (M4 = 1.15M⊙) can be unstable.
In Table 4 we provide an overview of the hydrody-

namic simulations with our second set of models. The table
columns give the time until bounce, the postbounce time
when the shock reaches a radius of 400 km, the final time of
the simulation, the maximum shock radius, the final bary-
onic mass of the PNS, and the diagnostic explosion energy
at the times when the shock reaches a radius of 1000km and
at tfin, respectively. The remaining columns give the mini-
mum inner core mass, the value of Ye in the center at tbounce,
and the initial kinetic energy. The PNS mass is defined as
the mass with ρ > 1011 g cm−3, and the diagnostic explo-
sion energy as the integral of the local energy, i.e. the sum
of the specific internal, kinetic and gravitational energies,
of all zones where this quantity and the radial velocity are
positive. Here we used the general relativistic expression for
the local energy of Müller et al. (2012), which is given as

elocal = α
[(

ρc2 + ϵc2 + P
)

W 2
− P

]

− ρWc2, (14)

where α is the lapse function, c the speed of light, ϵ the
specific internal energy, and W the Lorentz factor. This ex-
pression reduces to the well-known Newtonian expression
(elocal = ρφ + ρv2/2 + ρϵ with φ and v being the gravi-
tational potential and the velocity, respectively) when one
omits higher-order terms like (v/c)2.

For model BC18, which produces the most energetic
explosion of our second set of models, Sc = 0.4 and

S5 = 6 kB baryon−1. The diagnostic explosion energy of this
model already reaches 0.39 B (= 3.9 × 1050 erg) at the end
of the simulation, and it is still increasing (see Fig. 9) at a
rate of 5B s−1, i.e., it will reach a value of 1B about 310ms
after core bounce.

Concerning the explosion energy one should note that
the envelope located above the Si/O layer has a large binding
energy of O(1049) to O(1051), the actual value depending on
the ZAMS mass of the progenitor (e.g. Pejcha & Thompson
2015). Therefore, the values given in Table 4 are not the
observable explosion energies. To determine the latter ener-
gies, one needs to perform long-term simulations including
the stellar envelopes, which will be left for future work.

For our second set of models, the electron fraction at
bounce is larger than in the simulations with our first set
of models based on the stellar evolutionary model s11.2
(see previous section and Fig. 5), in which Yc,bounce ≈ 0.3.
Because of their smaller initial central entropy, the latter
models have a lower temperature, which implies a smaller
electron capture rate during collapse. The resulting larger
electron fractions explain the larger kinetic energies at the
bounce (see, e.g. Müller 1998), which are given by the ki-
netic energy of the inner core at the “last good homology”
(Brown et al. 1982). Of the models listed in the upper part
of Table 4, model BC02 has the largest initial kinetic energy.
Among these models, model BC02 is also the only explod-
ing model. Although a higher value of Yec also leads to a
larger value of Yc,bounce and a larger initial kinetic energy
(see model BC19 in the lower part of Table 4), model BC19
does not explode because of its larger gravitational binding
energy (see Table 3). However, we note that in comparison to
the other non-exploding models (BC16-BC18, BC20-BC22),
the shock propagates out to an exceptionally large maximum
shock radius of 873 km in model BC19, i.e, it is a marginal
model marking the boundary between exploding and non-
exploding models.

In all exploding models the explosion sets in early (∼
20ms after core bounce), which seems to suggest a prompt
explosion. However, these explosions are still aided by neu-
trino heating, i.e., they differ from prompt explosion models,
in which initial kinetic energy is large enough to eject the
envelope. To validate this statement, we performed a simu-
lation without neutrino heating by setting the distribution
function of streaming particles, which is essential for neu-
trino heating in IDSA (see Liebendörfer et al. 2009), to zero.
Then, the exploding model does no longer explode, i.e., it
was no prompt explosion.

From these result, we conclude that the iron core struc-
ture is crucial for obtaining an explosion. Especially, a low
entropy at the center helps to make an explosion. To reach
a more general conclusion, we need a large number of sim-
ulations covering a wider range of parameter space, which
will be reported in a forthcoming publication.

5 SUMMARY AND DISCUSSION

In this paper, we investigated a method to construct
parametrized initial progenitor models for core-collapse su-
pernova simulations. So far, initial conditions of these simu-
lations have been taken from the final phase of stellar evolu-
tionary calculations, which depend on several uncertainties,

MNRAS 000, 1–10 (2016)
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諏訪雄大 @ 理論懇シンポジウム2017「星の物理の新地平」 /3025/12/2017 Figure 1. Coadded WFC3-IR F125W and F160W exposures of the MACS J1149.5+2223 galaxy-cluster field taken with HST. The top panel shows images acquired
in 2011 before the SN appeared in S1–S4 or SX. The middle panel displays images taken on 2015 April 20 when the four images forming the Einstein cross are close
to maximum brightness, but no flux is evident at the position of SX. The bottom panel shows images taken on 2015 December 11 which reveal the new image SX of
SN Refsdal. Images S1–S3 in the Einstein cross configuration remain visible in the 2015 December 11 coadded image (see Kelly et al. 2015a and Rodney et al. 2015b
for analysis of the SN light curve).
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Strongly lensed SN

There have been three lensed SN observations so far 
PS1-10afx (Ia; Quimby et al. 2013), SN Refsdal (CC; Kelly et al. 2015), 
iPTF16geu (Ia; Goobar et al. 2017) 

SN Refsdal 
four images were found at the same time 
one more event had been predicted one year after the images 
another image indeed appeared! (Kelly+ 2016)
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Supernova forecast

By LSST, >10 lensed SNe will be found annually 
(Oguri & Marshall 2010) 
With previous 3 images, 4th image delay time 
can be estimated 

Lensing parameters determined with 3 images 

Precision of prediction? Δt<1day! 
ToO observations of shock breakout in multi 
wavelength are possible!
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Figure 2. An example light curve in i-band of an event with
zs = 0.87 and zl = 0.314. Light curve shape is taken from a typi-
cal Type Ib/c SN, SN1999ex. First, second, third, and fourth im-
ages correspond to thick-solid, thin-solid, thick-dashed, and thin-
dashed lines, respectively. Time delays from the first image are
19.8 (second), 25.9 (third), and 44.6 (fourth) days. The arrow in-
dicates the time of SBO of the fourth image, which is bright in
UV/X-ray bands for the case of a Type Ib/c SN. Horizontal grey
line indicates limiting magnitude of LSST. In the small panel, spa-
cial positions of images are shown with a typical seeing FWHM
of LSST (0.75 arcsec). Numbers in circles present corresponding
image in LC.

Oguri & Marshall (2010) only took into account the peak
magnitude, we construct the LC by using a typical Type
Ib/c SN, SN1999ex (Stritzinger et al. 2002). In the figure,
the limiting magnitude of LSST per visit (10σ) is shown as
a grey horizontal line. One can see that the first image can
be observed about 30 days before its peak and the second
image will appear above the detection threshold 18 days af-
ter the first image emergence. The third and fourth ones will
be found about 28 and 58 days after the first image. In this
case, the SBO emission of the fourth image will be observed
after the emergence of the third image.

3 STRATEGY

In this section, we discuss a strategy to perform a multi-
messenger observation campaign for SBO of fourth images
from lensed SNe. An ideal scenario is as follows:

(i) Find a new SN by LSST survey.
(ii) A second image appears O(1) d after the first image.
(iii) One calculates the lens potential based on these two

images and predict the position and time of the third image.
(iv) By observing the third image with deeper and more

frequent observations, one calibrates the lens potential
model and LC evolution, and predicts the fourth image more
precisely than the third one.

(v) One targets the SBO of the fourth image using mul-
tiple telescopes.

In Figure 3, we show our flowchart of the event selec-
tion. In this figure, the first and second images should be
detected by LSST, and other telescopes are able to conduct
more frequent observations for third and fourth images. In
order to observe the SBO, the most important part is the

Find a new SN

Does  
2nd SN appear  

in ~1 arcsec?

Yes

Calculate lens potential 
and predict 3rd one
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Figure 3. A flowchart of the event selection. First and second im-
ages are found by LSST and third and fourth images are observed
by other telescopes.

time precision of the fourth image. If we can reduce the er-
ror, by intensively observing the third image, up to ∼< 1 d,

the feasibility of the SBO observation becomes remarkably
high. For predicting the third image properties, we need to
determine at least five lens model parameters if we employ
the singular isothermal ellipsoid (SIE), which is used most
frequently to model lensing galaxies, assuming redshifts are
determined well by photometric data: velocity dispersion; el-
lipticity; orientation of the lens galaxy; source position. Up
to six degrees of freedom can be fixed by observation of the
first two images: two image positions; flux ratio; time delay.
Hence, in principle, the prediction is possible. Of course, for
a more realistic lens model, there are more parameters to
be determined. But on the other hand, the observation of
the third image does provide significantly more information
since, together with the first and second image, there are
now twelve observables: three image positions; three flux ra-
tios; three time delays.

By using the same mock data as Figure 2, we attempt
to predict the time delay and position of the fourth image
from information of the previous three images with glafic
(Oguri 2010), which is a public software package for analyz-
ing gravitational lensing (see Appendix A). A similar study
was done in Oguri et al. (2003), but it was more interested
in cosmological applications. As input data, we employ sky
positions of three images, the redshift of host galaxy, flux
ratios, and time delays with respect to the first image, with
1σ errors of 0.75 arcsec, 0.5, 50%, and 5 days, respectively.
The best fit is obtained with the delay time for the fourth
image being 47.0 days, which is slightly (2.4 day) later than
the correct value. Smaller error values lead to better pre-
diction. Therefore, after the detection of the third image,
the prediction of fourth image is doable. Note that this re-
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Figure 2. An example light curve in i-band of an event with
zs = 0.87 and zl = 0.314. Light curve shape is taken from a typi-
cal Type Ib/c SN, SN1999ex. First, second, third, and fourth im-
ages correspond to thick-solid, thin-solid, thick-dashed, and thin-
dashed lines, respectively. Time delays from the first image are
19.8 (second), 25.9 (third), and 44.6 (fourth) days. The arrow in-
dicates the time of SBO of the fourth image, which is bright in
UV/X-ray bands for the case of a Type Ib/c SN. Horizontal grey
line indicates limiting magnitude of LSST. In the small panel, spa-
cial positions of images are shown with a typical seeing FWHM
of LSST (0.75 arcsec). Numbers in circles present corresponding
image in LC.

Oguri & Marshall (2010) only took into account the peak
magnitude, we construct the LC by using a typical Type
Ib/c SN, SN1999ex (Stritzinger et al. 2002). In the figure,
the limiting magnitude of LSST per visit (10σ) is shown as
a grey horizontal line. One can see that the first image can
be observed about 30 days before its peak and the second
image will appear above the detection threshold 18 days af-
ter the first image emergence. The third and fourth ones will
be found about 28 and 58 days after the first image. In this
case, the SBO emission of the fourth image will be observed
after the emergence of the third image.

3 STRATEGY

In this section, we discuss a strategy to perform a multi-
messenger observation campaign for SBO of fourth images
from lensed SNe. An ideal scenario is as follows:

(i) Find a new SN by LSST survey.
(ii) A second image appears O(1) d after the first image.
(iii) One calculates the lens potential based on these two

images and predict the position and time of the third image.
(iv) By observing the third image with deeper and more

frequent observations, one calibrates the lens potential
model and LC evolution, and predicts the fourth image more
precisely than the third one.

(v) One targets the SBO of the fourth image using mul-
tiple telescopes.

In Figure 3, we show our flowchart of the event selec-
tion. In this figure, the first and second images should be
detected by LSST, and other telescopes are able to conduct
more frequent observations for third and fourth images. In
order to observe the SBO, the most important part is the
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time precision of the fourth image. If we can reduce the er-
ror, by intensively observing the third image, up to ∼< 1 d,

the feasibility of the SBO observation becomes remarkably
high. For predicting the third image properties, we need to
determine at least five lens model parameters if we employ
the singular isothermal ellipsoid (SIE), which is used most
frequently to model lensing galaxies, assuming redshifts are
determined well by photometric data: velocity dispersion; el-
lipticity; orientation of the lens galaxy; source position. Up
to six degrees of freedom can be fixed by observation of the
first two images: two image positions; flux ratio; time delay.
Hence, in principle, the prediction is possible. Of course, for
a more realistic lens model, there are more parameters to
be determined. But on the other hand, the observation of
the third image does provide significantly more information
since, together with the first and second image, there are
now twelve observables: three image positions; three flux ra-
tios; three time delays.

By using the same mock data as Figure 2, we attempt
to predict the time delay and position of the fourth image
from information of the previous three images with glafic
(Oguri 2010), which is a public software package for analyz-
ing gravitational lensing (see Appendix A). A similar study
was done in Oguri et al. (2003), but it was more interested
in cosmological applications. As input data, we employ sky
positions of three images, the redshift of host galaxy, flux
ratios, and time delays with respect to the first image, with
1σ errors of 0.75 arcsec, 0.5, 50%, and 5 days, respectively.
The best fit is obtained with the delay time for the fourth
image being 47.0 days, which is slightly (2.4 day) later than
the correct value. Smaller error values lead to better pre-
diction. Therefore, after the detection of the third image,
the prediction of fourth image is doable. Note that this re-
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Summary

Observation 
SN is powered by NS formation 
SN rate 
pre-SN images 

Theory 
Explosion, explosion and explosion 
Explosion energy problem 
56Ni mass problem 

Prospects 
long-term simulation, binarity, initial condition, forecast, etc.
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