最近書いたもの

Switch to English

E-prints can be downloaded from the arxiv.org and its mirror sistes.


高崎金久
交錯定理とその周辺
第34回数学史シンポジウム(2024年10月12日〜13日津田塾大学) [講演スライド]
要旨 n次実対称行列の固有値はすべて実数であるが,同じ番号の行と列を 除去して得られるn-1次実対称行列の固有値は除去前の行列の固有値の間に 1個ずつ存在する.この事実はCauchyとSturmによって1829年の論文において 指摘されて以来,Courantによるミニマックス定理の観点からの見直しを経て, 今日では「交錯定理」や「ポアンカレの分離定理」などの名称で知られている. この講演 ではCauchyとSturmのそれぞれの論文の内容を紹介し,彼らの考察や その後の研究との関わりを探る.
Kanehisa Takasaki
1. Universal Whitham hierarchy and multi-component KP hierarchy
2. Extended lattice Gelfand-Dickey hierarchy
Slides of seminars [1 (May 14) and 2 (May 21)] at School of Mathematics, Sun Yat-Sen University, Guangzhou, China, May 14 and 21, 2024
Abstract
1. The universal Whitham hierarchy of genus zero is a kind of dispersionless integrable hierarchy that contains the dispersionless KP and Toda hierarchies as special cases. There are several equivalent expressions of this system such as the Lax equations, the Hamilton-Jacobi equations and the differential Fay identities. Moreover, his system can be derived from the multi-component KP hierarchy in the dispersionless (or quasi-classical) limit. I will review basic notions and results obtained in my research (with T. Takebe) in the first decade of 2000's.
2. The lattice Gelfand-Dickey hierarchy is a lattice analogue of the Gelfand-Dickey (aka generalized KdV) hierarchy. This integrable hierarchy has an extension by an infinite number of logarithmic flows. These flows are motivated by a possible relation with a kind of Frobenius manifolds and cohomological field theories. The construction of the extended system resembles the extended 1D and bigraded Toda hierarchy, but exhibits several novel features as well. Moreover, this system can be deformed to a generalization of the intermediate long wave hierarchy . This seems to explain an origin of the mysterious logarithmic flows. This talk is based on arXiv:2203.06621 and arXiv:2211.11353.
高崎金久
同変戸田階層とOkounkov-Pandharipande dressing operators
名古屋大学多元数理科学研究科インフォーマルセミナー(2024年3月21日) [講演スライド] (2023年9月の数学研究所数理物理セミナーの講演スライドを修正した)
要旨 同変戸田階層はGetzlerによってリーマン球面の同変Gromov-Witten不変量における 可積分構造として導入されたもので,2次元戸田階層から特殊な簡約条件 によって 導くことができる. 2000年代半ばにOkounkovとPandharipandeはリーマン球面の同変 Gromov-Witten不変量をフェルミオン表示することによって,それらの母函数が 同変戸田階層のτ函数になることを示した. その証明の中でフォック空間上のdressing opetatorと呼ぶ作用素を用いたが,この作用素の正体はよくわからないままに残った. またLax形式における説明はなされなかった. 講演者はこの作用素を2次元戸田階層の Lax作用素と同様の意味での差分作用素として再構成し,同変戸田階層が現れる 仕組みをLax形式において明らかにすることができた. この講演ではこの結果を紹介し, Hurwitz数の高スピン版に関連すると思われる拡張の試みにも触れる. (文献:arXiv:2103.10666, 2211.11353)


高崎金久
グラスマン多様体の起源
第33回数学史シンポジウム(2023年10月14日〜15日津田塾大学) [講演スライド| 報告集寄稿]
津田塾大学数学・計算機科学研究所報 45 (2023)
要旨 グラスマン多様体は与えられた線形空間の中の一定次元の 線形部分空間全体の集合として定義される.その原型は 19世紀半ばのケイリーやプリュッカーの直線幾何学にあり, プリュッカーが導入した座標(プリュッカー座標)や クラインが見出した射影空間内の2次曲面(クライン2次曲面) としての実現がグラスマン多様体の初期の研究の成果とみなされている. 19世紀後半のシューベルトによる射影空間の線形部分多様体の 数え上げに関する研究の中にもグラスマン多様体の原型が 見て取れる.しかしこれらの研究にはグラスマンへの 言及はない.他方,グラスマンは1842年に延長論 (Ausdehnungslehre)というテーマの著作を発表し, 1862年に改訂版を出しているが,これらは線形空間論として 知られるものである.そこで次のような素朴な疑問が生じる:
●いつ,誰がグラスマン多様体という言葉を使い始めたのか?
●なぜグラスマンの名前が入っているのか?
●グラスマン自身はグラスマン多様体を考えたのか?
文献をたどりながらこれらの問に対する答を探る.


高崎金久
同変戸田階層とOkounkov-Pandharipande dressing operators
大阪公立大学数学研究所数理物理セミナー (2023年9月14日) [講演スライド]
要旨 同変戸田階層はGetzlerによってリーマン球面の同変Gromov-Witten不変量における 可積分構造として導入されたもので,2次元戸田階層から特殊な簡約条件 によって 導くことができる. 2000年代半ばにOkounkovとPandharipandeはリーマン球面の同変 Gromov-Witten不変量をフェルミオン表示することによって,それらの母函数が 同変戸田階層のτ函数になることを示した. その証明の中でフォック空間上のdressing opetatorと呼ぶ作用素を用いたが,この作用素の正体はよくわからないままに残った. またLax形式における説明はなされなかった. 講演者はこの作用素を2次元戸田階層の Lax作用素と同様の意味での差分作用素として再構成し,同変戸田階層が現れる 仕組みをLax形式において明らかにすることができた. この講演ではこの結果を紹介し, Hurwitz数の高スピン版に関連すると思われる拡張の試みにも触れる. (文献:arXiv:2103.10666, 2211.11353)


Kanehisa Takasaki
Generalized ILW hierarchy: Solutions and limit to extended lattice GD hierarchy
J. Phys. A: Math. Theor. 56 (2023) 165201 (25pp)
doi: 10.1088/1751-8121/acc495
arXiv:2211.11353
Comments: latex2e using amsmath,amssymb,amsthm, 30 pages, no figure
MSC-class: 14N35, 37K10
Abstract The intermediate long wave (ILW) hierarchy and its generalization, labelled by a positive integer $N$, can be formulated as reductions of the lattice KP hierarchy. The integrability of the lattice KP hierarchy is inherited by these reduced systems. In particular, all solutions can be captured by a factorization problem of difference operators. A special solution among them is obtained from Okounkov and Pandharipande's dressing operators for the equivariant Gromov-Witten theory of $\mathbb{CP}^1$. This indicates a hidden link with the equivariant Toda hierarchy. The generalized ILW hierarchy is also related to the lattice Gelfand-Dickey (GD) hierarchy and its extension by logarithmic flows. The logarithmic flows can be derived from the generalized ILW hierarchy by a scaling limit as a parameter of the system tends to $0$. This explains an origin of the logarithmic flows. A similar scaling limit of the equivariant Toda hierarchy yields the extended 1D/bigraded Toda hierarchy.


Kanehisa Takasaki
Extended lattice Gelfand-Dickey hierarchy
J. Phys. A: Math. Theor. 55 (2022), 305203 (14pp)
doi:10.1088/1751-8121/ac7ca2
arXiv:2203.06621
MSC classes: 14N35, 37K10
Abstract The lattice Gelfand-Dickey hierarchy is a lattice version of the Gelfand-Dickey hierarchy. A special case is the lattice KdV hierarchy. Inspired by recent work of Buryak and Rossi, we propose an extension of the lattice Gelfand-Dickey hierarchy. The extended system has an infinite number of logarithmic flows alongside the usual flows. We present the Lax, Sato and Hirota equations and a factorization problem of difference operators that captures the whole set of solutions. The construction of this system resembles the extended 1D and bigraded Toda hierarchy, but exhibits several novel features as well.
Matrix-Tree theoremの起源
第31回数学史シンポジウム(2021年10月16日〜17日津田塾大学On-line) [講演スライド(短縮版)| 報告集寄稿]
津田塾大学数学・計算機科学研究所報 43 (2021), 61-76
要旨 Matrix-tree theorem(行列と木の定理)はグラフの全域木の個数が ある行列の余因子として表せることを主張する.さらに,グラフの辺に 重みを付けて,全域木の重みの総和を行列式として表す一般化もある. この定理は数え上げ問題に対する線形代数的技法の中でも古くから 知られているもので,組合せ論の枠内にとどまらない内容をもつ. この定理の原型が登場する19 世紀の文献を紹介し,この定理の歴史的経緯や, それに関して流布している誤解などを紹介する.


Kanehisa Takasaki
Dressing operators in equivariant Gromov-Witten theory of $\mathbb{CP}^1$
J. Phys. A: Math. Theor. 54 (2021), 35LT02
doi: 10.1088/1751-8121/ac1828
arXiv:2103.10666
Comments: latex2e using packages amsmath,amssymb,amsthm; (v2) A typo in the definition of E_k(z) on page 6 corrected
MSC-class: 14N35, 37K10
Abstract Okounkov and Pandharipande proved that the equivariant Toda hierarchy governs the equivariant Gromov-Witten theory of $\mathbb{CP}^1$. A technical clue of their method is a pair of dressing operators on the Fock space of 2D charged free fermion fields. We reformulate these operators as difference operators in the Lax formalism of the 2D Toda hierarchy. This leads to a new explanation to the question of why the equivariant Toda hierarchy emerges in the equivariant Gromov-Witten theory of $\mathbb{CP}^1$. Moreover, the non-equivariant limit of these operators turns out to capture the integrable structure of the non-equivariant Gromov-Witten theory correctly.


高崎金久
弦理論・ゲージ理論における戸田階層
オンライン研究会"Quantum Geometry in Gauge Theory and Strings" (2020年11月21日) 招待講演[講演スライド]
要旨 1990年代から最近までの弦理論・ゲージ理論における戸田階層の役割を振り返る.
髙﨑金久
CP1の同変Gromov-Witten理論と同変戸田階層
日本数学会2020年度年会(2020年3月16日〜19日日本大学で開催予定, 新型コロナウィルス肺炎の影響で中止)無限可積分系セッション一般講演 [講演予稿(一部修正)]
要旨 OkounkovとPandaripandeはCP1の同変Gromov-Witten理論の記述において ``dressing operator''を考察した.我々はこの作用素の新たな役割を見いだした.


Kanehisa Takasaki
Integrable structures of specialized hypergeometric tau functions
RIMS Kokyuroku Bessatsu B87 (2021), 057--078.
arXiv:2002.00660
Comments: latex2e, 21pages, no figure, submitted to proceedings of RIMS workshop "Mathematical structures of integrable systems, its deepening and expansion" (September 9-11, 2019)
MSC-class: 05E10, 14N10, 37K10
Abstract Okounkov's generating function of the double Hurwitz numbers of the Riemann sphere is a hypergeometric tau function of the 2D Toda hierarchy in the sense of Orlov and Scherbin. This tau function turns into a tau function of the lattice KP hierarchy by specializing one of the two sets of time variables to constants. When these constants are particular values, the specialized tau functions become solutions of various reductions of the lattice KP hierarchy, such as the lattice Gelfand-Dickey hierarchy, the Bogoyavlensky-Itoh-Narita lattice and the Ablowitz-Ladik hierarchy. These reductions contain previously unknown integrable hierarchies as well.


Kanehisa Takasaki
Cubic Hodge integrals and integrable hierarchies of Volterra type
Proceedings of Symposia in Pure Mathematics, vol. 103.1, Amer. Math. Soc., Providence, RI, 2021, pp. 481-502
arXiv:1909.13095
Comments: latex2e, amsmath,amssymb,amsthm, 29pp, no figure, contribution to Boris Dubrovin memorial volume, American Mathematical Society
Abstract A tau function of the 2D Toda hierarchy can be obtained from a generating function of the two-partition cubic Hodge integrals. The associated Lax operators turn out to satisfy an algebraic relation. This algebraic relation can be used to identify a reduced system of the 2D Toda hierarchy that emerges when the parameter $\tau$ of the cubic Hodge integrals takes a special value. Integrable hierarchies of the Volterra type are shown to be such reduced systems. They can be derived for positive rational values of $\tau$. In particular, the discrete series $\tau = 1,2,\ldots$ correspond to the Volterra lattice and its hungry generalizations. This provides a new explanation to the integrable structures of the cubic Hodge integrals observed by Dubrovin et al. in the perspectives of tau-symmetric integrable Hamiltonian PDEs.
Kanehisa Takasaki
Integrable structures of cubic Hodge integrals
数理解析研究所共同研究「可積分系数理の進化と展望」 招待講演(数理解析研究所2019年9月9日〜11日) [slide]
要旨 3次ホッジ積分は複素安定曲線のモジュライ空間の上のホッジ類を含む交叉数で,1個〜 3個の整数分割によってラベル付けされ,位相的弦理論の位相的頂点と密接に関連する. 2003年頃の研究によって,その組合せ論的表示が与えられ,整数分割が1個および 2個の場合にはシューア函数による母函数がKP階層や戸田階層のτ函数になることが知ら れている.本講演ではあらためて2個の整数分割の場合を考察し,ホッジ積分のパラメー タがある一連の特殊値を取る場合には,このτ函数がヴォルテラ型可積分階層や一般化 KdV階層と関係することを指摘する.この研究は中津了勇氏(摂南大学)との共同研究 に基づく.
Kanehisa Takasaki
Volterra-type hierarchies for specialized hypergeometric tau functions
Invited talk at China-Japan Joint Workshop on Integrable Systems 2019 (Shonan Village Center, Hayama, Japan, August 18-23, 2019) [slide]
Abstract An important example of Orlov and Scherbin's hypergeometric tau functions is the generating function of the double Hurwitz numbers introduced by Okounkov. Specialization of the second set of the 2D Toda time variables to particular values yields generating functions of the single Hurwitz numbers and the cubic Hodge integrals. These specialized hypergeometric tau functions turn out to be related to the Bogoyavlensky-Itoh hierarchies (aka the hugry Lotka-Volterra hierarchy). The Volterra-type hierarchies are derived as reductions of the lattice KP hierarchy.
Toshio Nakatsu and Kanehisa Takasaki
Three-partition Hodge integrals and the topological vertex
Comm. Math. Phys. 376(1) (2020), 201-234
https://doi.org/10.1007/s00220-019-03648-5
arXiv:1812.11726
Comments: 44 pages, 2 figures
Abstract A conjecture on the relation between the cubic Hodge integrals and the topological vertex in topological string theory is resolved. A central role is played by the notion of generalized shift symmetries in a fermionic realization of the two-dimensional quantum torus algebra. These algebraic relations of operators in the fermionic Fock space are used to convert generating functions of the cubic Hodge integrals and the topological vertex to each other. As a byproduct, the generating function of the cubic Hodge integrals at special values of the parameters therein is shown to be a tau function of the generalized KdV (aka Gelfand-Dickey) hierarchies.
Kanehisa Takasaki
Toda and q-Toda equations for Nekrasov partition functions
Invited talk at SIDE13 conference (Hakata, japan, November 13, 2018) [slide]
Abstract Some results on Toda-type equations and Nekrasov partitions functions are presented.
Contents 1. Introduction
2. Deriving q-Toda equations from Toda hierarchy
3. Toda-like equations for U(1) Nekrasov functions
4. Dual partition function of 5D SU(N) theory
5. Conclusion
Kanehisa Takasaki
4D limit of melting crystal model and its integrable structure
(previous title: Quantum curve and 4D limit of melting crystal model)
Journal of Geometry and Physics 137 (2019), 184--203
DOI: 10.1016/j.geomphys.2018.12.012
arXiv:1704.02750 [math-ph]
Date (revised v2): Tue, 28 Aug 2018 21:26:40 GMT (21kb)
Comments: latex2e using packages amsmath,amssymb,amsthm, 35 pages, no figure; (v2) the title is changed, and an appendix on the relevance to the Toda hierarchy is added; (v3) texts in Introduction and Sect. 4.2 are modified, a few typos are corrected, final version for publication
MSC-class: 14N35, 37K10, 39A13
Abstract This paper addresses the problems of quantum spectral curves and 4D limit for the melting crystal model of 5D SUSY $U(1)$ Yang-Mills theory on $\mathbb{R}^4\times S^1$. The partition function $Z(\mathbf{t})$ deformed by an infinite number of external potentials is a tau function of the KP hierarchy with respect to the coupling constants $\mathbf{t} = (t_1,t_2,\ldots)$. A single-variate specialization $Z(x)$ of $Z(\mathbf{t})$ satisfies a $q$-difference equation representing the quantum spectral curve of the melting crystal model. In the limit as the radius $R$ of $S^1$ in $\mathbb{R}^4\times S^1$ tends to $0$, it turns into a difference equation for a 4D counterpart $Z_{\mathrm{4D}}(X)$ of $Z(x)$. This difference equation reproduces the quantum spectral curve of Gromov-Witten theory of $\mathbb{CP}^1$. $Z_{\mathrm{4D}}(X)$ is obtained from $Z(x)$ by letting $R \to 0$ under an $R$-dependent transformation $x = x(X,R)$ of $x$ to $X$. A similar prescription of 4D limit can be formulated for $Z(\mathbf{t})$ with an $R$-dependent transformation $\mathbf{t} = \mathbf{t}(\mathbf{T},R)$ of $\mathbf{t}$ to $\mathbf{T} = (T_1,T_2,\ldots)$. This yields a 4D counterpart $Z_{\mathrm{4D}}(\mathbf{T})$ of $Z(\mathbf{t})$. $Z_{\mathrm{4D}}(\mathbf{T})$ agrees with a generating function of all-genus Gromov-Witten invariants of $\mathbb{CP}^1$. Fay-type bilinear equations for $Z_{\mathrm{4D}}(\mathbf{T})$ can be derived from similar equations satisfied by $Z(\mathbf{t})$. The bilinear equations imply that $Z_{\mathrm{4D}}(\mathbf{T})$, too, is a tau function of the KP hierarchy. These results are further extended to deformations $Z(\mathbf{t},s)$ and $Z_{\mathrm{4D}}(\mathbf{T},s)$ by a discrete variable $s \in \mathbb{Z}$, which are shown to be tau functions of the 1D Toda hierarchy.


Kanehisa Takasaki
Hurwitz numbers and integrable hierarchy of Volterra type
Invited talk at Special session 49, AIMS Conferencer 2018 (Taipei, Taiwan, July 7, 2018) [slide]
Abstract Recent results on an underlying integrable structure of Hurwitz numbers (arXiv:1704.02750) are presented.
Contents 1. Generating functions of Hurwitz numbers
2. Lax equations in single Hurwitz sector
3. Perspective from generalized string equations


Kanehisa Takasaki
Hurwitz numbers and integrable hierarchy of Volterra type
J. Phys. A: Math. Theor. 51 (2018), 43LT01 (9 pages)
doi: 10.1088/1751-8121/aae10b
arXiv:1807.00085
Comments: latex2e, amsmath,amssymb,amsthm, 12 pages, no figure
MSC-class: 14N10, 37K10
Abstract A generating function of the single Hurwitz numbers of the Riemann sphere $\mathbb{CP}^1$ is a tau function of the lattice KP hierarchy. The associated Lax operator $L$ turns out to be expressed as $L = e^{\mathfrak{L}}$, where $\mathfrak{L}$ is a difference-differential operator of the form $\mathfrak{L} = \partial_s - ve^{-\partial_s}$. $\mathfrak{L}$ satisfies a set of Lax equations that form a continuum version of the Bogoyavlensky-Itoh (aka hungry Lotka-Volterra) hierarchies. Emergence of this underlying integrable structure is further explained in the language of generalized string equations for the Lax and Orlov-Schulman operators of the 2D Toda hierarchy. This leads to logarithmic string equations, which are confirmed with the help of a factorization problem of operators.


Kanehisa Takasaki
3D Young diagrams and Gromov-Witten theory of CP1
invited talk at IBS Center of Geometry and Physics, Pohang, Korea (March 27, 2018) [slide]
Abstract The melting crystal model is a model of statistical mechanics for random 3D Young diagrams. The partition function of this model may be thought of as a $q$-deformation of the generating function of stationary Gromov-Witten invariants of $\mathbf{C}\mathbf{P}^1$ studied by Okounkov and Pandharipande. We consider these generating functions in the perspectives of integrable systems and quantum spectral curves. A main issue is how to capture the limit to the Gromov-Witten theory of $\mathbf{C}\mathbf{P}^1$ as $q \to 1$.


Kanehisa Takasaki
Toda hierarchies and their applications
J. Phys. A: Math. Theor. 51 (2018), 203001 (35pp)
doi: 10.1088/1751-8121/aabc14
arXiv:1801.09924 [math-ph]
Comments: 46 pages, no figure, contribution to JPhysA Special Issue "Fifty years of the Toda lattice"
MSC classes: 17B65, 37K10, 82B20
Selected by the Editors of Journal of Physics A: Mathematical and Theoretical for inclusion in the exclusive ‘Highlights of 2018’ collection [Certificate]
Abstract The 2D Toda hierarchy occupies a central position in the family of integrable hierarchies of the Toda type. The 1D Toda hierarchy and the Ablowitz-Ladik (aka relativistic Toda) hierarchy can be derived from the 2D Toda hierarchy as reductions. These integrable hierarchies have been applied to various problems of mathematics and mathematical physics since 1990s. A recent example is a series of studies on models of statistical mechanics called the melting crystal model. This research has revealed that the aforementioned two reductions of the 2D Toda hierarchy underlie two different melting crystal models. Technical clues are a fermionic realization of the quantum torus algebra, special algebraic relations therein called shift symmetries, and a matrix factorization problem. The two melting crystal models thus exhibit remarkable similarity with the Hermitian and unitary matrix models for which the two reductions of the 2D Toda hierarchy play the role of fundamental integrable structures.


Kanehisa Takasaki
Melting crystal model and its 4D limit
invited talk at Conference ``Physics and Mathematics of Nonlinear Phenomena'' (Gallipoli, Italy, June 17-24, 2017) [slide]
Abstract The melting crystal model is a toy model of Nekrasov's instanton partition functions for 5D supersymmetric gauge theories on R4 x S1. Its deformation by an infinite set of external potentials is known to become a tau function of the KP hierarchy. Its 4D counterpart Z4D(t) is known to coincide with a generating function of Gromov-Witten theory of CP1. We formulate a precise prescription of 4D limit of the deformed partition as the radius of S1 tends to 0. We can thereby re-derive the quantum spectral curve of CP1 theory (recently constructed by Dunin-Barkowski et al.) from the the quantum spectral curve of the melting crystal model. We further show that bilinear equations of the Fay type survive the 4D limit. This leads to yet another proof of the fact (proved by Getzler, Dubrovin-Zhang and Milanov by geometric methods) that Z4D(t) is a tau function of the KP hierarchy.


高崎金久・中津了勇
closed topological vertexの量子ミラー曲線と$q$-差分型Kac-Schwarz作用素
日本数学会2016年度総合分科会(2015年9月15日--18日関西大学) 無限可積分系セッション一般講演 [スライド]
要旨 closed topological vertexの量子ミラー曲線が $q$-差分型Kac-Schwarz作用素として解釈できることを示す. 同様の解釈はコニフォルドをはじめとするstrip geometry上の 位相的弦理論にもあてはまる.


Kanehisa Takasaki and Toshio Nakatsu
$q$-difference Kac-Schwarz operators in topological string theory
SIGMA 13 (2017), 009, 28 pages
doi:10.3842/SIGMA.2017.009
arXiv:1609.00882 [math-ph]
Comments: Contribution to the Special Issue on Combinatorics of Moduli Spaces: Integrability, Cohomology, Quantisation, and Beyond
MSC-class: 37K10, 39A13, 81T30
Key words: topological vertex; mirror symmetry; quantum curve; q-difference equation; KP hierarchy; Kac-Schwarz operator
Abstract The perspective of Kac-Schwarz operators is introduced to the authors' previous work on the quantum mirror curves of topological string theory in strip geometry and closed topological vertex. Open string amplitudes on each leg of the web diagram of such geometry can be packed into a multi-variate generating function. This generating function turns out to be a tau function of the KP hierarchy. The tau function has a fermionic expression, from which one finds a vector $|W\rangle$ in the fermionic Fock space that represents a point $W$ of the Sato Grassmannian. $|W\rangle$ is generated from the vacuum vector $|0\rangle$ by an operator $g$ on the Fock space. $g$ determines an operator $G$ on the space $V = \mathbb{C}((x))$ of Laurent series in which $W$ is realized as a linear subspace. $G$ generates an admissible basis $\{\Phi_j(x)\}_{j=0}^\infty$ of $W$. $q$-difference analogues $A,B$ of Kac-Schwarz operators are defined with the aid of $G$. $\Phi_j(x)$'s satisfy the linear equations $A\Phi_j(x) = q^j\Phi_j(x)$, $B\Phi_j(x) = \Phi_{j+1}(x)$. The lowest equation $A\Phi_0(x) = \Phi_0(x)$ reproduces the quantum mirror curve in the authors' previous work.


高崎金久
行列の因子分解とKostant-Toda階層の簡約
応用解析研究会〜可積分系から計算数学まで〜 (天満研修センター,大阪,2016年5月19日〜21日) 招待講演 [スライド]
要旨 Gekhtman, Shapiro, Veinsteinは $S_n$ のコクセター元 $u,v$ で定まる 2重ブリュア胞体 $G^{u,v} \subset G = \mathrm{GL}(n,\CC)$ の上に 戸田型可積分系を構成した.これはBerenstein, Fomin, Zelevinskyによる 行列の因子分解の応用であり,FeybusovichとGekhtmanの``elementary Toda orbits''の一般化を与える.この話題の基礎的な部分を紹介する.


高崎金久
Topological vertex and quantum mirror curves
国際シンポジウム ``Rikkyo MathPhys 2016'' (立教大学2016年1月9日〜11日) 招待講演 [スライド]
Abstract Topological vertex is a diagrammatic method for constructing the partition functions of topological string theory on non-compact toric Calabi-Yau threefolds. We present a few cases, including the so called ``closed topological vertex'', where open string amplitudes can be computed explicitly by this method. These expressions of open string amplitudes can be used to derive ``quantum mirror curves''.This is a joint work with Toshio Nakatsu.
高崎金久
Topological vertex and quantum mirror curves
研究会 ``Quantization of Spectral Curves'' (大阪市立大学2015年11月2日〜6日) 招待講演 [スライド]
Abstract Topological vertex is a diagrammatic method for constructing the partition functions (or amplitudes) of topological string theory on non-compact toric Calabi-Yau threefolds. This talk is focussed on two cases where open string amplitudes can be computed explicitly by this method. One is the case of ``on-strip'' geometry, and the other is the so called ``closed topological vertex''. For both cases, generating functions of open string amplitudes turn out to satisfy a linear q-difference equation. This equation may be thought of as quantization of the equation of the mirror curve.


高崎金久・中津了勇
closed topological vertexの開弦振幅
日本数学会2015年度総合分科会(2015年9月13日--16日京都産業大学) 無限可積分系セッション一般講演 [スライド]
要旨 位相的頂点の方法によってclosed topological vertexの開弦振幅の一部を計算し, それらの1変数母函数がある種の$q$-差分方程式を満たすことを示す. この$q$-差分方程式はミラー曲線の量子化とみなせる.


Kanehisa Takasaki and Toshio Nakatsu
Open string amplitudes of closed topological vertex
J. Phys. A: Math. Theor. 49 (2016), 025201 (28pp)
doi:10.1088/1751-8113/49/2/025201
arXiv:1507.07053 [math-ph]
Comments: latex2e, package amsmath,amssymb,amsthm,graphicx, 10 figures
MSC-class: 17B81, 33E20, 81T30
Abstract The closed topological vertex is the simplest ``off-strip'' case of non-compact toric Calabi-Yau threefolds with acyclic web diagrams. By the diagrammatic method of topological vertex, open string amplitudes of topological string theory therein can be obtained by gluing a single topological vertex to an ``on-strip'' subdiagram of the tree-like web diagram. If non-trivial partitions are assigned to just two parallel external lines of the web diagram, the amplitudes can be calculated with the aid of techniques borrowed from the melting crystal models. These amplitudes are thereby expressed as matrix elements, modified by simple prefactors, of an operator product on the Fock space of 2D charged free fermions. This fermionic expression can be used to derive $q$-difference equations for generating functions of special subsets of the amplitudes. These $q$-difference equations may be interpreted as the defining equation of a quantum mirror curve.


Kanehisa Takasaki
Integrable structure of various melting crystal models
Invited talk at workshop ``Recent Progress of Integrable Systems'', National Taiwan University, April 10-12, 2015 [slide]
This is an expanded version of my talk at Tsuda College, Tokyo, in February, 2015.


Kanehisa Takasaki
Integrable structure of various melting crystal models
研究会 ``Curves, Moduli and Integrable Systems'' (津田塾大学2015年2月17日〜19日)招待講演 [slide]
Abstract My recent work on integrable structure of melting crystal models is reviewd. The simplest model is a statistical model of random 3D Young diagrams. A variant of this model originates in topological string theory on the resolved conifold. These two models are related to the 1D Toda hierarchy and the Ablowitz- Ladik hierarchy, respectively. These results can be further extended to ``orbifold'' models. The relevant integrable systems are particular reductions of the 2D Toda hierarchy.


高崎金久
重力場のツイスター理論と可積分系
第16回特異点研究会(名古屋大学2015年1月10日〜12日)招待講演 [スライド]
目次 I. 4 次元時空の反自己双対性の諸相
1. 動枠によるレビ・チビタ接続の記述
2. スピノル束とスピノル接続
3. 反自己双対時空
II. ツイスター空間の構成と逆構成
1. 反自己双対時空のツイスター空間
2. 右平坦時空のツイスター空間
3. 右平坦時空の生成
4. 右平坦時空の生成の例
III. 次元簡約と可積分系
1. 可積分系への次元簡約の例:無分散戸田方程式
2. 可積分系への次元簡約の例:無分散KP方程式
3. 3次元アインシュタイン・ワイル空間


Kanehisa Takasaki
Orbifold melting crystal models and reductions of Toda hierarchy
J. Phys. A: Math. Theor. 48 (2015), 215201 (34 pages)
doi:10.1088/1751-8113/48/21/215201
arXiv:1410.5060 [math-ph]
Comments: 41 pages, no figure
MSC-class: 17B65, 35Q55, 81T30, 82B20
Abstract Orbifold generalizations of the ordinary and modified melting crystal models are introduced. They are labelled by a pair $a,b$ of positive integers, and geometrically related to $\mathbf{Z}_a\times\mathbf{Z}_b$ orbifolds of local $\mathbf{CP}^1$ geometry of the $\mathcal{O}(0)\oplus\mathcal{O}(-2)$ and $\mathcal{O}(-1)\oplus\mathcal{O}(-1)$ types. The partition functions have a fermionic expression in terms of charged free fermions. With the aid of shift symmetries in a fermionic realization of the quantum torus algebra, one can convert these partition functions to tau functions of the 2D Toda hierarchy. The powers $L^a,\bar{L}^{-b}$ of the associated Lax operators turn out to take a special factorized form that defines a reduction of the 2D Toda hierarchy. The reduced integrable hierarchy for the orbifold version of the ordinary melting crystal model is the bi-graded Toda hierarchy of bi-degree $(a,b)$. That of the orbifold version of the modified melting crystal model is the rational reduction of bi-degree $(a,b)$. This result seems to be in accord with recent work of Brini et al. on a mirror description of the genus-zero Gromov-Witten theory on a $\mathbf{Z}_a\times\mathbf{Z}_b$ orbifold of the resolved conifold.


高崎金久
溶解結晶模型の可積分構造
研究集会「非線形数理モデルの諸相:連続,離散,超離散,その先」 (九州大学マス・フォア・インダストリ研究所2014年8月6日〜8日)招待講演 [スライド | 報告集原稿]
要旨 溶解結晶模型は3次元ヤング図形で定式化される統計力学的模型であり, 位相的弦理論や位相的不変量の観点からさまざまな形で拡張されている. この模型の背後には戸田型の可積分構造が隠れている.最近では変種の模型が Ablowitz-Ladik(相対論的戸田)階層と関係することも明らかになった.


高崎金久
位相的弦理論における一般化された Ablowitz-Ladik 階層
日本数学会年会一般講演(学習院大学2014年3月17日) [予稿 | スライド]
Abstract コニフォルドを一般化した3 次元トーリックCalabi-Yau多様体(一般化コニフォルド)に対して, 位相的弦理論の開弦振幅の母函数と一般化されたAblowitz-Ladik 階層との関係を明らかにする.


Kanehisa Takasaki
Modified melting crystal model and Ablowitz-Ladik hierarchy
J. Phys.: Conf. Ser. 482 (2014), 012041 [open access]
doi:10.1088/1742-6596/482/1/012041
arXiv:1312.7276 [math-ph]
Comments: 10 pages, 4 figures, contribution to proceedings of the conference "Physics and Mathematic of Nonlinear Phenomena", Gallipoli, Italy, June 23-28, 2013
MSC-class: 17B65, 35Q55, 81T30, 82B20
Abstract This is a review of recent results on the integrable structure of the ordinary and modified melting crystal models. When deformed by special external potentials, the partition function of the ordinary melting crystal model is known to become essentially a tau function of the 1D Toda hierarchy. In the same sense, the modified model turns out to be related to the Ablowitz-Ladik hierarchy. These facts are explained with the aid of a free fermion system, fermionic expressions of the partition functions, algebraic relations among fermion bilinears and vertex operators, and infinite matrix representations of those operators.


Kanehisa Takasaki
Generalized Ablowitz-Ladik hierarchy in topological string theory
J. Phys. A: Math. Theor. 47 (2014), 165201 (20 pages)
doi:10.1088/1751-8113/47/16/165201
arXiv:1312.7184 [math-ph]
Comments: 24pages, 1 figre
MSC-class: 17B80, 35Q55, 81T30
Abstract This paper addresses the issue of integrable structure in topological string theory on generalized conifolds. Open string amplitudes of this theory can be expressed as the matrix elements of an operator on the Fock space of 2D charged free fermion fields. The generating function of these amplitudes with respect to the product of two independent Schur functions become a tau function of the 2D Toda hierarchy. The associated Lax operators turn out to have a particular factorized form. This factorized form of the Lax operators characterizes a generalization of the Ablowitz-Ladik hierarchy embedded in the 2D Toda hierarchy. The generalized Ablowitz-Ladik hierarchy is thus identified as a fundamental integrable structure of topological string theory on the generalized conifolds.


Kanehisa Takasaki
Modified melting crystal model and Ablowitz-Ladik hierarchy
Invited talk at "Physics and Mathematic of Nonlinear Phenomena", Gallipoli, Italy, June 23--28, 2013 [slide]
Abstract This talk presents my recent work on the integrable structure of a modified melting crystal model (arXiv:1208.4497 [math-ph], arXiv:1302.6129 [math-ph]).
Contents:
1.Melting crystal model --- 3D Young diagram, plane partitions, partition function, diagonal slicing, partial sums, final answer
2.Integrable structure in deformed models --- undeformed models, deformation by external potentials, summary of previous result, summary of new result
3. Fermionic approach to partition functions --- fermions, fermionic representation of partition functions, previous result, new result, technical clue
4. Integrable structure in Lax formalism --- Lax formalism of 2D Toda hierarchy, reduction to 1D Toda hierarchy, reduction to Ablowitz-Ladik hierarchy, result, technical clue


高崎金久
溶解結晶模型とAblowitz-Ladik階層
日本数学会年会一般講演(2013年3月22日京都大学吉田南構内) [abstract| slide]
要旨 resolved conifold上の位相的弦理論に関連する溶解結晶模型が Ablowitz-Ladik階層(あるいは,それと同値なRuijsenaars-戸田階層) の特殊解と対応することをτ函数とLax形式の両面において説明する.


Kanehisa Takasaki
Modified melting crystal model and Ablowitz-Ladik hierarchy
J. Phys. A: Math. Theor. 46 (2013), 245202 (23 pages)
arXiv:1302.6129 [math-ph]
Comments: latex2e, 33 pages, no figure
MSC classes: 17B65, 35Q55, 81T30, 82B20
doi:10.1088/1751-8113/46/24/245202
Abstract This paper addresses the issue of integrable structure in a modified melting crystal model of topological string theory on the resolved conifold. The partition function can be expressed as the vacuum expectation value of an operator on the Fock space of 2D complex free fermion fields. The quantum torus algebra of fermion bilinears behind this expression is shown to have an extended set of ``shift symmetries''. They are used to prove that the partition function (deformed by external potentials) is essentially a tau function of the 2D Toda hierarchy. This special solution of the 2D Toda hierarchy can be characterized by a factorization problem of $\ZZ\times\ZZ$ matrices as well. The associated Lax operators turn out to be quotients of first order difference operators. This implies that the solution of the 2D Toda hierarchy in question is actually a solution of the Ablowitz-Ladik (equivalently, relativistic Toda) hierarchy. As a byproduct, the shift symmetries are shown to be related to matrix-valued quantum dilogarithmic functions.


Kanehisa Takasaki
Remarks on partition functions of topological string theory on generalized conifolds
RIMS Kokyuroku No. 1913 (2014), 182--201
arXiv:1301.4548 [math-ph]
Comments: 20 pages, 3 figures, contribution to the proceedings of the RIMS camp-style seminar "Algebraic combinatorics related to Young diagrams and statistical physics", August, 2012, International Institute for Advanced Studies, Kyoto, organized by M. Ishikawa, S. Okada and H. Tagawa
MSC-class: 05E05, 37K10, 81T30
Abstract The notion of topological vertex and the construction of topological string partition functions on local toric Calabi-Yau 3-folds are reviewed. Implications of an explicit formula of partition functions for the generalized conifolds are considered. Generating functions of part of the partition functions are shown to be tau functions of the KP hierarchy. The associated Baker-Akhiezer functions play the role of wave functions, and satisfy $q$-difference equations. These $q$-difference equations represent the quantum mirror curves conjectured by Gukov and Su{\l}kowski.


Kanehisa Takasaki
Integrable structure of modified melting crystal model
Poster presentation at conference "Integrability in Gauge and String Theory", ETH Zurich, August 20--24, 2012 [poster]
arXiv version arXiv:1208.4497 [math-ph]]
MSC-class: 17B65, 35Q58, 82B20
Abstract Our previous work on a hidden integrable structure of the melting crystal model (the $U(1)$ Nekrasov function) is extended to a modified crystal model. As in the previous case, ``shift symmetries'' of a quantum torus algebra plays a central role. With the aid of these algebraic relations, the partition function of the modified model is shown to be a tau function of the 2D Toda hierarchy. We conjecture that this tau function belongs to a class of solutions (the so called Toeplitz reduction) related to the Ablowitz-Ladik hierarchy.


Kanehisa Takasaki
Combinatorial properties of toric topological string partition functions
RIMS合宿型セミナー「ヤング図形・統計物理に関連する代数的組合せ論」 (2012年8月6日〜10日国際高等研究所)における講演 [スライド]
目次
1. Topological vertex and web diagrams
2. Generalized conifolds
3. Partition functions of generalized conifolds
4. Simplest examples
5. General rules
6. Quantum mirror curve


Kanehisa Takasaki
Old and new reductions of dispersionless Toda hierarchy
SIGMA 8 (2012), 102, 22 pages
arXiv:1206.1151 [math-ph]
Contribution to SIGMA Special Issue on Geometrical Methods in Mathematical Physics
DOI: 10.3842/SIGMA.2012.102
MSC classes: 35Q58, 37K10, 53B50, 53D45
Abstract Two types of finite-variable reductions of the dispersionless Toda hierarchy are considered in the geometric perspectives. The reductions are formulated in terms of "Landau-Ginzburg potentials" that play the role of reduced Lax functions. One of them is a generalization of Dubrovin and Zhang's trigonometric polynomial. The other is intended to be a Toda version of the waterbag model of the dispersionless KP hierarchy. The two types of Landau-Ginzburg potentials are shown to satisfy (a radial version of) the L\"onwer equations with respect to the critical values of the Landau-Ginzburg potentials. Integrability conditions of these L\"owner equations are (a radial version of) the Gibbons-Tsarev equations. These equations are used to formulate hodograph solutions of the reduced hierarchy. Geometric aspects of the Gibbons-Tsarev equations are explained in the language of classical differential geometry (Darboux equations, Egorov metrics and Combescure transformations). Frobenius structures on the parameter space of the Landau-Ginzburg potentials are introduced, and flat coordinates are constructed explicitly.


A. Yu. Orlov, T. Shiota, K. Takasaki
Pfaffian structures and certain solutions to BKP hierarchies I. Sums over partitions
arXiv:1201.4518v1 [math-ph]
Abstract We introduce a useful and rather simple class of BKP tau functions which which we shall call "easy tau functions". We consider two versions of BKP hierarchy, one we will call "small BKP hierarchy" (sBKP) related to $O(\infty)$ introduced in Date et al and "large BKP hierarchy" (lBKP) related to $O(2\infty +1)$ introduced in Kac and van de Leur (which is closely related to the large $O(2\infty)$ DKP hierarchy (lDKP) introduced in Jimbo and Miwa). Actually "easy tau functions" of the sBKP hierarchy were already considered in Harnad et al, here we are more interested in the lBKP case and also the mixed small-large BKP tau functions (Kac and van de Leur). Tau functions under consideration are equal to certain sums over partitions and to certain multi-integrals over cone domains. In this way they may be applicable in models of random partitions and models of random matrices. Here is the first part of the paper where sums of Schur and projective Schur functions over partitions are considered.


Kanehisa Takasaki and Takashi Takebe
An hbar-expansion of the Toda hierarchy: a recursive construction of solutions
Analysis and Mathematical Physics 2 (2012), 171-214.
arXiv:1112.0601v1 [math-ph]
Comments: 37 pages, no figures. arXiv admin note: substantial text overlap with arXiv:0912.4867
MSC classes: 37K10, 35Q53
Abstract A construction of general solutions of the \hbar-dependent Toda hierarchy is presented. The construction is based on a Riemann-Hilbert problem for the pairs (L,M) and (\bar L,\bar M) of Lax and Orlov-Schulman operators. This Riemann-Hilbert problem is translated to the language of the dressing operators W and \bar W. The dressing operators are set in an exponential form as W = e^{X/\hbar} and \bar W = e^{\phi/\hbar}e^{\bar X/\hbar}, and the auxiliary operators X,\bar X and the function \phi are assumed to have \hbar-expansions X = X_0 + \hbar X_1 + ..., \bar X = \bar X_0 + \hbar\bar X_1 + ... and \phi = \phi_0 + \hbar\phi_1 + .... The coefficients of these expansions turn out to satisfy a set of recursion relations. X,\bar X and \phi are recursively determined by these relations. Moreover, the associated wave functions are shown to have the WKB form \Psi = e^{S/\hbar} and \bar\Psi = e^{\bar S/\hbar}, which leads to an \hbar-expansion of the logarithm of the tau function.


Kanehisa Takasaki and Toshio Nakatsu
Thermodynamic limit of random partitions and dispersionless Toda hierarchy
J. Phys. A: Math. Theor. 45 (2012), 025403 (38pp)
arXiv:1110.0657 [math-ph]
Comments: latex2e, 55 pages, no figure
MSC-class: 35Q58, 81T13, 82B20
doi:10.1088/1751-8113/45/2/025403
Abstract We study the thermodynamic limit of random partition models for the instanton sum of 4D and 5D supersymmetric U(1) gauge theories deformed by some physical observables. The physical observables correspond to external potentials in the statistical model. The partition function is reformulated in terms of the density function of Maya diagrams. The thermodynamic limit is governed by a limit shape of Young diagrams associated with dominant terms in the partition function. The limit shape is characterized by a variational problem, which is further converted to a scalar-valued Riemann-Hilbert problem. This Riemann-Hilbert problem is solved with the aid of a complex curve, which may be thought of as the Seiberg-Witten curve of the deformed U(1) gauge theory. This solution of the Riemann-Hilbert problem is identified with a special solution of the dispersionless Toda hierarchy that satisfies a pair of generalized string equations. The generalized string equations for the 5D gauge theory are shown to be related to hidden symmetries of the statistical model. The prepotential and the Seiberg-Witten differential are also considered.


Kanehisa Takasaki
Non-degenerate solutions of universal Whitham hierarchy
invited talk at "7th International Conference on Nonlinear Evolution Equations and Wave Phenomena: Computation and Theory" (University of Georgia, Athens, April 5, 2011) [slide]
Abstract I will review recent results obtained in joint work with T. Takebe and L.-P. Teo. In this work, the notion of ``non-degenerate solutions'' for the dispersionless Toda hierarchy, is generalied to the universal Whitham hierarchy (of genus zero). These solutions are characterized by a nonlinear Riemann--Hilbert problem. One can see from this characterization that these solutions are a kind of ``general'' solutions of these dispersionless integrable hierarchies. The Riemann--Hilbert problem is translated to the language of a space of conformal mappings, and solved by inversion of an infinite dimensional period map on this space.
I will also argue that a possible dispersive analogue of these results can be found in a system of multiple bi-orthogonal polynomials. These multiple bi-orthogonal polynomials are a generalizations of bi-orthogonal polynomials studied by Adler and van~Moerbeke in the context of the Toda hierarchy. The latter give a special solution of the Toda hierarchy. This solution may be thought of as a dispersive counterpart of non-degenerate solution of the dispersionless Toda hierarchy. I conjecture that a similar interpretation holds for the multiple bi-orthogonal polynomials in the framework of our previous work.


Kanehisa Takasaki
Toda tau functions with quantum torus symmetries
colloquium talk at Department of Mathematics, University of California, Davis (Davis, March 30, 2011) [slide]
Abstract The quantum torus algebra plays an important role in a special class of solutions of the Toda hierarchy. Typical examples are the solutions related to the melting crystal model of topological strings and 5D SUSY gauge theories. The quantum torus algebra is realized by a 2D complex free fermion system that underlies the Toda hierarchy, and exhibits mysterious ``shift symmetries''. This talk is based on collaboration with Toshio Nakatsu.


Kanehisa Takasaki and Takashi Takebe
An h-bar dependent formulation of the Kadomtsev-Petviashvili hierarchy
Theoretical and Mathematical Physics 171 (2) (2012), 683-690.
arXiv:1105.0794v1 [math-ph]
Comments: 12 pages, contribution to the Proceedings of the "International Workshop on Classical and Quantum Integrable Systems 2011" (January 24-27, 2011 Protvino, Russia)
Abstract This is a summary of a recursive construction of solutions of the hbar-dependent KP hierarchy. We give recursion relations for the coefficients X_n of an hbar-expansion of the operator X = X_0 + \hbar X_1 + \hbar^2 X_2 + ... for which the dressing operator W is expressed in the exponential form W = \exp(X/\hbar). The asymptotic behaviours of (the logarithm of) the wave function and the tau function are also considered.


Kanehisa Takasaki
Toda tau functions with quantum torus symmetries
Acta Polytechnica 51, No.1 (2011), 74-76.
arXiv:1101.4083 [math-ph]
Comments: latex2e using packages amsmath,amssymb,amsthm, 6 pages, no figure, contribution to "19th International Colloquium on Integrable Systems and Quantum Symmetries"
Abstract The quantum torus algebra plays an important role in a special class of solutions of the Toda hierarchy. Typical examples are the solutions related to the melting crystal model of topological strings and 5D SUSY gauge theories. The quantum torus algebra is realized by a 2D complex free fermion system that underlies the Toda hierarchy, and exhibits mysterious "shift symmetries". This article is based on collaboration with Toshio Nakatsu.


Kanehisa Takasaki
Generalized string equations for double Hurwitz numbers
Journal of Geometry and Physics 62 (2012), 1135--1156
arXiv:1012.5554 [math-ph]
Comments: latex2e using amsmath,amssymb,amsthm, 41 pages, no figure
MSC-class: 35Q58, 14N10, 81R12
Abstract The generating function of double Hurwitz numbers is known to become a tau function of the Toda hierarchy. The associated Lax and Orlov-Schulman operators turn out to satisfy a set of generalized string equations. These generalized string equations resemble those of $c = 1$ string theory except that the Orlov-Schulman operators are contained therein in an exponentiated form. These equations are derived from a set of intertwining relations for fermiom bilinears in a two-dimensional free fermion system. The intertwiner is constructed from a fermionic counterpart of the cut-and-join operator. A classical limit of these generalized string equations is also obtained. The so called Lambert curve emerges in a specialization of its solution. This seems to be another way to derive the spectral curve of the random matrix approach to Hurwitz numbers.


Kanehisa Takasaki
Generalized string equations for Hurwitz numbers
研究集会「可積分系,ランダム行列,代数幾何と幾何学的不変量」 (2010年12月15日〜17日京都大学人間環境学研究科) [講演スライド]
Abstract Generating functions of almost-simple and double Hurwitz numbers for the Riemann sphere are known to become special tau functions of the KP and Toda hierarchies. This talk presents recent results on the generating function of duble Hurwitz numbers. Generalized string equations for the Lax and Orlov--Schulman operators are derived. These equations turn out to have a meaningful classical limit in the dispersionless Toda hierarchy. Solving these equations reveals a relation with Lambert's W-function. This seems to show another approach to various roles of the W-function in Hurwitz numbers.


高崎金久
フルヴィッツ数に関連する戸田階層の特殊解とその古典極限
日本数学会2010年秋季総合分科会(2010年9月22日〜25日名古屋大学)一般講演 [講演スライド]
要旨 この講演ではフルビッツ数の母函数とその q 類似(ランダム行列の 分配函数に相当する)を特殊値として与えるような戸田階層のτ函数を考察し, ラックス作用素とオルロフ--シュルマン作用素に対して「一般化弦方程式」を導く. さらにこの一般化弦方程式の古典極限(無分散極限)の解から Eynard と Orantin のランダム行列的方法で得られる「スペクトル曲線」 と同じ形の曲線の方程式が現れることを指摘する.


K. Takasaki
Toda tau function with quantum torus symmetries
19th International Colloquium ``Integrable Systems and Quantum Symmetries'' (Czech Technical University, Prague, June 17--19, 2010) 講演スライド [pdf]
Abstract The quantum torus algebra plays an important role in a spacial class of solutions of the Toda hierarchy. Typical examples are the solutions related to the melting crystal model of 5D SUSY gauge theories, topological strings on toric Calabi-Yau three folds, the Hurwitz numbers of the Riemann sphere and their $q$-analogues. The quantum torus algebra is realized by a 2D complex fermion system that underlies the Toda hierarchy, and exhibits a mysterious ``shift symmetry'' that leads to generalized ``string equations''. This talk is partly based on collaboration with Toshio Nakatsu.


Kanehisa Takasaki, Takashi Takebe and Lee Peng Teo
Non-degenerate solutions of universal Whitham hierarchy
J. Phys. A: Math. Theor. 43 (2010), 325205
arXiv:1003.5767 [math-ph]
Comments: latex2e, using amsmath, amssym and amsthm packages, 32 pages, no figure
Abstract The notion of non-degenerate solutions for the dispersionless Toda hierarchy is generalized to the universal Whitham hierarchy of genus zero with $M+1$ marked points. These solutions are characterized by a Riemann-Hilbert problem (generalized string equations) with respect to two-dimensional canonical transformations, and may be thought of as a kind of general solutions of the hierarchy. The Riemann-Hilbert problem contains $M$ arbitrary functions $H_a(z_0,z_a)$, $a = 1,\ldots,M$, which play the role of generating functions of two-dimensional canonical transformations. The solution of the Riemann-Hilbert problem is described by period maps on the space of $(M+1)$-tuples $(z_\alpha(p) : \alpha = 0,1,\ldots,M)$ of conformal maps from $M$ disks of the Riemann sphere and their complements to the Riemann sphere. The period maps are defined by an infinite number of contour integrals that generalize the notion of harmonic moments. The $F$-function (free energy) of these solutions is also shown to have a contour integral representation.


高崎金久
溶解結晶模型の可積分構造
日本数学会2010年年会(2010年3月24日〜27日慶應義塾大学矢上キャンパス)特別講演 [講演予稿 | 講演スライド]
要旨 溶解結晶模型は5次元超対称ゲージ理論やトーリックCalabi-Yau多様体上の 位相的弦理論と関係する統計力学的模型である,その分配函数に 外部ポテンシャルを導入したものは結合定数に関して1次元戸田階層の 特殊解のτ函数となる.さらに,結晶に一種の非対称性を導入した模型にも 同様の可積分構造(2次元戸田階層の簡約)がある.これらの結果を 基礎の部分から解説する.


Kanehisa Takasaki
KP and Toda tau functions in Bethe ansatz
B. Feigin, M. Jimbo and M. Okado (eds.), ``New Trends in Quantum Integrable Systems'', Proceedings of the Infinite Analysis 09, Kyoto, Japan 27-31 July 2009 (World Sci. Publ., Hackensack, NJ), pp. 373--391.
arXiv:1003.307 [math-ph]
Comments: latex2e, using ws-procs9x6 package, 19 pages, contribution to the festschrift volume for the 60th anniversary of Tetsuji Miwa
Abstract Recent work of Foda and his group on a connection between classical integrable hierarchies (the KP and 2D Toda hierarchies) and some quantum integrable systems (the 6-vertex model with DWBC, the finite XXZ chain of spin 1/2, the phase model on a finite chain, etc.) is reviewed. Some additional information on this issue is also presented.


Kanehisa Takasaki
Two extensions of 1D Toda hierarchy
J. Phys. A: Math. Theor. 43 (2010) 434032
arXiv:1002.4688 [nlin.SI]
Comments: latex2e, usepackage amsmath,amssymb, 19 pages, no figure
Abstract The extended Toda hierarchy of Carlet, Dubrovin and Zhang is reconsidered in the light of a 2+1D extension of the 1D Toda hierarchy constructed by Ogawa. These two extensions of the 1D Toda hierarchy turn out to have a very similar structure, and the former may be thought of as a kind of dimensional reduction of the latter. In particular, this explains an origin of the mysterious structure of the bilinear formalism proposed by Milanov.


Kanehisa Takasaki and Takashi Takebe
hbar-expansion of KP hierarchy: Recursive construction of solutions
arXiv:0912.4867 [math-ph]
Comments: 28 pages
Abstract The \hbar-dependent KP hierarchy is a formulation of the KP hierarchy that depends on the Planck constant \hbar and reduces to the dispersionless KP hierarchy as \hbar -> 0. A recursive construction of its solutions on the basis of a Riemann-Hilbert problem for the pair (L,M) of Lax and Orlov-Schulman operators is presented. The Riemann-Hilbert problem is converted to a set of recursion relations for the coefficients X_n of an \hbar-expansion of the operator X = X_0 + \hbar X_1 + \hbar^2 X_2 +... for which the dressing operator W is expressed in the exponential form W = \exp(X/\hbar). Given the lowest order term X_0, one can solve the recursion relations to obtain the higher order terms. The wave function \Psi associated with W turns out to have the WKB form \Psi = \exp(S/\hbar), and the coefficients S_n of the \hbar-expansion S = S_0 + \hbar S_1 + \hbar^2 S_2 +..., too, are determined by a set of recursion relations. This WKB form is used to show that the associated tau function has an \hbar-expansion of the form \log\tau = \hbar^{-2}F_0 + \hbar^{-1}F_1 + F_2 + ..


高崎金久
対数的時間発展による非線形Schroedinger階層とAblowitz-Ladik階層の拡張 研究集会「非線形波動の現状と将来」(九州大学応用力学研究所2009年11月19日〜21日) 一般講演スライド [pdf]
要旨 Carlet, Dubrovin, Zhang は通常の1次元戸田階層に 「対数的」時間発展を加えて「拡張戸田階層」を構成した. Milanov はこの拡張戸田階層に対して双線形形式を与えた. ところで,1次元戸田階層は非線形Schr\"odinger(NLS)階層 のB\"acklund変換列(NLS-戸田階層)とも見なせる. 同様の意味でRuijsenaars-戸田階層(RT階層)は Ablowitz-Ladik(AL)階層と対応していることが知られている. 本講演では,1次元戸田階層の対数的時間発展を NLS-戸田階層の言葉に翻訳し, その結果がAL階層に拡張できることを示す.


高崎金久
対数的時間発展による非線形Schroedinger階層とAblowitz-Ladik階層の拡張 日本数学会2009年秋季総合分科会 (2009年9月24日〜27日大阪大学豊中キャンパス) 一般講演スライド [pdf]
要旨 Carlet, Dubrovin, Zhang は通常の1次元戸田階層に 「対数的時間発展」を加えて「拡張戸田階層」を構成した. Milanov はこの拡張戸田階層に対して双線形形式を与えた. ところで,1次元戸田階層は非線形シュレディンガー(NLS)階層 のBacklund変換列(NLS-戸田階層)とも見なせる. 同様の意味でRuijsenaars-戸田階層(RT階層)は Ablowitz-Ladik(AL)階層と対応している (Kharchev, Mironov Zedhanov; Suris; Sadakane). 本講演では,1次元戸田階層の対数的時間発展を NLS-戸田階層の言葉に翻訳し, その結果がAL階層に拡張できることを示す.


Kanehisa Takasaki
Auxiliary linear problem, difference Fay identities and dispersionless limit of Pfaff-Toda hierarchy
SIGMA 5 (2009), paper 109, 34 pages
arXiv:0908.3569 [nlin.SI]
Comments: 49 pages, no figure, usepackage amsmath,amssymb,amsthm
Abstract Recently the study of Fay-type identities revealed some new features of the DKP hierarchy (also known as ``the coupled KP hierarchy'' and ``the Pfaff lattice''). Those results are now extended to a Toda version of the DKP hierarchy (tentatively called ``the Pfaff-Toda hierarchy'') . Firstly, an auxiliary linear problem of this hierarchy is constructed. Unlike the case of the DKP hierarchy, building blocks of the auxiliary linear problem are difference operators. A set of evolution equations for dressing operators of the wave functions are also obtained. Secondly, a system of Fay-like identities (difference Fay identities) are derived. They give a generating functional expression of auxiliary linear equations. Thirdly, these difference Fay identities have well defined dispersionless limit (dispersionless Hirota equations). As in the case of the DKP hierarchy, an elliptic curve is hidden in these dispersionless Hirota equations. This curve is a kind of spectral curve, whose defining equation is identified with the characteristic equation of a subset of all auxiliary linear equations. The other auxiliary linear equations are related to quasi-classical deformations of this elliptic spectral curve.


Kanehisa Takasaki
KP and Toda tau functions in Bethe ansatz: a review
Workshop ``Infinite Analysis 09 --- New trends in quantum integrable systems'' (RIMS and Department of Mathematics, Kyoto University, July 27--31, 2009), slides of talk [pdf]
Abstract This is a review of recent work by O. Foda et al. on KP tau functions that emerge in algebraic Bethe ansatz of the 6-vertex model with DWBC, the spin 1/2 XXZ model, etc.


高崎金久
2個のq-パラメータをもつランダム平面分割の可積分構造
日本数学会2009年年会 (2009年3月26日〜29日東京大学数理科学研究科) 一般講演スライド [pdf]
要旨 溶解結晶模型と呼ばれる平面分割の統計力学的模型 (5次元の超対称ゲージ理論のインスタントン和という 解釈も有する)に特別な形の外部ポテンシャルを導入するとき, その分配函数は1次元戸田階層のτ函数に簡単な因子を乗じた ものになる.この講演ではこの結果の一つの一般化を紹介し, そこにもう一つの可積分構造として $q$ 差分戸田方程式が 内在していることも指摘する.


高崎金久
Pfaff-Toda階層の差分Fay等式
日本数学会2009年年会 (2009年3月26日〜29日東京大学数理科学研究科) 一般講演スライド [pdf]
要旨 この講演では筧とWilloxによって導入された可積分階層 (「Pfaffian的」あるいは「Pfaffian化された」戸田階層 という意味で「Pfaff戸田階層」と呼ぶことにする) の 補助線形方程式系と「差分Fay等式」について報告する. 無分散極限についても結果が得られているが, 時間の関係で省略する.


Kanehisa Takasaki
Integrable structure of melting crystal model with two q-parameters
arXiv:0903.2607 [math-ph]
J. Geometry and Physics 59 (2009), 1244-1257
Comments: 27 pages, no figure, latex2e(package amsmath,amssymb,amsthm)
Abstract This paper explores integrable structures of a generalized melting crystal model that has two $q$-parameters $q_1,q_2$. This model, like the ordinary one with a single $q$-parameter, is formulated as a model of random plane partitions (or, equivalently, random 3D Young diagrams). The Boltzmann weight contains an infinite number of external potentials that depend on the shape of the diagonal slice of plane partitions. The partition function is thereby a function of an infinite number of coupling constants $t_1,t_2,\ldots$ and an extra one $Q$. There is a compact expression of this partition function in the language of a 2D complex free fermion system, from which one can see the presence of a quantum torus algebra behind this model. The partition function turns out to be a tau function (times a simple factor) of two integrable structures simultaneously. The first integrable structure is the bigraded Toda hierarchy, which determine the dependence on $t_1,t_2,\ldots$. This integrable structure emerges when the $q$-parameters $q_1,q_2$ take special values. The second integrable structure is a $q$-difference analogue of the 1D Toda equation. The partition function satisfies this $q$-difference equation with respect to $Q$. Unlike the bigraded Toda hierarchy, this integrable structure exists for any values of $q_1,q_2$.


Kanehisa Takasaki
Dispersionless Hirota equations and reduction of universal Whitham hierarchy
研究集会 "Laplacian Growth and Related Topics" (CRM, University of Montreal, August 18--22, 2008) 講演スライド [pdf]
Abstract Teo, Takebe and Zabrodin applied dispersionless Hirota equations to the problem of finite-variable reduction of the dispersionless KP and Toda hierarchies. We extend their results to the universal Whitham hierarchy of genus zero. This is a joint work with Takashi Takebe.


Kanehisa Takasaki and Takashi Takebe
Loewner equations, Hirota equations and reductions of universal Whitham hierarchy
J. Phys. A: Math. Theor. {\bf 41} (2008), 475206 (27pp)
arXiv:0808.1444 [nlin.SI]
Comments: latex 2e, 39 pages, using packages amsmath,amssymb,amsthm
Abstract This paper reconsiders finite variable reductions of the universal Whitham hierarchy of genus zero in the perspective of dispersionless Hirota equations. In the case of one-variable reduction, dispersionless Hirota equations turn out to be a powerful tool for understanding the mechanism of reduction. All relevant equations describing the reduction (Lowner-type equations and diagonal hydrodynamic equations) can be thereby derived and justified in a unified manner. The case of multi-variable reductions is not so straightforward. Nevertheless, the reduction procedure can be formulated in a general form, and justified with the aid of dispersionless Hirota equations. As an application, previous results of Guil, Ma\~{n}as and Mart\'{\i}nez Alonso are reconfirmed in this formulation.


Toshio Nakatsu and Kanehisa Takasaki
Integrable structure of melting crystal model with external potentials
Advanced Studies in Pure Mathematics, vol. 59 (Mathematical Society of Japan, 2010), pp. 201--223.
arXiv:0807.4970 [math-ph]
Comments: 21 pages, 3 figures, using amsmath,amssymb,amsthm,graphicx packages, contribution to proceedings of RIMS workshop "New developments in Algebraic Geometry, Integrable Systems and Mirror symmetry" (January 7--11, 2008)
Abstract This is a review of the authors' recent results on an integrable structure of the melting crystal model with external potentials. The partition function of this model is a sum over all plane partitions (3D Young diagrams). By the method of transfer matrices, this sum turns into a sum over fordinary partitions (Young diagrams), which may be thought of as a model of q -deformed random partitions. This model can be further translated to the language of a complex fermion system. A fermionic realization of the quantum torus Lie algebra is shown to underlie therein. With the aid of hidden symmetry of this Lie algebra, the partition function of the melting crystal model turns out to coincide, up to a simple factor, with a tau function of the 1D Toda hierarchy. Some related issues on 4D and 5D supersymmetric Yang-Mills theories, topological strings and the 2D Toda hierarchy are briefly discussed.


Toshio Nakatsu, Yui Noma and Kanehisa Takasaki
Extended $5d$ Seiberg-Witten Theory and Melting Crystal
arXiv:0807.0746 [hep-th]
Nucl. Phys. B808 (2009), 411--440
Comments: The solution of the Reimann-Hilbert problem presented here is wrong. A correct solution, along with a correct curve, can be obtained by solving a Riemann-Hilbert problem for the primitive function of the Phi potential.
Abstract We study an extension of the Seiberg-Witten theory of $5d$ $\mathcal{N}=1$ supersymmetric Yang-Mills on $\mathbb{R}^4 \times S^1$. We investigate correlation functions among loop operators. These are the operators analogous to the Wilson loops encircling the fifth-dimensional circle and give rise to physical observables of topological-twisted $5d$ $\mathcal{N}=1$ supersymmetric Yang-Mills in the $\Omega$ background. The correlation functions are computed by using the localization technique. Generating function of the correlation functions of U(1) theory is expressed as a statistical sum over partitions and reproduces the partition function of the melting crystal model with external potentials. The generating function becomes a $\tau$ function of 1-Toda hierarchy, where the coupling constants of the loop operators are interpreted as time variables of 1-Toda hierarchy. The thermodynamic limit of the partition function of this model is studied. We solve a Riemann-Hilbert problem that determines the limit shape of the main diagonal slice of random plane partitions in the presence of external potentials, and identify a relevant complex curve and the associated Seiberg-Witten differential.


Toshio Nakatsu, Yui Noma and Kanehisa Takasaki
Integrable Structure of $5d$ $\mathcal{N}=1$ Supersymmetric Yang-Mills and Melting Crystal
arXiv:0806.3675 [hep-th]
Int. J. Mod. Phys. A23 (2008), 2332-2342.
Comments: The solution of the Reimann-Hilbert problem presented here is wrong. A correct solution, along with a correct curve, can be obtained by solving a Riemann-Hilbert problem for the primitive function of the Phi potential.
12 pages, 1 figure, based on an invited talk presented at the international workshop "Progress of String Theory and Quantum Field Theory" (Osaka City University, December 7-10, 2007), to be published in the proceedings
Abstract We study loop operators of $5d$ $\mathcal{N}=1$ SYM in $\Omega$ background. For the case of U(1) theory, the generating function of correlation functions of the loop operators reproduces the partition function of melting crystal model with external potential. We argue the common integrable structure of $5d$ $\mathcal{N}=1$ SYM and melting crystal model.


Kanehisa Takasaki
Integrable structure in melting crystal model of 5D gauge theory
研究集会 "New developments in Algebraic Geometry, Integrable Systems and Mirror symmetry" (数理解析研究所2008年1月7日〜11日) 講演スライド[pdf]
Abstract I will report a recent result on integrable structures in a 5D analogue of Nekrasov's instanton partition function for supersymmetric gauge theories. This partition function is formulated as a statistical model of random plane partition known as ``melting crystal''. By adding new potential terms and viewing the coupling constants as fictitious ``time variables'', the partition function turns out to be a tau function of the 1-Toda hierarchy. A fermionic realization of quantum torus Lie algebra plays a central role in identifying this integrable structure. This is a joint work with Toshio Nakatsu.


Kanehisa Takasaki
Differential Fay identities and auxiliary linear problem of integrable hierarchies
Advanced Studies in Pure Mathematics vol. 61 (Mathematical Society of Japan, 2011), pp. 387--441.
arXiv:0710.5356 [nlin.SI]
Comments: latex2e, packages "amsmath,amssymb,amsthm", 50 pages, no figure, contribution to proceedings of conference "Exploration of new structures and natural constructions in mathematical physics" (Nagoya University, March, 2007); (v2) a few references added; (v3) final version for publication
Abstract We review the notion of differential Fay identities and demonstrate, through case studies, its new role in integrable hierarchies of the KP type. These identities are known to be a convenient tool for deriving dispersionless Hirota equations. We show that differential (or, in the case of the Toda hierarchy, difference) Fay identities play a more fundamental role. Namely, they are nothing but a generating functional expression of the full set of auxiliary linear equations, hence substantially equivalent to the integrable hierarchies themselves. These results are illustrated for the KP, Toda, BKP and DKP hierarchies. As a byproduct, we point out some new features of the DKP hierarchy and its dispersionless limit.


Toshio Nakatsu and Kanehisa Takasaki
Melting Crystal, Quantum Torus and Toda Hierarchy
arXiv:0710.5339 [hep-th]
Commun. Math. Phys. 285 (2009), 445--468
Comments: 30 pages, 4 figures
Abstract Searching for the integrable structures of supersymmetric gauge theories and topological strings, we study melting crystal, which is known as random plane partition, from the viewpoint of integrable systems. We show that a series of partition functions of melting crystals gives rise to a tau function of the one-dimensional Toda hierarchy, where the models are defined by adding suitable potentials, endowed with a series of coupling constants, to the standard statistical weight. These potentials can be converted to a commutative sub-algebra of quantum torus Lie algebra. This perspective reveals a remarkable connection between random plane partition and quantum torus Lie algebra, and substantially enables to prove the statement. Based on the result, we briefly argue the integrable structures of five-dimensional $\mathcal{N}=1$ supersymmetric gauge theories and $A$-model topological strings. The aforementioned potentials correspond to gauge theory observables analogous to the Wilson loops, and thereby the partition functions are translated in the gauge theory to generating functions of their correlators. In topological strings, we particularly comment on a possibility of topology change caused by condensation of these observables, giving a simple example.


Kanehisa Takasaki
Fay-type identitties and dispersionless limit of integrable hierarchies
Workshop ``Exploration of New Structures and Natural Construction in Mathematical Physics'' (名古屋大学多元数理研究科2007年3月5日〜8日) 講演のスライド [pdf]
Abstract Fay-type identities play a significant role in recent (since 2000) applications of dispersionless integrable hierarchies (dKP, dToda, etc.). This talk is an introduction to theoretical aspects of Fay-type identities.


高崎金久
ダイマー模型とその周辺
数理解析研究所研究集会「可積分系数理の眺望」 (2006年8月21日〜23日研究代表者竹縄知之)講究録原稿 [pdf]
要旨 ダイマー模型は統計物理の模型であり,数学的には 2部グラフの完全マッチングの言葉を用いて定式化される. この記事ではダイマー模型について基礎的な部分を解説する. 特に,平面的2部グラフの場合に分配函数がパフ式や行列式として 表せる仕組みを丁寧に解説する.周期的ダイマー模型に登場する アメーバやロンキン函数の概念についても簡単に触れる.


Kanehisa Takasaki
Hamiltonian structure of PI hierarchy
arXiv:nlin.SI/0610073
SIGMA 3 (2007), 042, 32 pages
Contribution to the Vadim Kuznetsov Memorial Issue on Integrable Systems and Related Topics
Abstract The string equation of type $(2,2g+1)$ may be thought of as a higher order analogue of the first Painlev\'e equation that correspond to the case of $g = 1$. For $g > 1$, this equation is accompanied with a finite set of commuting isomonodromic deformations, and they altogether form a hierarchy called the PI hierarchy. This hierarchy gives an isomonodromic analogue of the well known Mumford system. The Hamiltonian structure of the Lax equations can be formulated by the same Poisson structure as the Mumford system. A set of Darboux coordinates, which have been used for the Mumford system, can be introduced in this hierarchy as well. The equations of motion in these Darboux coordinates turn out to take a Hamiltonian form, but the Hamiltonians are different from the Hamiltonians of the Lax equations (except for the lowest one that corresponds to the string equation itself). The difference originates in the presence of extra terms in the isomonodromic Lax equations.


Kanehisa Takasaki and Takashi Takebe
Dispersionless Hirota equations of multi-component integrable hierarchies
slides of talk at MISGRAM workshop "Integrable Systems in Applied Mathematics", Madrid, September 7--12, 2006 [pdf]
Abstract I will present recent results and work in progress on the dispersionless limit of Hirota equations of various multi-component integrable hierarchies, such as the multi-component ``charged'' KP hierarchy, the 2-component BKP hierarchy, the coupled (or $D_\infty'$) KP/BKP hierarchy, etc. This talk is partially based on joint work with T. Takebe.


Kanehisa Takasaki and Takashi Takebe
Universal Whitham hierarchy, dispersionless Hirota equations and multi-component KP hierarchy
arXiv:nlin.SI/0608068
Physica D235, no. 1-2 (2007), 109-125
Comments: latex2e (a4paper, 12pt) using packages "amssymb,amsmath,amsthm", 44 pages, no figure
Abstract The goal of this paper is to identify the universal Whitham hierarchy of genus zero with a dispersionless limit of the multi-component KP hierarchy. To this end, the multi-component KP hierarchy is (re)formulated to depend on several discrete variables called ``charges''. These discrete variables play the role of lattice coordinates in underlying Toda field equations. A multi-component version of the so called differential Fay identity are derived from the Hirota equations of the $\tau$-function of this ``charged'' multi-component KP hierarchy. These multi-component differential Fay identities have a well-defined dispersionless limit (the dispersionless Hirota equations). The dispersionless Hirota equations turn out to be equivalent to the Hamilton-Jacobi equations for the $S$-functions of the universal Whitham hierarchy. The differential Fay identities themselves are shown to be a generating functional expression of auxiliary linear equations for scalar-valued wave functions of the multi-component KP hierarchy.


高崎金久
変数分離の簡単な模型
数理解析研究所研究集会「超函数と線型微分方程式2006 数学史とアルゴリズム」 (2006年3月6日〜9日研究代表者戸瀬信之)講究録原稿 [pdf]
要旨 古典力学の場合に話を限り,ある非常に簡単な例を用いて変数分離の 考え方を解説する.これは一種の「おもちゃ模型(toy model)」であるが, 簡単でありながら変数分離の典型的な仕組みを示す含蓄の深い例である ように思われる.さらに,このおもちゃ模型を動機として行われた いくつかの研究などを紹介する


Kanehisa Takasaki
Dispersionless Hirota equations of two-component BKP hierarchy
SIGMA Vol. 2 (2006), Paper 057, 22 pages
Comments: 31 pages, no figure, latex2e usepackage amsmath,amssymb
Report-no: nlin.SI/0604003
Abstract The BKP hierarchy has a two-component analogue (the 2-BKP hierarchy). Dispersionless limit of this multi-component hierarchy is considered on the level of the $\tau$-function. The so called dispersionless Hirota equations are obtained from the Hirota equations of the $\tau$-function. These dispersionless Hirota equations turn out to be equivalent to a system of Hamilton-Jacobi equations. Other relevant equations, in particular, dispersionless Lax equations, can be derived from these fundamental equations. For comparison, another approach based on auxiliary linear equations is also presented.


Kanehisa Takasaki and Takashi Takebe
Radial Loewner equation and dispersionless cmKP hierarchy
Comments: Comments: 18 pages, Latex2e (article, amsmath, amssymb, amsthm)
Report-no: nlin.SI/0601063
Abstract It has been shown that the dispersionless KP hierarchy (or the Benney hierarchy) is reduced to the chordal L\"owner equation. We show that the radial L\"owner equation also gives reduction of a dispersionless type integrable system. The resulting system acquires another degree of freedom and becomes the dcmKP hierarchy, which is a ``half'' of the dispersionless Toda hierarchy. The results of this article was announced in nlin.SI/0512008.


Kanehisa Takasaki, Takashi Takebe
Loewner equations and dispersionless hierarchies
Comments: 6 pages (Latex; amsmath, amssymb required), Contribution to the Proceedings of the XXIII International Conference of Differential Geometric Methods in Theoretical Physics (M.-L. Ge and W. Zhang ed., Nankai Tracts in Mathematics vol. 10, World Scientific, 2006)
Report-no: nlin.SI/0512008
Abstract Reduction of a dispersionless type integrable system (dcmKP hierarchy) to the radial Loewner equation is presented.


高崎金久
Hamiltonian structuer of higher flows in string equation "Kobe workshop on integrable systems and Painleve equations" (神戸大学 2005年11月23日〜25日) 講演のOHP資料 [pdf]


Kanehisa Takasaki
Toy models of separation of variables
"Dynamics: Frontiers in Geommetry, Analysis and Mathematical Physics", 京都大学/ミュンヘン工科大学学術交流行事(2005年10月7日) 講演のOHP資料 [pdf]


Ryu Sasaki and Kanehisa Takasaki
Explicit solutions of the classical Calogero & Sutherland systems for any root system
J. Math. Phys. 47 (1) (2006), 012701
Comments: 18 pages, LaTeX, no figure
Report-no: YITP-05-60, hep-th/0510035
Abstract Explicit solutions of the classical Calogero (rational with/without harmonic confining potential) and Sutherland (trigonometric potential) systems is obtained by diagonalisation of certain matrices of simple time evolution. The method works for Calogero & Sutherland systems based on any root system. It generalises the well-known results by Olshanetsky and Perelomov for the A type root systems. Explicit solutions of the (rational and trigonometric) higher Hamiltonian flows of the integrable hierarchy can be readily obtained in a similar way for those based on the classical root systems.


Kanehisa Takasaki
Dispersionless integrable hierarchies revisited
"Riemann-Hilbert problems, integrability and asymptotics", (SISSA, Trieste, September 20--25, 2005) 講演のOHP資料 [pdf]


ソリトン
数理科学事典(丸善)第2版に収録予定 [pdf]
第1版の内容を全面的に書き改めた. 目次: 1. ソリトンの発見, 2. 逆散乱法とラックス表示, 3. 保存量と可積分性, 4. さまざまな方程式・手法, 5. 双線形化法, 6. KP階層, 7. その他の話題.
Kanehisa Takasaki
Tyurin parameters of commuting pairs and infinite dimensional Grassmannian manifold
M. Noumi and K. Takasaki (ed.), ``Elliptic Integrable Systems'', Rokko Lectures in Mathematics vol. 18, pp. 289--304 (Kobe University, 2005).
Comment: contribution to proceedings of RIMS workshop "Elliptic Integrable Systems" (RIMS, 2004)
Report-no: nlin.SI/0505005
Abstract Commuting pairs of ordinary differential operators are classified by a set of algebro-geometric data called ``algebraic spectral data''. These data consist of an algebraic curve (``spectral curve'') $\Gamma$ with a marked point $\gamma_\infty$, a holomorphic vector bundle $E$ on $\Gamma$ and some additional data related to the local structure of $\Gamma$ and $E$ in a neighborhood of $\gamma_\infty$. If the rank $r$ of $E$ is greater than $1$, one can use the so called ``Tyurin parameters'' in place of $E$ itself. The Tyurin parameters specify the pole structure of a basis of joint eigenfunctions of the commuting pair. These data can be translated to the language of an infinite dimensional Grassmann manifold. This leads to a dynamical system of the standard exponential flows on the Grassmann manifold, in which the role of Tyurin parameters and some other parameters is made clear.


高崎金久
変形KP階層のq類似とその凖古典極限
日本数学会2005年年会 (2005年3月27日--30日中央大学理工学部) 無限可積分系セッション一般講演予稿. [pdf]
要旨 変形KP階層のq類似に対して双線形方程式や線形方程式を導出する。 それに基づいて凖古典極限のHamilton-Jacobi方程式などを論じる。


Takashi Maeda, Toshio Nakatsu, Kanehisa Takasaki, Takeshi Tamakoshi
Free Fermion and Seiberg-Witten Differential in Random Plane Partitions
Nucl. Phys. B715 (2005) 275-303
Report-no: OU-HET 513, hep-th/0412329
Abstract A model of random plane partitions which describes five-dimensional $\mathcal{N}=1$ supersymmetric SU(N) Yang-Mills is studied. We compute the wave functions of fermions in this statistical model and investigate their thermodynamic limits or the semi-classical behaviors. These become of the WKB type at the thermodynamic limit. When the fermions are located at the main diagonal of the plane partition, their semi-classical wave functions are obtained in a universal form. We further show that by taking the four-dimensional limit the semi-classical wave functions turn to live on the Seiberg-Witten curve and that the classical action becomes precisely the integral of the Seiberg-Witten differential. When the fermions are located away from the main diagonal, the semi-classical wave functions depend on another continuous parameter. It is argued that they are related with the wave functions at the main diagonal by the renormalization group flow of the underlying gauge theory.


Takashi Maeda, Toshio Nakatsu, Kanehisa Takasaki, Takeshi Tamakoshi
Five-Dimensional Supersymmetric Yang-Mills Theories and Random Plane Partitions
JHEP 03 (2005), 056. Report-no: OU-HET 512, hep-th/0412327
Abstract Five-dimensional $\mathcal{N}=1$ supersymmetric Yang-Mills theories are investigated from the viewpoint of random plane partitions. It is shown that random plane partitions are factorizable as q-deformed random partitions so that they admit the interpretations as five-dimensional Yang-Mills and as topological string amplitudes. In particular, they lead to the exact partition functions of five-dimensional $\mathcal{N}=1$ supersymmetric Yang-Mills with the Chern-Simons terms. We further show that some specific partitions, which we call the ground partitions, describe the perturbative regime of the gauge theories. We also argue their role in string theory. The gauge instantons give the deformation of the ground partition.


Kanehisa Takasaki
$q$-analogue of modified KP hierarchy and its quasi-classical limit
Lett. Math. Phys. 72 (3) (2005), 165--181.
Report-no: nlin.SI/0412067
Abstract A $q$-analogue of the tau function of the modified KP hierarchy is defined by a change of independent variables. This tau function satisfies a system of bilinear $q$-difference equations. These bilinear equations are translated to the language of wave functions, which turn out to satisfy a system of linear $q$-difference equations. These linear $q$-difference equations are used to formulate the Lax formalism and the description of quasi-classical limit. These results can be generalized to a $q$-analogue of the Toda hierarchy. The results on the $q$-analogue of the Toda hierarchy might have an application to the random partition calculus in gauge theories and topological strings.


高崎金久
弦方程式の時間発展のHamilton構造
数理解析研究所短期共同研究「複素領域における微分方程式の大域解析と漸近解析」 (2003年10月6日--10日)講究録原稿 [pdf]
要旨 いわゆる弦方程式(Douglas方程式)は背後のKdV階層に由来する 可換な時間発展をもつ. 通常の可積分系の変数分離の手法を応用する ことによって, これらの時間発展を非自励Hamilton系に定式化しなおす ことができる. Hamiltonianには通常の可積分系や弦方程式自体の Hamilton形式の場合には存在しない付加項が現れる.


高崎金久
Tyurinパラメータと可換微分作用素環
科学研究費補助金(基盤研究C 2002--2003)成果報告書のための書き下ろし [pdf]
要旨 KricheverとNovikovの1970年代の研究によって Tyurinパラメータと可換微分作用素環との関わりが 明らかになった.以下では,ソリトン方程式の 高種数的類似を考える材料として,この研究の 概略を紹介する.可換微分作用素環にはスペクトル曲線 と呼ばれる代数曲線とその上の正則ベクトルなどの 幾何学的構造が付随している.Tyurinパラメータは 代数幾何学で代数曲線上の安定正則ベクトル束の モジュライの定式化の一つとして提案されたものだが, 可換微分作用素環ではそれが自然な形で登場する. 可換微分作用素環とKP階層による時間発展を組み合わせれば, KdV方程式などの古典的ソリトン方程式の高種数的類似 とみなすべき方程式が現れる.これらの方程式の定式化 においてもTyurinパラメータが基本的役割を演じる.


Kanehisa Takasaki
Elliptic spectral parameter and infinite dimensional Grassmann variety
Comments: Contribution to Faro conference "Infinite dimensional algebras and quantum integrable systems", Progress in Mathematics vol. 237, pp. 169--197 (Birkhauser, Basel/Switzerland, 2005)
Report-no: nlin.SI/0312016
Abstract Recent results on the Grassmannian perspective of soliton equations with an elliptic spectral parameter are presented along with a detailed review of the classical case with a rational spectral parameter. The nonlinear Schr\"odinger hierarchy is picked out for illustration of the classical case. This system is formulated as a dynamical system on a Lie group of Laurent series with factorization structure. The factorization structure induces a mapping to an infinite dimensional Grassmann variety. The dynamical system on the Lie group is thereby mapped to a simple dynamical system on a subset of the Grassmann variety. Upon suitable modification, almost the same procedure turns out to work for soliton equations with an elliptic spectral parameter. A clue is the geometry of holomorphic vector bundles over the elliptic curve hidden (or manifest) in the zero-curvature representation.


Kanehisa Takasaki
Landau-Lifshitz hierarchy and infinite dimensional Grassmann variety
Lett. Math. Phys. 67 (2) (2004), 141-152
Comments: latex2e (usepackage:amssyb), 15 pages, no figure; (v2) minor changes; (v3) typos corrected
Report-no: lin.SI/0312002
Abstract The Landau-Lifshitz equation is an example of soliton equations with a zero-curvature representation defined on an elliptic curve. This equation can be embedded into an integrable hierarchy of evolution equations called the Landau-Lifshitz hierarchy. This paper elucidates its status in Sato, Segal and Wilson's universal description of soliton equations in the language of an infinite dimensional Grassmann variety. To this end, a Grassmann variety is constructed from a vector space of $2 \times 2$ matrices of Laurent series of the spectral parameter $z$. A special base point $W_0$, called ``vacuum,'' of this Grassmann variety is chosen. This vacuum is ``dressed'' by a Laurent series $\phi(z)$ to become a point of the Grassmann variety that corresponds to a general solution of the Landau-Lifshitz hierarchy. The Landau-Lifshitz hierarchy is thereby mapped to a simple dynamical system on the set of these dressed vacua. A higher dimensional analogue of this hierarchy (an elliptic analogue of the Bogomolny hierarchy) is also presented.


高崎金久
Tyurinパラメータと佐藤理論
日本数学会2003年秋季総合分科会(2003年9月24日--27日千葉大学) 無限可積分系分科会一般講演講演予稿. [pdf]
要旨 最近Kricheverは任意種数の代数曲線上でLax・零曲率方程式の構成法を与えた. ここでは彼のアイディアを適用して楕円(および任意種数)曲線上の 非線形Schrodinger方程式の類似を構成し,佐藤Grassmann多様体の言葉で この系の解釈を示す.


Kanehisa Takasaki
Tyurin parameters and elliptic analogue of nonlinear Schr\"odinger hierarchy
J. Math. Sci. Univ. Tokyo 11 (2004), 91--131
Comments: latex2e, 36 pp, no figure; (v2) minor changes, mostly typos; (v3) Title changed, text fully revised with new results; (v4) serious errors in section 5 corrected; (v5) proof of main results is improved; (v6) minor change in proof of Lemma 10 etc Report-no: nlin.SI/0307030
Abstract Two ``elliptic analogues'' of the nonlinear Schr\"odinger hiererchy are constructed, and their status in the Grassmannian perspective of soliton equations is elucidated. In addition to the usual fields $u,v$, these elliptic analogues have new dynamical variables called ``Tyurin parameters,'' which are connected with a family of vector bundles over the elliptic curve in consideration. The zero-curvature equations of these systems are formulated by a sequence of $2 \times 2$ matrices $A_n(z)$, $n = 1,2,\ldots$, of elliptic functions. In addition to a fixed pole at $z = 0$, these matrices have several extra poles. Tyurin parameters consist of the coordinates of those poles and some additional parameters that describe the structure of $A_n(z)$'s. Two distinct solutions of the auxiliary linear equations are constructed, and shown to form a Riemann-Hilbert pair with degeneration points. The Riemann-Hilbert pair is used to define a mapping to an infinite dimensional Grassmann variety. The elliptic analogues of the nonlinear Schr\"odinger hierarchy are thereby mapped to a simple dynamical system on a special subset of the Grassmann variety.


ソリトン
数学辞典(岩波書店)第4版に収録予定 [pdf]
Hamilton構造、双線形化法、KP階層などの話題も取り入れて、 岩波数学辞典第3版の「ソリトン」を全面的に書き改めた。


高崎金久, 武部尚志
有理型函数対の空間の上の可積分系
日本数学会2003年年会無限可積分系分科会一般講演予稿 (2003年3月23日--26日東京大学数理科学研究科) [pdf]
要旨 有理関数の空間の空間の上にはAtiyahとHitchinの シンプレクティック構造に基づいて可積分系の構造が入ることが 知られているが、ここではその構成法を任意種数の複素代数曲線上の 有理型関数の対の空間に拡張する。


高崎金久
佐藤理論から見たLandau-Lifshitz方程式
日本数学会2003年年会無限可積分系分科会一般講演予稿 (2003年3月23日--26日東京大学数理科学研究科) [pdf] (2003年11月改訂版)
要旨 Landau-Lifshitz方程式はトーラス上のスペクトルパラメータに 依存する行列によってLax表示される方程式として知られている。ここでは ソリトン方程式に対する佐藤理論の枠組みでこの方程式を定式化する 方法を示す。


高崎金久
Liouville平面から見た複素WKB法
研究集会「数学解析の望ましい姿を探って」 (九州大学箱崎キャンパス2002年12月12日--14日)講究録原稿 [pdf]
要旨 完全WKBに対するもうひとつのアプローチを提案する。これはいわゆる 「Liouville変換」によって物理空間上の問題を別の空間上の散乱問題に 変換することに基づく。


Kanehisa Takasaki
Spectral curve, Darboux coordinates and Hamiltonian structure of periodic dressing chains
Commun. Math. Phys. 241 (1) (2003), 111--142
Comments: latex2e, 41 pages no figure; 改訂版(version 3). 前の版よりもかなり短くなったが (56pages --> 41 pages), 結果の一部は改良された.
Report-no: nlin.SI/0206049
Abstract A chain of one-dimensional Schr\"odinger operators is called a ``dressing chain'' if they are connected by successive Darboux transformations. Particularly interesting are periodic dressing chains; they include finite-band operators and Painlev\'e equations as a special case. We investigate the Hamiltonian structure of these nonlinear lattices using V.~Adler's $2 \times 2$ Lax pair. The Lax equation and the auxiliary linear problem of this Lax pair contain a shift, rather than a derivative, in the spectral parameter. Despite this unusual feature, we can construct a transition matrix around the periodic chain, an associated ``spectral curve'' and a set of Darboux coordinates (``spectral Darboux coordinates''). The dressing chain is thereby converted to a Hamiltonian system in these Darboux coordinates. Moreover, the Hamiltonian formalism is accompanied by an odd-dimensional Poisson structure. This induces a quadratic Poisson algebra of the matrix elements of the transition matrix. As a byproduct, we show that this Poisson structure is equivalent to another Poisson structure previously studied by Veselov, Shabat, Noumi and Yamada.


高崎金久
周期的Darboux鎖と周期的戸田格子の類似性
九州大学応用力学研究所研究集会「非線形波動および非線形力学系に関する最近の話題」 (2002年11月6日--8日)講究録原稿 [pdf]
要旨 周期的Darboux鎖のさまざまな側面を調べて行くと, Lax表示,スペクトル曲線,Hamilton構造,Poisson構造など 至るところで周期的戸田格子に類似する性質や構造に出会う. ここではその一端を紹介する.


Kanehisa Takasaki
Integrable systems whose spectral curve is the graph of a function
Comments: CRM Proceedings and Lecture Notes vol. 37, pp. 211--222 (AMS, Province, 2004). Contribution to the proceedings of the conference "Superintegrability in classical and quantum systems" (Montreal, September 16--22, 2002), latex2e, 15 pages, no figure
Report-no: nlin.SI/0211021
Abstract For some integrable systems, such as the open Toda molecule, the spectral curve of the Lax representation becomes the graph $C = \{(\lambda,z) \mid z = A(\lambda)\}$ of a ffunction $A(\lambda)$. Those integrable systems provide an interesting ``toy model'' of separation of variables. Examples of this type of integrable systems are presented along with generalizations for which $A(\lambda)$ lives on a cylinder, a torus or a Riemann surface of higher genus.


高崎金久
弦方程式のスペクトル曲線とHamilton構造
数理解析研究所短期共同研究「微分方程式の変形と漸近解析」 (2002年6月3日--7日)講究録原稿 [pdf]
要旨 1変数の微分作用素 Q,P に対する交換子方程式 [Q,P] = 1 を 弦方程式という。この論文では Q が2階、P が奇数(2g+1)階の 場合の弦方程式のHamilton構造について得られた結果を紹介する。 この場合の弦方程式は 2 x 2 行列のLax表示をもつ。それを用いて スペクトル曲線(種数 g の超楕円曲線となる)ならびに 2g 個の 正準変数(Darboux変数)を導入し、弦方程式をHamilton系に書き直す。


高崎金久, 武部尚志
変数分離・代数曲面・Seiberg-Witten理論から見た 有理函数の空間上の可積分系とその拡張
日本数学会2002年年会無限可積分系分科会 (2002年3月28日--31日明治大学駿河台校舎)一般講演予稿 [pdf]
要旨 AtiyahとHitchinは SU(2) Yang-Millsモノポールのモジュライ空間の ツイスター記述の過程で有理函数の空間の上にシンプレクティック構造 を導入した。この有理函数の極の基本対称式は対応するPoisson構造に 関して可換であり、特にこの空間の上に可積分系が得られる。この可積分系は Moserが古典的な仕事において非周期的有限戸田格子の別表現として得たものと 同一視できる。本講演では,この(ほとんど自明とも言うべき) 可積分系が表題に掲げた変数分離,代数曲面,ならびにSeiberg-Witten理論 の簡単なモデルでもあることに注目し,それに基づくいくつかの拡張を示す.


Kanehisa Takasaki and Takashi Takebe
An integrable system on the moduli space of rational functions and its variants
Journal of Geometry and Physics 47 (1) (2003), 1--20
Comments: 25 pages, AMS-LaTeX, no figure
Report-no: nlin.SI/0202042
Abstract We study several integrable Hamiltonian systems on the moduli spaces of meromorphic functions on Riemann surfaces (the Riemann sphere, a cylinder and a torus). The action-angle variables and the separated variables (in Sklyanin's sense) are related via a canonical transformation, the generating function of which is the Abel-Jacobi type integral of the Seiberg-Witten differential over the spectral curve.


高崎金久
dressing chainのスペクトル曲線とHamilton構造
京大数理研・短期共同研究 「可積分系研究における双線形化法とその周辺」 (2001年7月2日--4日)講究録原稿 [pdf]
要旨 dressing chainはShabatらによって導入された概念で, Darboux変換と定数によるずらしを組み合わせた関係で 結ばれた1次元Schrodinger作用素の列を意味する. これはもともとSchrodinger方程式のスペクトル的性質を 調べる問題から派生したものだが,周期的境界条件を 課したものは有限帯ポテンシャルやPainleve方程式とも 深く関わり合っている.以下ではまずdressing chainに ついて一般的なこと(特に二種類のLax形式の存在)を 復習し,周期的な場合の転移行列やスペクトル曲線の 構造を説明してから,Hamilton構造について最近得た 結果を紹介する.


Kanehisa Takasaki
Spectral curve and Hamiltonian structure of isomonodromic SU(2) Calogero-Gaudin system
J. Math. Phys. 44 (9) (2003), 3979--3999
Comments: J. Math. Phys. vol. 44 に掲載された原稿に 深刻な誤りが見つかった. 訂正版がe-print書庫にarXiv:nlin.SI/0111019 ver.6 として置いてある.
Report-no: nlin.SI/0111019
Abstract This paper presents an approach to the Hamiltonian structure of isomonodromic systems of matrix ODE's on a torus from their spectral curve. An isomonodromic analogue of the so called $\rmSU(2)$ Calogero-Gaudin system is used for a case study of this approach. A clue of this approach is a mapping from the Lax equation to a dynamical system of a finite number of points on the spectral curve. The coordinates of these moving points give a new set of canonical variables, which have been used in the literature for separation of variables of many integrable systems including the usual $\rmSU(2)$ Calogero-Gaudin system itself. The same machinery turns out to work for the isomonodromic system on a trous, though the separability is lost and the non-autonomous nature of the system causes technical complications. Strong evidence is shown which suggests that this isomonodromic system is equivalent to a previously known isomonodromic system of second order scalar ODE's on a torus.


R. Sasaki and K. Takasaki
Quantum Inozemtsev model, quasi-exact solvability and N-fold supersymmetry
J.Phys. A34 (2001), 9533--9554
Comments: LaTeX2e 28 pages, no figures
Report-no: hep-th/0109008, YITP-01-60 and KUCP-0191
Abstract Inozemtsev models are classically integrable multi-particle dynamical systems related to Calogero-Moser models. Because of the additional q^6 (rational models) or sin^2(2q) (trigonometric models) potentials, their quantum versions are not exactly solvable in contrast with Calogero-Moser models. We show that quantum Inozemtsev models can be deformed to be a widest class of partly solvable (or quasi-exactly solvable) multi-particle dynamical systems. They posses N-fold supersymmetry which is equivalent to quasi-exact solvability. A new method for identifying and solving quasi-exactly solvable systems, the method of pre-superpotential, is presented.


Saburo Kakei, Takeshi Ikeda and Kanehisa Takasaki
Hierarchy of (2+1)-dimensional nonlinear Schroedinger equation, self-dual Yang-Mills equation, and toroidal Lie algebras
Ann. Henri Poincare 3 (2002), 817--845.
Comments: 26 pages, Latex2e, uses amsmath, amssymb, amsthm
Report-no: nlin.SI/0107065
Abstract The hierarchy structure associated with a (2+1)-dimensional Nonlinear Schroedinger equation is discussed as an extension of the theory of the KP hierarchy. Several methods to construct special solutions are given. The relation between the hierarchy and a representation of toroidal Lie algebras are established by using the language of free fermions. A relation to the self-dual Yang-Mills equation is also discussed.


高崎金久
有理スペクトル曲線をもつ可積分系
日本数学会2001年年会 (2001年3月26日ー29日慶応義塾大学日吉キャンパス)一般講演予稿 [pdf]
要旨 可積分系のスペクトル曲線と言えば正種数の代数曲線を想像 するのが普通だが,スペクトル曲線が有理曲線になる例もある. ここではそのような例を紹介する.


高崎金久
Painleve-Calogero correspondence
京大数理研・短期共同研究「離散可積分系の研究の進展」 (2000年8月2日--4日)講究録原稿 [pdf]
要旨 最近,Painlev\'eVI型方程式とCalogero型可積分系の間の 対応関係(Painlev\'e-Calogero対応)がVI型以外の方程式 にも拡張された.また,多自由度のCalogero系に対応して, Painlev\'e方程式の多自由度への拡張が得られた.これらの 結果を解説する.


高崎金久
変数分離法が甦る
日本応用数理学会2000年度年会オーガナイズドセッション 「力学系の応用数理 -- 幾何学と可積分系の視点から --」 (2000年10月6日ー8日東京工業大学)講演予稿 [pdf]
要旨 最近,19世紀の変数分離法が現代的な可積分系の 視点から見直されている.簡単な可積分系を例に選んで, 現代に復活した変数分離法の考え方を紹介する.


Kanehisa Takasaki
Hyperelliptic Integrable Systems on K3 and Rational Surfaces
Phys. Lett. A283 (2001), 201--208.
Comments: latex2e using packages "amsmath and amssymb", 15 pages
Report-no: KUCP-0161, math.AG/0007073
Abstract: We show several examples of integrable systems related to special K3 and rational surfaces (e.g., an elliptic K3 surface, a K3 surface given by a double covering of the projective plane, a rational elliptic surface, etc.). The construction, based on Beauvilles's general idea, is considerably simplified by the fact that all examples are described by hyperelliptic curves and Jacobians. This also enables to compare these integrable systems with more classical integrable systems, such as the Neumann system and the periodic Toda chain, which are also associated with rational surfaces. A delicate difference between the cases of K3 and of rational surfaces is pointed out therein.


Kanehisa Takasaki
Anti-self-dual Yang-Mills equations on noncommutative spacetime
J. Geom. Phys. 37 (2001), 291 - 306.
Comments: latex2e using packages amsmath and amssymb, 24 pages
Report-no: KUCP-153, hep-th/0005194
Abstract: By replacing the ordinary product with the so called $\star$-product, one can construct an analogue of the anti-self-dual Yang-Mills (ASDYM) equations on the noncommutative $\bbR^4$. Many properties of the ordinary ASDYM equations turn out to be inherited by the $\star$-product ASDYM equation. In particular, the twistorial interpretation of the ordinary ASDYM equations can be extended to the noncommutative $\bbR^4$, from which one can also derive the fundamental strutures for integrability such as a zero-curvature representation, an associated linear system, the Riemann-Hilbert problem, etc. These properties are further preserved under dimensional reduction to the principal chiral field model and Hitchin's Higgs pair equations. However, some structures relying on finite dimensional linear algebra break down in the $\star$-product analogues.


Kanehisa Takasaki
Painleve-Calogero Correspondence Revisited
J. Math. Phys. 42 (3) (2001), 1443-1473.
Comments: latex2e using amsmath and amssymb packages, 40 pages, no figure
Report-no: KUCP 149, math.QA/0004118
Abstract: We extend the work of Fuchs, Painlev\'e and Manin on a Calogero-like expression of the sixth Painlev\'e equation (the ``Painlev\'e-Calogero correspondence'') to the other five Painlev\'e equations. The Calogero side of the sixth Painlev\'e equation is known to be a non-autonomous version of the (rank one) elliptic model of Inozemtsev's extended Calogero systems. The fifth and fourth Painlev\'e equations correspond to the hyperbolic and rational models in Inozemtsev's classification. Those corresponding to the third, second and first are not included therein. We further extend the correspondence to the higher rank models, and obtain a ``multi-component'' version of the Painlev\'e equations.


Takeshi Ikeda and Kanehisa Takasaki
Toroidal Lie algebras and Bogoyavlensky's 2+1-dimensional equation
International Mathematics Research Notices 7 (2001), 329--369
Comments: LaTeX2e with amsmath and amssymb, 35 pages, no figures
Report-no: nlin.SI/0004015
Abstract:We introduce an extension of the $\ell$-reduced KP hierarchy, which we call the $\ell$-Bogoyavlensky hierarchy. Bogoyavlensky's $2+1$-dimensional extension of the KdV equation is the lowest equation of the hierarchy in case of $\ell=2$. We present a group-theoretic characterization of this hierarchy on the basis of the $2$-toroidal Lie algebra ${\fraksl}_\ell^\tor$. This reproduces essentially the same Hirota bilinear equations as those recently introduced by Billig and Iohara et al. We can further derive these Hirota bilinear equation from a Lax formalism of the hierarchy.This Lax formalism also enables us to construct a family of special solutions that generalize the breaking soliton solutions of Bogoyavlensky. These solutions contain the $N$-soliton solutions, which are usually constructed by use of vertex operators.


高崎金久
Hyperelliptic integrable systems on elliptic K3 and rational surfaces
日本数学会2000年年会無限可積分系分科会 (2000年3月27日--30日早稲田大学理工学部)一般講演予稿 [pdf]
Abstract After the work of Mukai and Beauville, it has come to be widely recognized that the moduli spaces of a certain class of sheaves on a K3 surface have the structure of algebraically integrable Hamiltonian systems (AIHS). The aim of this talk is to present a special example of those AIHS's on elliptic K3 (and rational) surfaces, along with an explicit description of ``action-angle variables''.


高崎金久
トーラス上の等モノドロミー変形
日本数学会2000年年会無限可積分系分科会 (2000年3月27日--30日早稲田大学理工学部)特別講演予稿 [pdf]
要旨 トーラス上の常微分方程式の等モノドロミー変形ならびに それらと可積分系・共形場理論・Painlev\'e 方程式との 関係に関する最近の研究の概要を紹介する.


高崎金久
Calogero-Moser系から見たPainleve方程式
数理解析研究所短期共同研究「Paileve系,超幾何系,漸近解析」 (1999年6月7日ー10日)および神戸大学研究集会 「パンルヴェ方程式の大域解析」(1999年10月26日ー29日) での講演に基づく [pdf]
要旨 ManinによるPainlev\'e VI型方程式の別表現は楕円型 Calogero-Moser系の一種の楕円型Inozemtsev系を非自励系に 変えた形をもつ.最近,各種の楕円型Calogero-Moser系 から同様にして非自励系を構成できること,得られる 非自励系はもとの自励系と同様のLax表示をもつこと, そこからトーラス上の等モノドロミー変形としての解釈が 導かれること,などが明らかになった.特に,これによって Maninの非自励系をトーラス上の等モノドロミー系として 特徴づけることができるようになる.この結果と背景 について紹介する.他のPainlev\'e方程式への退化, Garnier系などへの拡張の可能性など,関連する問題にも 触れる.


高崎金久
非線形波動の変調とWhitham 方程式
数理解析研究所研究会「繰り込み群の数理科学での応用」 (1999年7月21日ー23日)講究録寄稿 [pdf]
要旨 非線形振動論における Bogoliubov-Krilov-Mitropol'ski の平均化法の 非線形波動への拡張として,Whitham の平均化法 \cite{bib:Whitham} と呼ばれるものが知られている.これはもともと分散性非線形波動 の変調現象を一般的に扱うために開発されたものであるが, KdV方程式などの場合には(多重)周期解が(超)楕円函数で厳密に 与えられるため,その変調がRiemann面の幾何学の言葉で記述される, など数学的に思いがけない広がりを見せる.また,戸田格子などの 格子上の非線形波動や,Painlev\'e型方程式の解の漸近挙動の解析 にも応用されている.

Whithamの平均化法は非線形波動から搬送波の速い振動を 平均操作によって消去して,搬送波のパラメータの緩やかな 時空変化を取り出すものである.類似の考え方は「断熱近似」と して非線形波動のみならず物理学全般に広く用いられている. たとえば,量子力学のBorn-Oppenheimer近似もその一種で, その数学的な取り扱いはWhitham平均化法とほとんど同じである. これらの手法に共通する「速いモードを消去して遅いモードに 繰り込む」という考え方は繰り込み群にも通じるものがある.

以下では,繰り込み群との関連を期待しつつ,KdV方程式を 主な例として,Whithamの平均化法を解説する.


高崎金久
Elliptic Calogero-Moser systems and isomonodromic deformations
日本数学会1999年度秋季総合分科会 (広島大学1999年9月)一般講演予稿 [pdf]
Abstract We consider a non-autonomous analogue of various elliptic Calogero-Moser systems. A particularly interesting case is the Inozemtsev system, which contains Manin's elliptic (``$\mu$-equation'') form of the sixth Painlev\'e equation as a special case. We show that the non-autonomous analogues, like their autonomous counterparts, have a Lax pair. This Lax pair enables us to interpret the non-autonomous systems as isomonodromic deformations on a torus.


S.P. Khastgir, R. Sasaki and K. Takasaki
Calogero-Moser Models IV: Limits to Toda theory
Prog. Theor. Phys. 102 (4) (1999), 749-776.
Comments: LaTeX2e with amsfonts.sty, 33 pages, no figures
Report-no: YITP-99-20, KUCP-0132, hep-th/9907102
Abstract: Calogero-Moser models and Toda models are well-known integrable multi-particle dynamical systems based on root systems associated with Lie algebras. The relation between these two types of integrable models is investigated at the levels of the Hamiltonians and the Lax pairs. The Lax pairs of Calogero-Moser models are specified by the representations of the reflection groups, which are not the same as those of the corresponding Lie algebras. The latter specify the Lax pairs of Toda models. The Hamiltonians of the elliptic Calogero-Moser models tend to those of Toda models as one of the periods of the elliptic function goes to infinity, provided the dynamical variables are properly shifted and the coupling constants are scaled. On the other hand most of Calogero-Moser Lax pairs, for example, the root type Lax pairs, do not a have consistent Toda model limit. The minimal type Lax pairs, which corresponds to the minimal representations of the Lie algebras, tend to the Lax pairs of the corresponding Toda models.


Kanehisa Takasaki
Whitham Deformations and Tau Functions in N = 2 Supersymmetric Gauge Theories
Prog. Theor. Phys. Suppl. 135 (1999), 53-74.
Comments: latex2e using amsfonts package
Report-no: KUCP-0136, hep-th/9905224
Abstract: We review new aspects of integrable systems discovered recently in $N=2$ supersymmetric gauge theories and their topologically twisted versions. The main topics are (i) an explicit construction of Whitham deformations of the Seiberg-Witten curves for classical gauge groups, (ii) its application to contact terms in the $u$-plane integral of topologically twisted theories, and (iii) a connection between the tau functions and the blowup formula in topologically twisted theories.


Kanehisa Takasaki
Elliptic Calogero-Moser Systems and Isomonodromic Deformations
J. Math. Phys. 40 (11) (1999), 5787-5821
Comments: latex2e using amsfonts package
Report-no: KUCP-0133, math.QA/9905101
Abstract: We show that various models of the elliptic Calogero-Moser systems are accompanied with an isomonodromic system on a torus. The isomonodromic partner is a non-autonomous Hamiltonian system defined by the same Hamiltonian. The role of the time variable is played by the modulus of the base torus. A suitably chosen Lax pair (with an elliptic spectral parameter) of the elliptic Calogero-Moser system turns out to give a Lax representation of the non-autonomous system as well. This Lax representation ensures that the non-autonomous system describes isomonodromic deformations of a linear ordinary differential equation on the torus on which the spectral parameter of the Lax pair is defined. A particularly interesting example is the ``extended twisted $BC_\ell$ model'' recently introduced along with some other models by Bordner and Sasaki, who remarked that this system is equivalent to Inozemtsev's generalized elliptic Calogero-Moser system. We use the ``root type'' Lax pair developed by Bordner et al. to formulate the associated isomonodromic system on the torus.

Kanehisa Takasaki
Whitham Deformations of Seiberg-Witten Curves for Classical Gauge Groups
Int. J. Mod. Phys. A15 (23) (2000), 3635-3666
Comments: latex, 39pp, no figure
Report-no: KUCP-0127, hep-th/9901120
Abstract: Gorsky et al. presented an explicit construction of Whitham deformations of the Seiberg-Witten curve for the $SU(N+1)$ $\calN = 2$ SUSY Yang-Mills theory. We extend their result to all classical gauge groups and some other cases such as the spectral curve of the $A^{(2)}_{2N}$ affine Toda system. Our construction, too, uses fractional powers of the superpotential $W(x)$ that characterizes the curve. We also consider the $u$-plane integral of topologically twisted theories on four-dimensional manifolds $X$ with $b_2^{+}(X) = 1$ in the language of these explicitly constructed Whitham deformations and an integrable hierarchy of the KdV type hidden behind.


A.J. Bordner, R. Sasaki and K. Takasaki
Calogero-Moser Models II: Symmetries and Foldings
Prog. Thero. Phys. 101 (3) (1999), 487-518.
Comments: 35 pages, LaTeX2e with amsfonts, no-figure
Report-no: YITP-98-60, KUCP-0121, hep-th/9809068
Abstract: Universal Lax pairs (the root type and the minimal type) are presented for Calogero-Moser models based on simply laced root systems including (E_8). They are with and without spectral parameter and they work for all of the four choices of potentials: the rational, trigonometric, hyperbolic and elliptic. For the elliptic potential, the discrete symmetries of the simply laced models, originating from the automorphism of the extended Dynkin diagrams are combined with the periodicity of the potential to derive a class of Calogero-Moser models known as the `twisted non-simply laced models'. Among them, a twisted (BC_n) model is new and it has some novel features. For untwisted non-simply laced models, two kinds of root type Lax pairs (based on long roots and short roots) are derived which contain independent coupling constants for the long and short roots. The (BC_n) model contains three independent couplings, for the long, middle and short roots. The (G_2) model based on long roots exhibits a new feature which deserves further study.


高崎金久
Construction of isomonodromic problems on torus
日本数学会1998年度秋季総合分科会 (大阪大学, 1998年9月)一般講演予稿 [pdf]

This talk deals with the problem of constructuting isomonodromic deformations of a first order matrix system $\frac{dY}{dz} = L(z) Y$ on the torus. The matrix linear system is assumed to have regular singularities at $N$ points $z = t_1,\cdots,t_N$. The problem is to construct isomonodromic deformations that leave a set of monodromy data invariant while the position of the poles and the modulus $\tau$ being varied. I shall present two types of such isomonodromic systems. Both have an isospectral partner (the elliptic Calogero-Gaudin system / the ordinary elliptic Gaudin system), and are also related to a conformal field theory (the ordinary WZW model / its ``twisted'' version by Kuroki and Takebe) on a torus.